Contents

List of Contributors
Preface

1 History and Development of Ibuprofen
K.D. Rainsford

Summary
1.1 Introduction
1.2 Historical Background
1.3 Initial Stages
1.4 Compounds in Development
1.5 Ibufenac – Almost There, but for Liver Toxicity
1.6 More Setbacks
1.7 More Learning
1.8 Ibuprofen
 1.8.1 First Clinical Trials
 1.8.2 Gastrointestinal Safety
1.9 Achievements and Rewards at Last
1.10 Ultimate Recognition of Safety – OTC Status
1.11 Worldwide Developments
 1.11.1 Evolving Applications of Ibuprofen
Acknowledgements
References

2 The Medicinal Chemistry of Ibuprofen
Kenneth J. Nichol and David W. Allen

2.1 Introduction
2.2 The Discovery of Ibuprofen
2.3 Synthetic Routes to Ibuprofen
2.4 Biological Activities of Ibuprofen Analogues
2.5 Metabolites of Ibuprofen
 2.5.1 Metabolites and Enantiomer Inversion
 2.5.2 Synthesis of Metabolites
2.6 Ibuprofen Enantiomers
2.7 Physicochemical Aspects
Acknowledgements
References
3 The Pharmaceutics of Ibuprofen

Fred Higton

Summary 51
3.1 Physical and Chemical Characteristics of Ibuprofen 51
3.2 Products Available Worldwide 55
3.3 Solid Dose Presentations 55
3.3.1 Conventional Ibuprofen Tablets 57
3.3.2 In vitro/in vivo Testing 59
3.3.3 Sustained Release Preparations 61
3.3.4 Ibuprofen Fast Acting: Ibuprofen Salts and Derivatives 65
3.4 Liquids 68
3.5 Taste-Masking of Ibuprofen 68
3.6 Suppositories 70
3.7 Topical Presentations 71
3.8 Conclusion 73
References 73

4 The Pharmacokinetics of Ibuprofen in Humans and Animals

Fakhreddin Jamali and Dion R. Brocks

Summary 81
4.1 Absorption 82
4.2 Distribution 83
4.2.1 Protein Binding 83
4.2.2 Tissue Distribution 88
4.3 Clearance 92
4.3.1 Metabolism of Ibuprofen 93
4.3.2 Excretion of Ibuprofen 104
4.4 Interspecies Differences in Pharmacokinetics of (R)- and (S)-Ibuprofen 105
4.5 Relationship between Effect and Plasma Concentrations 106
4.5.1 Therapeutic Effects 106
4.5.2 Toxic Effects 107
4.6 Pharmacokinetics in Special Populations 108
4.6.1 Pharmacokinetics and Analgesic Effects in Patients in Pain 108
4.6.2 Febrile Children and Infants 114
4.6.3 Postoperative Paediatric Patients 115
4.6.4 Premature Infants 115
4.6.5 Juvenile Arthritis 116
4.6.6 Children with Cystic Fibrosis 116
4.6.7 Elderly Adults 117
4.6.8 Rheumatic Disease 117
4.6.9 Renal Insufficiency 118
4.6.10 Hepatic Disease 119
4.6.11 Burn Patients 119
4.6.12 Effect of Gender and Race 119
4.6.13 Effect of Operational Stessors 120
4.7 Drug Interactions 120
4.7.1 Anti-ulcer Medications 120
4.7.2 Zidovudine 121
4.7.3 Codeine and Oxycodone 121
5 Pharmacology and Toxicology of Ibuprofen

K.D. Rainsford

Summary

5.1 Introduction

5.2 Basic Pharmacology and Toxicology

5.2.1 The Relevance of Data from Animal Models to the Clinical Situation in Humans

5.2.2 Acute Anti-inflammatory Activity

5.2.3 Chronic Anti-inflammatory Activity

5.2.4 Analgesic Activity

5.2.5 Antipyretic Activity

5.2.6 General Toxicology

5.2.7 Effects on Prostaglandin Production Related to Pharmacological Activities

5.2.8 Effects on Leukotriene Production

5.2.9 Smooth Muscle Contractility

5.2.10 Effects on Nitric Oxide Production

5.2.11 Leucocytes and Vascular Permeability

5.2.12 Leukocyte Functions

5.2.13 Immune Functions

5.2.14 Effects on Articular Joint Integrity

5.2.15 Miscellaneous Biochemical and Cellular Actions

5.3 Experimental Therapeutics

5.3.1 Endotoxin Shock

5.3.2 Acute Lung Injury Induced by Exposure to Chemicals

5.3.3 Acute Myocardial Injury and Coronary Functions

5.3.4 Cerebral Injury

5.3.5 Tourniquet Shock Ischemia

5.3.6 Transcutaneous Hypoxia

5.3.7 Cytokines and Surgical Stress

5.3.8 Pleurisy from Delayed Hypersensitivity Reaction

5.3.9 Abdominal Adhesions

5.3.10 Uveitis

5.4 Clinical Pharmacology and Toxicology

5.4.1 Experimental Inflammation

5.4.2 Experimental Pain

5.4.3 Effects on Platelet Aggregation and Thrombosis

5.4.4 Gastrointestinal Injury and Bleeding

5.4.5 Hypersensitivity and Other Immunological Reactions

5.4.6 Gynaecological and Obstetric Uses

5.4.7 Effects on Lung Inflammation in Cystic Fibrosis

5.4.8 Malignant Conditions

5.4.9 Prevention of Cataract

5.5 Conclusions

References
6 Therapeutics of Ibuprofen in Rheumatic and Other Chronic and Painful Diseases
Walter F. Kean, K.D. Rainsford and the late W. Watson Buchanan

Summary

6.1 Introduction

6.2 Overview of Clinical Pharmacology
 6.2.1 Pharmacokinetics Relevant to Therapy of Inflammatory Diseases and Pain
 6.2.2 Anti-inflammatory and Analgesic Activities
 6.2.3 Criteria for Determining Therapeutic Responses

6.3 NSAID-Related Adverse Drug Reactions and Toxicity
 6.3.1 Gastrointestinal Side-Effects
 6.3.2 Cardiovascular Reactions
 6.3.3 Hepatic Reactions
 6.3.4 Renal Adverse Reactions
 6.3.5 Miscellaneous Reactions

6.4 Rheumatoid Arthritis
 6.4.1 Early Studies at Low Doses
 6.4.2 Later Higher-Dose Studies

6.5 Juvenile Idiopathic (Rheumatoid) Arthritis

6.6 Primary and Secondary Osteoarthritis
 6.6.1 Acceleration of Cartilage and Bone Destruction
 6.6.2 Therapeutic Aspects
 6.6.3 Comparisons with Coxibs

6.7 Formulations

6.8 Variability in Response

6.9 Relation of Drug Kinetics to Clinical Response

6.10 Low Back Pain

6.11 Shoulder Pain

6.12 Reactive Arthritis (Reiter’s Syndrome)

6.13 Psoriatic Arthritis

6.14 Ankylosing Spondylitis

6.15 Gout

6.16 Fibromyalgia

6.17 Haemophiliac Arthritis

6.18 Postoperative Pain

6.19 Sports Injuries

6.20 Other Painful States

6.21 Cancer

6.22 Potential Non-analgesic Usage

6.23 The Elderly

6.24 Dexamethasone

6.25 Conclusions

References

7 Safety and Efficacy of Non-prescription, Over-the-Counter (OTC) Ibuprofen
K.D. Rainsford

Summary

7.1 Introduction

7.2 Analysis of Clinical Trials
 7.2.1 Studies in Prospective Clinical Trials

References
7.3 Epidemiological Studies and Case Reports 327
7.4 Considerations for Special Groups 330
 7.4.1 Use of Drugs in the Elderly 330
 7.4.2 Safety in Pregnancy and Lactation 331
 7.4.3 Uses and Safety in Sport and Exercise 334
7.5 Conclusions 336
References 336

8 Use of Ibuprofen in Dentistry 346
Raymond A. Dionne, Sharon M. Gordon and Stephen A. Cooper

8.1 Introduction 346
8.2 Analgesia 347
 8.2.1 Preventive Analgesia 348
 8.2.2 Analgesic Activity of Ibuprofen Isomers 349
 8.2.3 Ibuprofen-Containing Combinations 350
 8.2.4 Ibuprofen Formulations 354
8.3 Effects on Oedema 355
8.4 Interactions with Plasma \(\beta \)-Endorphin 356
8.5 Use for Chronic Temporomandibular Pain 356
8.6 Recommendations for the Use of Ibuprofen in Dentistry 358
References 359

9 Gastrointestinal Adverse Reactions from Ibuprofen 363
K.D. Rainsford and Ingvar Bjarnason

Summary 363

9.1 Background and Introduction 364
9.2 Current Status Concerning NSAID Ulceration 365
 9.2.1 Morbidity and Mortality 366
9.3 Occurrence of Ulcers and Complications 369
 9.3.1 Epidemiological Studies 369
 9.3.2 Large-Scale Mega Trials 376
9.4 Clinical Investigations on Comparative GI Effects of Ibuprofen 378
 9.4.1 Early Symptom-Based Studies in GI-Intolerant Subjects 378
 9.4.2 Procedures for Assessing GI Injury 379
 9.4.3 Upper GI Endoscopy 380
 9.4.4 NSAID-Enteropathy: Capsule and Device Assisted Intestinal Endoscopy and Other Techniques 381
 9.4.5 Radiochromium \([^{51}\text{Cr}]\)-Labelled Red Cell GI Blood Loss 387
 9.4.6 Intragastric and Occult Blood Loss and Reduced Haemoglobin 392
9.5 Clinically-Relevant Pathogenesis of NSAID-Associated GI Injury 395
 9.5.1 Factors Affecting NSAID-Induced Gastroduodenal Injury 395
 9.5.2 Influence of Gastric Acidity 395
 9.5.3 Physicochemical Associations, Topical versus Systemic Actions of NSAIDs, Cyclooxygenases and Reduced Prostanoids 397
 9.5.4 Effects of NSAIDs on Gastric pH and Acid Secretion 400
9.6 Procedures for Reducing GI Symptoms 402
 9.6.1 Ibuprofen Formulations 402
 9.6.2 Effects of Food or Drinks 404
10 Hepatorenal Effects of Ibuprofen Compared with other NSAIDs and Paracetamol

K.D. Rainsford

10.1 Introduction
10.2 Hepatorenal Syndromes
10.3 NSAID, Analgesic and DMARD-Induced Liver Injury
10.3.1 Historical Associations of NSAIDs with Liver Toxicity
10.3.2 Awareness of Liver Reactions with Modern NSAIDs
10.3.3 Simultaneous Use of Potentially Hepatotoxic Medications
10.4 Renal Adverse Reactions Form NSAIDs and Analgesics
10.4.1 Renal Adverse Reactions from Ibuprofen
10.5 Conclusions

11 Adverse Drug Reactions Attributed to Ibuprofen: Effects Other Than Gastrointestinal

L.J. Miwa, M. Maneno and Judith K. Jones

11.1 Introduction
11.2 Allergy and Hypersensitivity
11.2.1 Points to Consider when Evaluating Allergy-Type Reactions to NSAIDs
11.2.2 Epidemiology of Allergy or Hypersensitivity with NSAIDs
11.3 Adverse Dermatological Effects
11.4 Hepatotoxicity
11.5 Haematological Adverse Effects
11.5.1 Neutropenia, agranulocytosis and aplastic anaemia
11.5.2 Other Blood Disorders
11.6 Renal Adverse Effects
11.7 Cardiovascular Adverse Effects
11.8 Adverse Effects on Reproduction
11.8.1 Animal Studies of Teratogenic and Reproductive Effects
11.8.2 Reports of Teratogenic Effects in Humans
11.8.3 Perinatal Adverse Effects Associated with Therapeutic Use
11.8.4 Other Reproductive Effects
11.9 Endocrine and Metabolic Adverse Effects
11.10 Central Nervous System Effects
11.10.1 General CNS Effects
11.10.2 Aseptic Meningitis
11.10.3 Cognitive Dysfunction
11.10.4 Psychiatric Adverse Effects
11.11 Ocular Adverse Effects
11.12 Infection-Related Adverse Event
11.13 Drug Interactions
11.13.1 NSAID–Anti-hypertensive Interactions
11.13.2 NSAID–Diuretic Interactions
11.13.3 NSAID–β-Adrenergic Blocker Interactions
12 Human Toxicity of Ibuprofen

Glyn Volans

Summary
12.1 Introduction
12.2 Mechanism of Toxicity in Overdosage
12.3 Epidemiological Reviews of the Effects of Ibuprofen in Overdosage
12.4 Reports of Deaths after Ibuprofen Overdose
12.5 Dose–Response and Toxicokinetics
12.6 Gastrointestinal Effects
12.7 Renal Effects
 12.7.1 Cases of Massive Overdose
 12.7.2 Cases Affected by Additional Factors
12.8 Metabolic Effects
12.9 Central Nervous System (CNS) Effects
12.10 Cardiovascular Effects
12.11 Respiratory Effects
12.12 Haematological Effects
12.13 Skin Reactions
12.14 Ibuprofen Toxicity in Children
12.15 Ibuprofen in Pregnancy and Breast Feeding
12.16 Chronic Abuse of Ibuprofen
12.17 Conclusion
 12.17.1 Management of Ibuprofen Overdosage
 12.17.2 Continuing Surveillance
 12.17.3 Comparative Human Toxicity – Ibuprofen versus Other NSAIDs and Non-opioid Analgesics

References

13 Ibuprofen in the Prevention and Therapy of Cancer

Randall E. Harris

Summary
13.1 Introduction and Background
13.2 Ibuprofen, COX-1 and COX-2
13.3 COX-2 and the Inflammogenesis of Cancer
13.4 Preclinical Efficacy Studies of Ibuprofen and Cancer
 13.4.1 Preclinical Efficacy Study of Ibuprofen Therapy for Breast Cancer
 13.4.2 Preclinical Efficacy Study of Ibuprofen versus Retinoic Acid for the Prevention of Breast Cancer

References
13.4.3 Preclinical Efficacy Study of Celecoxib versus Ibuprofen for the Prevention of Breast Cancer 522
13.4.4 Other Animal Studies of NSAIDs and Cancer 522
13.5 Human Epidemiologic Studies of Ibuprofen for the Prevention of Cancers of the Breast, Colon, Prostate and Lung 523
13.5.1 Methods of Analysis 524
13.5.2 Comparative Results for Ibuprofen and Aspirin from Epidemiologic Studies of Cancers of the Breast, Colon, Prostate and Lung 524
13.5.3 Comparison of Ibuprofen, Aspirin and Selective COX-2 Inhibitors in Cancer Prevention 525
13.5.4 Meta-analyses of Epidemiologic Studies of NSAIDs for Cancer Prevention 526
13.5.5 Discussion of Meta-analyses of NSAIDs and Cancer 528
13.6 Therapeutic Studies of Non-selective COX-2 Inhibitors for Human Cancer 529
13.7 COX-2 and the Inflammogenesis of Cancer 531
13.7.1 COX-2 Blockade of Molecular Carcinogenesis 531
13.7.2 Role of COX-1 in Carcinogenesis 532
13.7.3 Other Molecular Targets of NSAIDs 533
13.8 Safety Profile of Ibuprofen 533
13.8.1 COX-1 and COX-2 Isoforms 533
13.8.2 Gastrointestinal and Renal Effects of Ibuprofen 533
13.8.3 Ibuprofen and Cardiovascular Disease 534
13.9 Future Perspectives for Cyclooxygenase Inhibitors in Cancer Chemoprevention 534
References 535

14 Ibuprofen in Prevention of Neurodegenerative Diseases 547
K.D. Rainsford

Summary 547
14.1 Introduction 548
14.2 Pathogenesis of AD 548
14.3 Early Clinical Observations of Effects of NSAIDs in AD 549
14.4 Cellular and Molecular Effects of Ibuprofen in AD 553
14.4.1 Actions of Ibuprofen in Rodent AD Models 554
14.4.2 In Vitro Effects and Molecular Actions of Ibuprofen in AD 556
14.4.3 Conclusions 557
14.5 Ibuprofen in Parkinson’s Disease 557
14.5.1 Effects of Ibuprofen in Models of PD 559
14.6 Other Neuroprotective Effects of Ibuprofen 559
14.7 Conclusions 560
References 560

Appendix A Some Proprietary Brands and Preparations of Ibuprofen Available Worldwide 571
K.D. Rainsford

Appendix B References to Analytical Methods for Determination of Ibuprofen in Biological Fluids, Principally Plasma 581
K.D. Rainsford

Index 588