Index

Note: Page references in *italics* refer to Figures; those in **bold** refer to Tables

absorptivity 51
AIRS instrument 172
atmospheric boundary layer (ABL) atmospheric variables in 223
daytime profiles 261–3, 264, 265
diurnal evolution, over land, under clear sky conditions 260–1, 261
entrainment layer 260
equations of atmospheric flow in 231–47
equations of turbulent flow in 248–58
exchange processes 301–6, 302, 304
feedback processes, modeling 316, 327, 328, 331
higher order moments 265–75
inversion layer 260
mixed layer 260
nature and evolution of 259–61, 260, 261
nighttime profiles 263–5
resistance 302–6
structure 259–60
surface layer 259
turbulent flux at 223
virtual potential temperature in 31–3
accretion 143
actual daily total solar radiation 59
adiabatic atmosphere 33
adiabatic lapse rates 27–9
dry 27–8
environmental 28–9
moist 28
advected energy 41
advective (mean) flux 225–9
aerodynamic resistance 289, 296–9
aerosols 131
sources 131
aggregation 143
AIRS precipitation product 172
Aitken Nuclei 131
albedo of natural surface 52, 52
for different surfaces 53
variation with solar altitude 52, 53, 54
Amazonian deforestation 366
Andres Mountains 125
anemometer 214
annual precipitation 177
Antarctica 9
anthroposphere, features of 10–11
Archimedes principle 32
areal mean precipitation, calculation 200–4
areal reduction factors (ARFs) 205–7, 207
Asian-Australian monsoon system 118, 119, 383
atmosphere circulation 7, 7
composition 5, 6
features of 5–7, 7
variance 7
water vapor in 14–24
atmospheric circulation, global scale influences on 107–25, 108
atmospheric stability 32–4, 34
static stability parameter 32–3
atmospheric water vapor 14–24
conservation 244–5
content 15
residence time 3, 6–7
autocorrelation 187
available energy 41
averaging rules for time-dependent variables 218
Avogadro’s number 16
Azores High 123
Ball-Berry equation 368, 369
Bayesian inversion method 173
Bergeron-Findeisen process 134, 143, 144, 146, 147
big-leaf assumption of canopy resistance 312–13
of plant–atmosphere interactions 316, 364
biochemical energy storage 40–1
biosphere, features of 10
blackbody 49
blackbody radiation laws 49–51, 50
blending height 37
bluff body transfer 302, 303, 319
‘boil off’ rate 19
BOREAS experiment 390
Boussinesq experiment 249–50, 252, 265
Boussinesq’s approximation measuring method 45–6, 83–5, 85, 86
Boyle’s Law 16
Budyko Bucket model 361, 361, 364
buoyant acceleration 32–3
Campbell-Stokes recorder 78, 78
canopy capacity 324
canopy processes 300–14
canopy resistances 300–14
big leaf approach 312–13
ergy budget of dry canopy 311–14, 312, 313
energy budget of dry leaf 310–11
shelter factors 306–8
stomatal resistance 308–10

capacitance probes 91
carbon cycle, impact of change to 11
carbon dioxide, hydroclimate changes and 110
Cartesian Grid 102, 102
Charles's law 16
chlorinated fluorocarbons (CFCs) 11
cirrus 140
cold front 138
collection efficiency of cloud droplets 144, 145
collision efficiency of cloud droplets 144
collision of cloud droplets 144–5, 145
Community Land Model (CLM) 371–2
conditional probabilities 195, 196
continental land cover 110
continental topography 109
continental water balance, estimated 5
daylight 57
deforestation 110
density of soil 69–70

design storms 205–7
dew 152–3
dew point hygrometer 21
dew point of air 21
dimensionless gradients 290–2
of specific humidity 291, 292, 295
of virtual potential temperature 291–2
of wind speed 290
dimensionless measure of atmospheric stability 289
of buoyant production 291, 292, 293
dimensionless prognostic equation for TKE 290
divergence equation for turbulent fluctuations 250
divergence of net radiation flux 246
Doldrums, the 112
Doppler effect 169
drag coefficient 302, 304
drizzle 149
temperature, humidity and wind speed 335–7

daily estimates of evaporation 334–55
Matt-Shuttleworth approach 348–53, 352, 354, 392
open water evaporation 339–41
reference crop evapotranspiration 341–2

evaporation pan-based estimation of 346–8
Penman-Monteith equation estimation of 342–3
radiation-based estimation of 344–5, 345
temperature-based estimation 345–6
vs SVATS 334
unstressed vegetation 348–53, 352, 354, 392
water stressed vegetation 353–5
daily precipitation 180, 181
Dalton's law of partial pressures 16

damping depth 73, 74, 75
day length 57
decomposed variables, averaging of 217–19
deforestation 110
density of soil 69–70

design storms 205–7
dew 152–3
dew point hygrometer 21
dew point of air 21
dimensionless gradients 290–2
of specific humidity 291, 292, 295
of virtual potential temperature 291–2
of wind speed 290
dimensionless measure of atmospheric stability 289
of buoyant production 291, 292, 293
dimensionless prognostic equation for TKE 290
divergence equation for turbulent fluctuations 250
divergence of net radiation flux 246
Doldrums, the 112
Doppler effect 169
drag coefficient 302, 304
drizzle 149
dry adiabatic lapse rate 27–8, 135
dry air 15
dry bulb temperature 22, 23
dry growth 147
dynamics 101
Earth, elliptical orbit, distance from
Sun and 55, 55
Earth Observing System Aqua
polar-orbiting satellite 172
eccentricity factor 55
eddies, turbulent see turbulent eddies
eddy correlation method 85–7
eddy diffusion of momentum
flux 295–6
eddy diffusivities 281, 283, 285, 296,
298–9
effective depth of soil heat flow 74
El Niño Southern Oscillation (ENSO)
110, 120–2, 121
electromagnetic radiation 48
equilibrium evaporation rate 325–7,
326
equivalent flux of latent heat 295
energy budget measuring method
(Bowen ratio) 45–6, 83–5, 85, 86
energy budget of open water 46
energy, conservation of 231, 245–6,
245, 257
enhanced efficiency of near surface
turbulence 316
ensemble 100
ENSO 177
environmental lapse rate 28–9, 135
equilibrium evaporation rate 325–7, 326
equivalent flux of latent heat 295
European Centre for Medium-term
Weather Forecasting
(ECMWF) model 386,
390, 391
evaporation measurement from
integrated water loss 87–91
comparison of methods 91, 92–3
evaporation pans 88–9, 89
evaporative fraction 45
evapotranspiration 342
excess resistance approach to
boundary layer
resistance 319–21, 320
extratropical fronts 138–40, 139
extremal distributions 193
far infrared waveband 48
fetch 83
Fick’s law 281
fixed area analysis 206–7
flood control systems 206
flux-gradient relationships 293–4,
293
flux sign convention 41
difference values of fluxes 41–5,
42–5
Foehn effect 136–8, 137, 138
fog drip 153
force–restore scheme 364
form drag 302, 303
fossil water 2
four-dimensional data assimilation
(4DDA) 98
Fourier analysis 187, 215
Fourier series 103
Fourier’s law 281
freshwater, as reservoir of water 3
friction velocity 286
frontal cloud 130
frost 152–3
frozen precipitation cover 389–91,
390
gauges, in precipitation
mapping 199–200
General Circulation Models
(GCMs) 96–106, 107, 325, 361,
362, 363, 364
in climate prediction 100
definition 96–7
grid scale 97, 98, 99
operational sequence 100–2, 101
partitioning in Cartesian
coordinates 97, 98
physics, calculation of 103–4
boundary-layer scheme 103
convection scheme 104
large-scale precipitation
scheme 104
radiation transfer scheme 103
surface-parameterization
scheme 103
solving dynamics 102–3
use of 98–100
in weather prediction 98–100
geostrophic wind 251, 251
Giant Aerosols 131
GLAC 387
glaciers, as water reservoir 3
Global Atmospheric Research
Programme (GARP) Atlantic
Tropical Experiment
(GATE) 172
Global Precipitation Climatology
Project (GPCP) 173
Global Precipitation Index (GPI)
172
Global Precipitation Measurement
(GPM) mission 173
Goddard Institute for Space
Studies Model II 394–5, 395
Goddard Profiling Algorithm
(GPROF) fractional
occurrence of
precipitation 173
gradient Richardson number
278
graupel 147
gray surfaces 51
greenhouse effect 60
Greenland 9
ground-based radar 168–71, 169
Gumbel distributions 193, 194
Hadley circulation 112–13, 113
hail 147
Hargreaves equation 346
harmonic analysis see Fourier
analysis
heat capacity per unit volume of
soil 69, 70
heterogeneous nucleation 134
horse latitudes 112
hour angle 57
hurricanes 120
hydroclimate system, global
components of 4–9
hydroclimatolgy 1–2
hydrological cycle, global annual
average 3, 4
hydrometeors, measurement of
168–70, 169
hydrometeorology vs
hydroclimatolgy 2
hydrosphere, features of 8
hydrostatic pressure law 26–7, 26
hydrostatic vertical gradients 25
ice in cloud formation 134–5
ice particles in cloud
accretion onto ice particle 146–7
aggregation of 146
growth, by vapor transfer 147
ice sheets, impact of melting 9
icebergs, as fractional runoff 4
Icelandic Low 123
fluctuations in 248–9
ideal surfaces 37
Illinois Climate Network 386
in-canopy processes 316, 317
insolation 56
instantaneous radiation balance 62
interactive vegetation 388, 389
Intergovernmental Panel on Climate Change (IPCC) 104–5
intra-annual precipitation 177–80, 178
inversion, atmospheric 33
ishyets 199–200, 200
isohyetal method 200–1, 201
isomers 179
isothermal atmosphere 33
Jarvis-Stewart model 364, 366, 368, 369
jet streams 7
Julian day 56
K Theory 282, 283, 285, 296, 301, 316
Kevin-Boltzmann statistics 19
kinematic flux 223–4, 225
kinematic units, returning fluxes from, to actual fluxes to 294–6
Kipp pyranometer 78–9, 79
Kirchoff’s Principle 51, 60
kriging techniques 200
La Niña 110, 122
lakes, water balance of 89–90
Land Surface Parameterization Schemes (LSPs) 10
land-atmosphere ‘coupling strength’ 387
land-atmosphere interactions, influence of 383–5
land surface exchanges 380–99
contribution of, to atmospheric water availability 385
cultivated land areas 381, 382
influence of imposed persistent changes in land cover 392–8
imposed heterogeneity 395–8, 396
near surface observations 392–3, 393
regional-scale climate 393–5
influence of land surfaces on weather and climate 381–3, 382
influence of transient changes in land surfaces 385–92
combined effect 391–2
frozen precipitation cover 389–91, 390
soil moisture 385–8, 386, 387
vegetation cover 388–9, 389
Large Nuclei 131
latent heat flux 37, 39, 295
latent heat measurement 82–91
latent heat of fusion 14
latent heat of vaporization 15
leaf area index (LAI) 312
dependency of aerodynamic properties 318, 319
lifting condensation level 136
Linear Correlation Coefficient 221–3, 223
lithosphere, features of 9–10
longwave radiation 38, 48, 49, 59–62, 61
lower atmosphere circulation 111–16
Hadley circulation 112–13, 113
latitudinal bands of pressure and wind 111–12, 112
mean low-level circulation 113–15, 114
mean upper level circulation 115–16, 115
lysimeters 90–1
mapping precipitation 199–200
Markov chain model 195
Marshall-Palmer equation 149
mass, conservation of 231, 243–4, 245, 257
mass curve 184–6, 186, 189
Matt-Shuttleworth approach 348–53, 352, 354, 392
McCullum model 190
mean flow of atmospheric entities 216
mean flux 225–9
Mean Kinetic Energy (MKE) 220–1
merged products 170
mesosphere 5
micrometerological measurement of surface energy fluxes 83–7, 83
mixed clouds 134
mixing length theory 283–8, 283, 285, 287, 292
mixing ratio 15
moist adiabatic lapse rate 28–9, 135
moist air 15
moisture, conservation of 245, 254, 255, 257
moisture flux 295
molecular diffusion coefficient 305–6
momentum, conservation of see conservation of momentum
momentum flux 224
momentum transfer 303
by bluff body transfer 303
by skin friction 303
monsoon oceanic flow 118, 119
National Operational Hydrologic Remote Sensing Center 167
natural siphon rainfall recorders 160–1, 161
natural surfaces, integrated radiation parameters for 52–4
NCAR Community Climate Model 371
near infrared waveband 48
neglecting subsidence 250
neglecting molecular diffusion 255–8
net radiation 38, 39
daily average 62
flux 63
height dependence of 63–4
instantaneous radiation balance 62
measurement of 80–1
net radiometers 80–1, 81
neutron probes 91
Newton’s law for molecular viscosity 281
Newton’s second law of motion 234
NEXRAD system 169, 170
Nipher gauge 159
nitrogen, atmospheric 6
Noah land surface model 389
North American Monsoon experiment (NAME) 383
North American Monsoon System (NAMS) 118
North Atlantic Oscillation (NAO) 123, 123
numeric filters 187
Numerical Weather Prediction (NWP) 98, 99–100
Nusselt number 303–4, 304
relationship with Reynolds number 305
Obukov length 292–3, 329
ocean mixed layer 116
ocean to continent surface exchanges 109
oceanic influences on continental hydroclimate 118–23
El Nino Southern Oscillation (ENSO) 110, 120–2, 121
monsoon flow 118, 119
North Atlantic Oscillation (NAO) 123, 123
Pacific Decadal Oscillation (PDO) 110, 122, 122
tropical cyclones 119–20, 120
oceanic circulation 110, 116–18, 117
oceanic movement, response time 7
Ohm’s Law 297
open water, energy budget of 46
open water evaporation 46
daily estimates of 339–41, 341
outward longwave radiation (OLR) 172
oxygen, atmospheric 6
ozone 6
Pacific Decadal Oscillation (PDO) 110, 122, 122
paired catchments 89–90, 90
pan coefficients 89
pan factor 346
parameterizations 216
pauses in atmospheric temperature, 5
Pearson distributions 193, 194
Penman-Monteith equation 316, 324, 329, 339–40, 349, 350, 353, 361
calculation of evaporation 346–7
estimation of reference crop evapotranspiration 342–3
single leaf 311
whole-canopy 312, 313–14
Pennsylvania State-National Center for Atmospheric Research Mesoscale Model (MM5) 393–4, 394
Penman equation 346–8
permafrost as water reservoir 3
PERSIANN precipitation product 172
photoelectric pyranometers 79, 80
Photosynthetically Active Radiation (PAR) 54
physical energy storage 40
pie diagrams 179
Planck’s Law 50
planetary interrelationships 109
pluviometric coefficients 179
Plynlimon paired catchments 90, 90
point area precipitation relationships 206
by duration 205, 206
by return period 205, 205
polar diagrams 179
potential rate of evaporation 328, 341
potential temperature 25, 30
precipitable water 124, 124
precipitation
cloud type and 148–9
extreme, statistics of 190–5
forms 149, 149
frozen, types 151
rates and kinetic energy 151
seasonal, time of onset 180
precipitation analysis in space 198–211
precipitation analysis in time 176–97
precipitation climatology 176, 177–80
annual variations 177
daily variations 180, 181
intra-annual variations 177–80, 178
precipitation, formation of 143–53, 148
in cold clouds 146
in mixed clouds 146–7
in warm clouds 144–6, 145
precipitation frequency distribution 192–3, 192
precipitation intensity-duration relationships 189–90, 190, 191
precipitation measurement and observation 155–75
precipitation oscillations 186–7
precipitation recycling 385
precipitation trends 181–6, 182, 183
cumulative percentage deviations 183–4, 185
mass curve 184–6, 186, 189
running means 182–3, 184
Priestley-Taylor equation 345, 351
PRISM methodology 383
probability distributions 193–5
conventional frequency 193
Gumbel distributions 193, 194
Pearson distributions 193, 194
extremal distributions 193
transformal distributions 193
probable maximum precipitation (PMP) 207–9, 209
prognostic equations 247, 258
for turbulent departures 265–9
for turbulent kinetic energy 269–71, 270, 271, 272
for variance of moisture and heat 271–5, 274, 275
of velocity components 279, 280
psychrometric constant 23, 335
pyrgeometers 81, 81
quantum sensors 79
radar
ground-based, precipitation estimation 155
spaceborne 173
radar reflectivity factor 170
radiant energy, latitudinal imbalance in 110–11, 111
radiation spectrum 48, 49
radiation exchange 51
radiation properties 51
radioactively active gases 58
radioactively active gases, absorption spectra of 60
rain gauges 155, 156–65
areal representativeness of measurements 162–4, 163
design specifications 156, 156
designs 160–2
rain gauges (cont’d)
instrumental errors 157
inter-gauge correlations 164, 165
minimum gauge densities 164, 165
site and location errors 157–60, 158
tipping bucket design 157
minimisation 158–9, 159
turf wall construction 158–9, 159
raindrop shape 150, 150
size distribution 149, 149
rainfall see entries under precipitation
Rayleigh scattering 58, 170
reanalysis data 100
reciprocal-distance-squared methods 200, 201, 202
reference crop evapotranspiration of 346–8
Penman-Monteith equation estimation of 342–3
radiation-based estimation of 344–5, 345
temperature-based estimation 345–6
reference level 38
reflectivity 51
relative humidity 20
remote sensing, precipitation estimation 155–5
resistance analogues 296–9
Reynolds averaging 219, 231, 248, 249, 252, 253, 255, 267
Reynolds number 300, 301
relationship with Nusselt number 304, 305
Richards equation 370, 372
Richardson equation 370, 372
riming 143
Rocky Mountains 125
running means 182–3, 184
runoff ratios 4
Rutter model of wet canopy evaporation 323–5, 324
salt water, as reservoir of water 2
saturated vapor pressure 18–20, 18, 20
saturation, measures of 20–1
scalar quantity, conservation of 245, 246, 254, 255, 257
sea-surface temperature (SST) 116, 117
Seasonality Index 179
sensible heat flux 37–8, 39, 224
sensible heat measurement 82–91
shelter factors 306–8, 306, 317
Sherwood number 305
Simple Biosphere Model (SiB) 10, 11
siphon and chart recorders 160
skin friction 301, 319
Slab Model 280–1, 281, 328
sleet, formation 152
SNOTEL network 168, 168
snow board 166
snow courses 167, 167
snow formation 152
snow pads 167–8
snow pillows 167–8
snowflake formation 146
snowfall measurement 165–8
inverted funnel method 166
radioactive methods 167
SNOTEL network 168, 168
snow courses 167, 167
snow pads or snow pillows 167–8
using gauges 165–6
using snow board 166
satellite systems 171–3
cloud mapping and characterization 171–2
passive measurement of cloud properties 172–3
spaceborne radar 173
soil density 69–70, 69
soil heat flow, formal description 71–2, 72
damping depth and 74
soil heat flux 39–40
measurement 81–2, 82
soil heat flux plates 81–2, 82
soil moisture 385–8, 386, 387
depletion 91, 91
soil surface temperature 66–7
surface energy balance and thermal waves in 72–5, 73
Soil Vegetation Atmosphere Transfer Schemes (SVATs) 10, 11, 334, 359–74, 388, 391
basis and origin of land-surface sub-models 359–62
developing realism in 362–73
greening of 369
ongoing developments of land surface sub-models 370–3, 371, 373
plot scale, one-dimensional ‘micrometeorological’ models 364–7, 364
‘two stream’ approximation 365
representation of carbon dioxide exchange 368–70, 369
of hydrological processes 367–70, 367
requirements 360
soil
homogeneous, thermal waves in 72–5, 73
thermal properties 68–71, 69
solar (shortwave) radiation 48, 49
Solar Constant 36, 54
solar declination 56
solar energy impact, latitudinal differences in 109
solar radiation 38
actual, at the ground 59
atmospheric attenuation of 58–9, 58
maximum at ground 56–7
maximum at top of atmosphere 54–6
measurement of 77–80
solar zenith angle 56
South America
Amazon River, ‘river breeze’ effects 8
Andes 9
spaceborne radar 173
spatial correlation of precipitation 209–11, 210
spatial organization of precipitation 203–4
specific heat of soil 69, 70
specific humidity of air 15
spectral gap 12, 216
spectral grid 102, 102
spontaneous nucleation 134
stability corrections 289
standard deviation of atmospheric variable 219–20
Index | 447

state variables 101
static stability parameter 32–3
statistics of extremes 190–5
Stefan-Boltzmann constant 338
Stefan-Boltzmann Law 50, 59
stomatal resistance 308–10, 309
per unit area of leaf 309, 310
reciprocal of area-weighted average 309–10
storm centered analysis 206
stratocumulus clouds 128
stratus 140
subadiabatic atmosphere 33
subsidence 250
substratum heat flux 40
subsurface soil temperatures 67–8, 68, 69
summation convention 232
Sun—Earth distance 55, 55
sunset hour angle 57
superadiabatic atmosphere 33
surface emissivity of natural surface 52
for different surfaces 53
surface energy fluxes 36–47
units 36
energy balance of ideal surface 38–45, 38
surface layer scaling 289–99
surface mixing cloud 130
surface, net radiation at 62–3
system signature of precipitation 187–8, 189
of storm 176
Taylor expansion 235
Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) instruments 172
terrestrial radiation 48–65
net radiation at surface 62–3
Theissen method 200, 202–3, 204, 207
thermal conductivity of soil 69, 70
thermal diffusivity of soil 69, 71
thermozone 116
thermoelectric pyranometers 78–9, 79
thermohaline circulation 118
thermosphere 5
time-average of weather, climate as 1–2
time-domain reflectometer sensors 91
time rate of change in a fluid 232–4, 233
tipping bucket rain gauge 157, 161–2, 162
TOP model 370
topography, effect of, on convection and precipitations 383–5
TOVS precipitation estimate 172
Trade Winds 112
transformational distributions 193
transmissivity 51
Triangle method 200, 202, 203
Tropical Rainfall Measuring mission (TRMM) 173
tropical storms 119–20, 120
troposphere 5
turbulence, atmospheric advective and turbulent fluxes 225–9, 227–9
averaging of decomposed variables 217–19
kinematic flux 223–4, 225
linear correlation coefficient 221–3, 223
mean and fluctuating components 216–17, 217, 219
measures of strength of signature and spectrum of 213–16, 214, 215
turbulent flux 223
turbulent closure 279–80
local 280
local, first order 281–2, 282, 287–8
low order 280–1
nonlocal 280
turbulent eddies 85–7, 87, 214, 214, 223, 225–9
divergence 250
turbulent flux see turbulent eddies

weather prediction 98–100

Wein’s Law 50
wet bulb depression 23
wet bulb equation 23
wet bulb temperature 22, 23
wetting errors 157
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole-canopy interactions</td>
<td>316–33</td>
</tr>
<tr>
<td>aerodynamics and canopy structure</td>
<td>317–19, 318</td>
</tr>
<tr>
<td>equilibrium evaporation</td>
<td>325–7, 326</td>
</tr>
<tr>
<td>evaporation into an unsaturated atmosphere</td>
<td>327–32, 328, 330, 331</td>
</tr>
<tr>
<td>roughness sublayer</td>
<td>321–3</td>
</tr>
<tr>
<td>wet canopies</td>
<td>323–5</td>
</tr>
<tr>
<td>World Meterological Organization (WMO)</td>
<td>98, 104</td>
</tr>
<tr>
<td>recommended rain gauge densities</td>
<td>164, 165</td>
</tr>
<tr>
<td>World Weather Watch (WWW)</td>
<td>98</td>
</tr>
<tr>
<td>zero flux plane</td>
<td>91</td>
</tr>
<tr>
<td>zero identity</td>
<td>252</td>
</tr>
<tr>
<td>zero order closure</td>
<td>280</td>
</tr>
<tr>
<td>zero plane displacement</td>
<td>286</td>
</tr>
<tr>
<td>Z-R relationship</td>
<td>170</td>
</tr>
</tbody>
</table>