INDEX

Abrams, Adele, 16
Acceptable risk levels
ALARA and ALARP, 48–49
ANSI/ASSE Z244.1-2003, 41
ANSI/ASSE Z590.3-2011, 43
ANSI B11.0-2010, 42–43
ANSI/PMMI B155.1-2011, 43
AS/NZS 4360:2004, 41–42
assessment matrices, 50–52
BS OHSAS 18001, 44
BS OHSAS 18001:2007, 42
Concept of Safety, 45
definition, 45, 53
design, standards, 47–48
development, standards and guidelines, 38
EPA, 54
fatality rates, employment categories, 46
guidelines, determination, 40–41
IEC 60601-1-9, 42
ISO and IEC, 40
minimum risk, 47
NIOSH, 40
opposition, imposed risks, 46–47
OSHA, 41
principle, ALARP, 52
risk management, 42
Science and the Determination of Safety, 45
“shall” requirements, 37–38
social responsibility, 53–54
Adams, Paul, 284
Air Force System Safety Handbook, 291
ALARA. See As low as reasonably achievable (ALARA)
ALARP. See As low as reasonably practicable (ALARP)
American Industrial Hygiene Association (AIHA), 211. See also ANSI/AIHA Z10-2012
American National Standards Institute (ANSI), 211, 269–270. See also ANSI/AIHA Z10-2012
ANSI/AIHA Z10
benefits, 496
certification, 494–496
design reviews and procurement requirements, 493

© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
ANSI/AIHA Z10 (cont’d)
elements, 489–490
ILO-OSH 2001, 491
ISO 31000:2009 standard, 491
management, change system, 493
provisions, guidelines and standards, 490
qualification, Star designation, 496
risk assessment, 492–493
VPPs. See Voluntary Protection Programs (VPPs)
ANSI/AIHA Z10-2012
application, 20
definitions, 11–12, 20
drafters of standard, objectives, 13
due-diligence requirements, 10
evaluation and corrective action audits, 31–32
feedback, planning process, 32–33
incident investigation, 31
monitoring, measurement and assessment, 31
and preventive, 32
ISO, 14
management leadership & employee participation, 21
management tool, 20
objectives, 20
OHSMS. See Occupational health and safety management systems (OHSMS)
PDCA concept. See Plan-Do-Check-Act (PDCA) concept
planning. See Planning, PDCA process prevention, serious injuries, 12
processes, continual improvement, 11
requirements, standards, 9
societal implications
certification, 15
educational, 15
employment, 14–15
legal liability, 16–17
OSHA, 15–16
specification and management system standard, 13
standards, 9–10
ANSI/ASSE Z590.3
definition, 315
design safety reviews, 316
goals, 318
hazard analysis and risk assessment process, 316–317
hierarchy of controls, 317–318
redesign processes, 318–319
referenced and related standards, 314
relations, suppliers, 316
risk assessment and avoidance, 319
roles and responsibilities, 315
safety professionals, 313, 320
scope, purpose and application, 313–314
ANSI/PMMI B155.1-2011
BOEMRE, 214–215
concept change, 212–213
hazard analysis and risk assessment, 211–212
National Aeronautics and Space Administration, 215
OSHA, 213
risk assessment matrix, 212
risk reduction program division, 213–214
Arnoldy, Frank, 118
As low as reasonably achievable (ALARA) and ALARP, 48–49
definition, 49
As low as reasonably practicable (ALARP) acceptable risk, 43, 53
and ALARA, 48–49
concept, 181
principle, 52
Assessment
evaluation and corrective action, 438
and prioritization, planning, 158–160
Audit requirements
advisory column in Z10, statements, 464
auditor competency, 467–468
evaluations, auditors, 466–467
exit interview, 465–466
gap analysis, 472
guidelines, audit system
OHSMS, 470
OSHA, 470
packaged, 470
provisions, 471
VPP site review, evaluations, 471
organization, process establishment and implementation, 463–464
physical/hazardous situations, operations, 465
requirements, 464
safety culture, 465
sector-specific hazards and risks, 469
self-built audit system, 469
value, “packaged audits”, 468

Audits
evaluation and corrective action, 439
procurement process, 401, 439
requirements. See Audit requirements
Aviation ground safety, 220–222

Basic Guide to System Safety, 337
Beauregard, Michael R., 190
Benner, Ludwig, 445
Blanchard, Ken, 120
BOEMRE. See Bureau of Ocean Energy
Management Regulation and
Enforcement (BOEMRE)
Brander, Roy, 287
Braun, Theodore, 354
Browning, R. L., 335–337
B11.TR3-2000
ANSI B11.0, 211
documented risk assessments, 210
hazard analysis and risk assessment,
209–210
principles, 209
Bureau of Ocean Energy Management
Regulation and Enforcement
(BOEMRE), 214–215
Chapanis, Alphonse, 85, 86, 272
Clements, P.L., 183, 188, 329
Composite management system, MOC,
385–388
Comprehensive safety and health
management system
annual evaluation, 503
commitment, 500–501
contract workers, 502–503
employee involvement, 501–502
hazard prevention and control
certified professional resources, 508
disciplinary system, 509
elimination and methods, 508
emergency preparedness and response,
509–510
occupational health care program, 509
preventive maintenance, equipment, 509
programs, 508
tracking, correction, 509
and health training, 510–511
worksite analysis
baseline safety and industrial hygiene
hazard, 503–504
documentation and hazard, 505
employees, hazard reporting system, 505
hazard, 504
IH program, 506–507
investigation, accidents and near-
misses, 507
pre-use, 504–505
routine self-inspections, 505
trend, 507
Continual improvement process. See
Plan-Do-Check-Act (PDCA)
Controlling hazards, mathematical
evaluations, 253–265
Corrective action
audits, 439
incident investigation, 438–439
monitoring, measurement and
assessment, 438
Plan-Do-Check-Act, 437, 440
planning process, 437, 439
and preventive action, 439
Cumulative risk assessment methods, 54

Days Away Restricted/Transferred (DART)
case rate, 495, 496, 502, 503
Degree of possible harm (DPH), 244
Dekker, Sidney, 75, 82, 91, 93, 98, 116
Deming cycle, 131
Deming, W. Edwards, 130, 131, 133–135, 147, 343
Design and purchasing guidelines
definition, 408
material and equipment, 408
objective, 408
procurement process, 404–405
requirements
codes and standards, 412
electrical-design and construction,
415–425
environmental impact/hazard
evaluation, 412
equipment/fixture design, 412–413
ergonomics, 410–411
Design and purchasing guidelines (cont’d)
- industrial hygiene, 409–410
- machine and process control, 411–412
- mechanical-design and construction, 413–415
- pneumatics-design and construction, 425–426
- purchasing, 409
- safety, 409
- software, 426–427
- responsibilities, 408

Design for Environment (DfE), 390, 391, 394
Designing for safety (DFS), 313
Design safety checklist
- description, 297–298
- disabilities, 298
- electrical safety, 298–299
- emergency safety system, 299–300
- energy controls, 303–304
- environmental, 300
- ergonomics, 301–302
- fire protection, 302
- hazardous and toxic materials, 302–303
- machine guarding, 304
- noise control, 304–305
- pressure vessels, 305
- ventilation, 305–306
- walking and working surfaces, 306

DfE. See Design for Environment (DfE)
DFS. See Designing for safety (DFS)

EJA. See Ergonomic Job Analysis/Analyzer (EJA)
Emery, Fred, 97, 98
EN ISO 12100–2010
- BS OHSAS 18001:2007, 208–209
- European Union standards, 208
- principles, 208
- risk assessment, 209

Environmental Protection Agency (EPA)
- building, management system, 19
- cumulative risk assessment methods, 54

EPA. See Environmental Protection Agency (EPA)
Ergonomic Job Analysis/Analyzer (EJA), 390, 393, 394
Ergonomics. See Human factors engineering
Ericson, Clifton A. II., 329, 336, 338
Evaluation and corrective action. See Corrective action
Failure mode and effects analysis (FMEA)
- detection ranking criteria, 238
- environmental, safety and health severity level, 240
- occurrence ranking criteria, 237
- scoring table, severity ranking, 238
- SEMATECT scoring table, 239
- severity ranking criteria, 237

Fault tree analysis (FTA), 188
Ferguson, Lon, 58, 70
Fine, William T., 242, 253–265
Five-why technique, 102–103, 452–453
FMEA. See Failure mode and effects analysis (FMEA)
Ford, Henry, 343
Frazee, Patrick R., 445
Frequency of exposures (FE), 243
FTA. See Fault tree analysis (FTA)

Gamma Corporation, 381–384
Gilbreth, Frank Bunker, 343
Gorse, Vernon L., 234
Grimaldi, John V., 336
Groover, Don, 117

Haddon, William, Jr., 291, 297
Hafez, Robert B., 343
Hammer, Willie, 85
Hazard analysis and risk assessment
- acceptable risk, 180–181
- ANSI/AIHA Z10, 169
- checklists analysis, 186
- coding system, 186
- consequences, 170–171, 173
- definition, 169
- documentation, 175
- exposure frequency and duration, 173
- failure modes, 173
- FMEA, 187
- FTA, 188
- hazardous situations, 170
- hazards identification, 172
- HAZOP, 188
- initial risk, 173–174
- management decision levels, 182–183
matrix, 171–172
methodologies, 190–191
MORT, 188–189
occurrence probability, 173
parameters, 172–173
PHA, 184–185
probability and severity. See Probability and severity
quantitative/qualitative methods, 168
residual risk, 174
resources, 189–190
risk acceptance decisions making, 175
risk assessment matrices. See Risk assessment matrices
risk prioritization, 174
risk reduction and control methods, 174
safety professionals, 168
severity, 170
techniques, 183–184
what-if analysis, 186
what-if/checklist analysis, 187
Hazard and operability analysis (HAZOP), 188
Hazard identification and risk assessment techniques
description, 331–332
principal, 332
HAZOP. See Hazard and operability analysis (HAZOP)
Heavy equipment builders
frequency scale, 240, 241
risk scoring system, 241
severity scale, 240, 241
vulnerability scale, 240, 241
Heinrich, H. W., 66, 67
Hendrick, Kingsley, 445
Hierarchy of controls, Z10
administrative controls, 275–276
ANSI/PMMI B155.1-2011, 269–270
application, 267, 276–277
elimination, 273–274
ingineering controls, 274–275
European communities, council, 268–269
evolution, 268
hazard identification and analysis, 279
hazardous methods, materials and processes, 274
MIL-ST D-882E-2012, 270
national safety council, 268
personal protective equipment, 276
premises and goals
acceptable risk, 271
applications, 271
organization, 273
preventive actions, 272
risk reduction measures, 271
problem identification and analysis, 278
problem-solving methodology, 277
risk reduction measures, 279
safety decision hierarchy, 278
safety practice, 279
solutions, 279
warning system, 275
Holme, Lord, 53
Howe, Jim, 106
Human error, avoidance and reduction of behavioral safety and serious injury prevention, 91–92
The Blame Machine: Why Human Error Cause Accidents, 89–90
Cognition and Safety: An Integrated Approach to Systems Design and Assessment, 90
culture change, 82
decision-making possibilities, 86
definitions, 83–84
drift, 90–91
The Field Guide to Understanding Human Error, 93
Guidelines for Preventing Human Error in Process Safety, 87
Handbook of System and Product Safety, 85
Human Error and Marine Safety, 89
Human Error in Occupational Safety Symposium, 82–83
Human Error, Safety and Systems Development, 89–90
incident causation, 85–86
management systems, 83
Managing the Risks of Organizational Accidents, 88
objectives, safety professionals, 86
The Psychology of Everyday Things, 88
safety professionals, 84–85
suggestions, speakers, 81
THERP, 87
Human factors engineering, 85, 86
IH Program. See Industrial Hygiene (IH) Program
Implementation and operation, Z10
American petroleum institute (API), 163
communication, 164–165
contractors, 163
document and record control process, 165
education, training, awareness and competence, 164
emergency preparedness, 163–164
PDCA, 161
requirements, 162
safety and health management, 162
Incident investigation
accident investigations, 456
criteria, 453–454
cultural implications, 444–447
employee, 452–453
evaluation, 451
first-line supervisors, 443
forms, 451–452
hazardous conditions, 461
hazards and risks, supervisors, 447, 453
human error, 444
job procedure particulars, 461
management and supervisory aspects, 461–462
manufacturing operations, 450
performance reviews, 443
PPE, 461
problem, 448–449
problem-solving process, 452
real-world situations, 451
resources, 454–456
root causual factors, 452
safety professionals, 441–442
self-evaluation, culture, 449–450
serious injuries, 450
significant risk reduction, 456
socio-technical causation model, 459
supervisors, 443–444
work method considerations, 460–461
workplace design considerations, 460
Z10, 442–443
Industrial Hygiene (IH) Program, 494, 506–507
Innovations, serious injury and fatality prevention
Alcoa Foundation, 58
alteration, embedded culture barriers, 70–71
cost reductions, 71
culture change, OSHA statistics, 64–65
data, NCCI’s 2005 State of the Line Report, 59
evaluation, culture, 69–70
incident investigation, 77
incidents, 62
individual industry categories, 61–62
injury frequency, reduction, 66–67
maintenance, system integrity, 76
management, change pre/job planning, 76–77
objectives, 59
observations, 62
occupational fatality rate, 57
occupations, 1941–2011, 60
prevention, design, 73–75
reductions, rates, 60, 61
risk assessments
hazard identification and analysis, 72
requirements, 72
stepwise approach, 73
safety professionals, list, 64
significance, organizational culture, 67–69
socio-technical model, 78
transitions, human error prevention, 75–76
unsafe acts, 66
International Organization for Standardization (ISO)
definition, 14
ISO 14000 and 9000 series, 19, 20
ISO. See International Organization for Standardization (ISO)
“J” formula worksheet, 266
Job hazard analysis
description, 198
electrical, 203
materials and substances, 204
mechanical, 203
prevention, 201
radiation, 204
safety and health, 198
situation and events, 206
thermal, 203
types, 199
value, 1997
vibration, 203
Johnson, William, 72, 89, 170, 309, 310, 360
Jones, Daniel T., 342
Kase, Donald W., 465
Kello, John, 118, 119
Kelvin, Lord, 234
Kepner, Charles H., 272, 278
Kletz, Trevor, 84
Kotter, John P., 119, 120
Krause, Thomas, 77, 361

Lambda Corporation
Environmental Impact Assessment Checklist, 397–398
management of change policy, safety and environmental risks
appendices, 395
assessment formats, 393–394
definitions, 390
DIE, 391
due-diligence process, 391
objectives, 388–389
Preliminary Environmental, Safety & Health Assessment Questionnaire, 391
procedure, 394–395
responsibilities, 390–391
risk assessment guidelines, 392–393
training, 395
Preliminary Environmental, Health & Safety Assessment Questionnaire, 396

Lean concepts
accident costs, 341–342
definitions, 344
and design concepts, 346
design process
capital expenditure request and element champion review, 348
change control provisions, 350
concept stage, 347–348
conceptual design risk assessment, 350–351
customers/users identification, 348
design safety/risk assessment, 351
draft vendor specifications, 350
facility review and approval, 352
Muda check, 351
in production, 352
project conceptual design, 349
project customers/users requirement specification, 348
project safety clearance and lean review, 350
project team member, 351
safety, operational and lean review, 351
5S concept, 352
sorting, 352
5S system, 352
standardization, 353
standard operating procedures, 352
systematic cleaning, 353
value stream map, 348–349
leadership style, 343
Lean Thinking, 342
literature, 344
origin, 343
reducing waste, 341
relation, Z10, 347
safety management system, 343
safety professionals, 341
Lean Thinking, 342
Leveson, Nancy, 103
Likelihood of occurrence (LO), 243
The Loss Rate Concept in Safety Engineering, 337
Lowrance, William F., 39, 45

Macro thinking vs. micro thinking
factors, 100
interrelated management systems, 101
system deficiencies, 100
unsafe act, employee, 100

Main, Bruce W., 190, 281, 306, 319, 320
Management leadership and employee participation
business environment, 144–145
Catastrophe, Texas City, 149–151
elements, 141–142
employee participation, 147–148
injury prevention, 148–149
OHS, 145–146
organizational culture, 142–143
outcomes, 143–144
responsibility and authority, 146–147
safety and health professionals, 143
safety culture, internal analysis, 151–153
safety director, 153–154
Management of change (MOC) system
activity categorization, 366–367
analysis, 360–361
application, 362–363
assessment, formalized, 363
composite, 385–388
conglomerate, 376
and design reviews, 359
documentation, 372
educational purpose, 376
food company, 375
guidance paper, policies and procedures, 375
high-risk multiproduct manufacturing operation, 375
implementation, 368–369
international multioperational entity, 376–377
matrices, risk assessments, 371
operational risks, 362
operation, mechanical components, 373–374
organizational change, 370
personnel, chemical and process industries, 364
policy and procedures
application, 386–387
change champion shall, 387–388
objectives, 385–386
operational change, identification, 38
responsibility, 386
training, 388
pre-screening questionnaire, 375
Pre-Task Analysis form, 374
procedures, 365, 372
real-world, 363–364
request form, 367–368
responsibility levels, 366
risk assessments, 371
significance, training, 371–372
specialty construction contractor, 374
studies, 361–362
Management oversight and risk tree (MORT), 188–189
Management review
ANSI Z10, 485–486
inputs, 483–484
leadership and employee participation, 485
maintenance, superior leadership, 483
PDCA model, 484
performance levels, 486–487
Manuele, Fred A., 67, 68
Material handling methods, 105, 274, 301, 345, 357–358
McDermott, Robin E., 190
Michaels, David, 213
Mikulak, Raymond J., 190
MIL-STD-882E-2012
assess and document risk, 216
document risk mitigation measures, 216–217
engineered features/devices, 217
hazard identification and analysis, 216
military departments and defense agencies, 215–216
PPE, 217
RAC, 218
risk acceptance and document, 217
risk assessment matrix, 218
risk reduction, 217
system safety process, 216
warning devices, 217
MOC. See Management of change system (MOC)
MOC/pre-job planning system, 369–370
Mogford, J., 149
MORT. See Management oversight and risk tree (MORT)
National Institute for Occupational Safety and Health (NIOSH), 284, 312–313
National Safety Council (NSC)
accident prevention manual, 235
council’s system, 236–237
exposure, 236
probability, 236
RAC rating scale, 236
Safety Through Design, 283
severity, 236
Z10 design requirements, 283–284
Newman, Kevin, 354
NIOSH. See National Institute for Occupational Safety and Health (NIOSH)
Norman, Donald A., 69, 88, 89
NSC. See National Safety Council (NSC)
Number of persons (NP), 244
Occupational exposure limits (OELs), 322–323
Occupational health and safety (OHS), 145–146
Occupational health and safety management systems (OHSMS)
 audit, 470
 communication, 30
 document and record control process, 30
 education, training, awareness and competence, 29–30
 management review, 33
 operational elements
 applicable life-cycle phases, 28
 contractors, 29
 design process, 26–27
 emergency preparedness, 29
 hierarchy, controls, 24–25
 management, change, 27–28
 process verification, 28
 procurement, 28–29
 risk assessment, 23–24
Occupational health care program, 481
Occupational Safety and Health Administration (OSHA), 41, 223–224
OELs. See Occupational exposure limits (OELs)
OHSMS. See Occupational health and safety management systems (OHSMS)
One-size-fits-all approach, 137, 151, 470
Operational risk management system assessments, 71–73
 socio-technical model, 78, 109, 110
Organizational culture, NASA
 expected performance, 67
 factors, incidents, 67
 Managing The Risks Of Organizational Accidents, 68–69
 The Psychology of Everyday Things, 69
OSHA. See Occupational Safety and Health Administration (OSHA)
Packaged audit system. See One-size-fits-all approach
PDCA. See Plan-Do-Check-Act (PDCA) concept
Personal protective equipment (PPE), 217, 276, 461, 480, 508, 511
Petersen, Dan, 62, 63, 82–85, 468
PHA. See Preliminary hazard analysis (PHA)
Plan-Do-Check-Act (PDCA) concept
 ANZI Z10, 129
 concept, 137–138
 definition, 131–132
 EPA, 19
 management review process, 484
 measurement systems, 134
 model, 130
 origin and substance
 Deming cycle, 131
 Shewhart cycle, 130, 131
 planning. See Planning, PDCA process
 problem-solving techniques, 136–137
 processes, systems and improvement, 132–134
 variations of, 134–136
Planning
 assessment and prioritization, 158–160
 hazards and risks, 160
 Implementation and Operation, 158
 PDCA process
 implementation and resource allocation, 23
 objectives, 22, 23
 requirements, assessment and prioritization, 22–23
 reviews, 22
 problem identification and analysis, 157
 safety and health management systems, 157, 158
 system of expected performance, 158
 PPE. See Personal protective equipment (PPE)
 Pre-job planning and safety analysis system, 373–374, 379–380
 Preliminary hazard analysis (PHA), 184–185
 Premise, safety professionals
 planning process, 122
 risks and management system deficiencies, 122–123
 Pre-Task Analysis, MOC, 381–384
Prevention through design (PtD)
ANSI/AIHA Z590.3-2011, 309
ANSI/ASSE Z590.3. See ANSI/ASSE Z590.3
ASSE, 321–322
concepts, 312, 321
designer/engineer role, 321
DFS, 313
education activities, 323
hazard analysis and risk assessment
methods, 312
NIOSH, 312–313
NSC, 311–312
occupational injuries and illnesses, 311
OELs, 322–323
policy activities, 323
practice activities, 323
principles, 309
risk assessment and avoidance, 319
safety professionals, 320
theoretical ideal, 310
workshop, 321
Probability and severity
descriptions, 175–176
harm and damage categories, 175–176
Problem-solving techniques, 136–137, 277
Process safety management (PSM), 480–481
Procurement process
design and purchasing guidelines, 404–405
ergonomics, 403–404
internal design specifications, 402–403
level of standards safety specifications, 405–406
purchasing practices, 400
resources, 401–402
safety specifications, 399–400, 401
significance, 400–401
Provisions, risk assessments
ANSI/AIHA Z10-2012, 211
ANSI/ASSE Z244.1-2009, 223
ANSI-ASSE Z590.3, 215
ANSI/PMMI B155.1-2011, 211–215
aviation ground safety, 220–222
B11.TR3-2000, 209–210
Canadians, 218–219
chemical industry, 225–226
EPA, 225
fire protection, 219–220
OSHA, 223–224
safety professionals, 207
SEMI 02-0712A and SEMI S10-307E, 222–223
standards and guidelines, 207–208
PSM. See Process safety management (PSM)
RAC. See Risk assessment code (RAC)
Rasmussen, Jens, 90, 115, 116, 144
Reason, James, 68, 69, 75, 82–84, 86–90, 103, 148, 154, 444
Risk assessment code (RAC), 218, 236
Risk assessment matrices
description, 177–178
numerical values, 181
qualitative and quantitative, 182
reduction measures, 178, 180
risk level indicators, 178, 179
scoring system, 178
severity categories, 178
Risk assessments, 2005
ANSI/AIHA Z10-2012, 232
ASSE technical report Z790.001, 231
CSA Z1002-12, 232
machine safety, 230–231
MIL-STD-882E, 232
Nano Risk Framework, 230
NFPA 70E, 232
OSH management system, 232
pipeline and hazardous materials safety administration, 232
SFPE, 229
Singapore Standard SS 506, 231
Robinson, Anita M., 89
Roland, Harold E., 329, 338
Rothblum, Anita M., 89
Safety climate
definitions, 106
measure, 107
Safety culture
creation, management, 109
definitions, 107–109
internal analysis
safety management system survey
guide, 152–153
self-analysis, 151
Safety design reviews
Air Force System Safety Handbook, 291
checklist, 296–297
design software, 286
equipment acceptance, 296
equipment and process acceptance, 296
capital expenditure, 294
checklist, 296
forms, 296
purpose, 292
responsibilities, 293
safety walk-downs, 295
scope, 292
vendor and design engineering locations, 295–296
ergonomics, 289
forms, 296
hazardous material, 290
military resources, 290
National Safety Council. *See National Safety Council*
NIOSH, 284
and operations requirements guide, 292
organization, 286
and prevention, 282–283
professionals, 282
project engineer/manager, 286–287
requirement, 281
safety professionals, 287–288
work methods, 287
Safety professionals
change agents, 113–114
environmental management ISO 14001, 121
incident investigation, 441–442
initiatives fail, 119–120
management leadership and organizational culture, 114–115
organization’s culture, 113, 114
resources, 117–119
safety culture
attributes and skills, 115–116
Drift into Failure, 116
information, 115
role, 115
skill level, 115
serious injury prevention, 123–125
test of the premise
planning process, 122
risks and management system deficiencies, 122–123
Safety specifications
procurement process, 402–403
standards design and writing process, 405–406
Safety Through Design, 283
Self-evaluation, incident investigation, 449–450
Serious injuries
incident investigation, 450
prevention, 123–125
Severity levels and values, 195
Shewhart cycle, 130, 131
Shewhart, Walter A., 130, 131, 135, 343
Simmons, Rodney J., 329
Simonds, Rollin H., 336
Simon, Steven I., 117, 445
Socio-technical model
applied macro thinking, 98
design process, 98
effective, 100
The Field Guide to Understanding Human Error, 98
five-why technique, 102–103
Human Error, 103
“lethal brew” results, decisions, 103
macro thinking vs. micro thinking, 100–101
OHSMS, 95
operational risk management system, 109, 110
process and system, 96–97, 104
safety climate. *See Safety climate*
safety culture. *See Safety culture*
safety professionals, 110–111
worker-focused behavior-based safety, 104–105
SOP. *See Standard operating procedure (SOP)*
Spigener, Jim, 117
Standard operating procedure (SOP), 138, 352
Stephans, Richard A., 46, 327, 329, 336, 337, 360
Stephenson, Joe, 337
Strater, Oliver, 90
Supervisors, incident investigation, 443–444
Swain, A. D., 87
Swuste, Paul, 118
System safety
 adoption, 335
 Basic Guide to System Safety, 337
 characteristics, 329
 concepts, 326
 definition, 328–329
 design and redesign processes, 325
 engineering and management principles, 329
 enterprising generalists, 327
 generalist practice, 326–327
 hazard identification and analysis and risk assessment techniques, 331–333
 hierarchy of controls, 328, 334–335
 literature, 336
 The Loss Rate Concept in Safety Engineering, 337
MIL-STD-882E, 337
relative safeness, 338–339
risk assessment matrices, 334
safety generalists, 326
System Safety for the 21st Century, 337
use, 336
TCIR. See Total Case Incidence Rate (TCIR)
Technique for human error rate prediction (THERP), 87
Texas City, catastrophe, 149–151
THERP. See Technique for human error rate prediction (THERP)
Three-and four-dimensional risk scoring systems
 acceptance level, 248
 assessment and reduction, 242
 assessment process, 249
 caution and perceptive evaluation, 234–235
description, 233
DPH, 244
factors and elements, 242–243
FE, 243
FMEA, 237–240, 252
gradation and scoring development, 246–247
guidelines, 245–246
heavy equipment builders, 240–241
incident probability, 247
LO, 243
NP, 244
NSC, 235–237
numerical, 235
probability and severity, 246
risk level, 244
risk score formula, 246
severity of consequences, 247
transitions, risk assessment, 234
William T. Fine system, 242
Threshold limit value (TLV), 47, 479, 508
TLV. See Threshold limit value (TLV)
Total Case Incidence Rate (TCIR), 496, 502, 503
Toy, Vic, 129
Tregoe, Benjamin B, 272, 278
Trist, E. L., 97, 98
University of Wollongong (UOW)
 description, 428–429
 pre-purchase WHS requirements, 435
 procedure
 credit card/petty cash purchases, 434
 impacts, health and safety, 431
 repeated purchases, 433
 risk assessment, 431–432
 standing orders, 433–434
 supplier’s capacity to comply, 432–433
 verification, WHS requirement, 433
 WHS requirement, 430
 program evaluation, 434–435
 responsibility, 429–430
 WHS contractor management guidelines, 429
Unsafe act, 66, 70, 100
UOW. See University of Wollongong (UOW)
Value stream map, 348–349
Vincoli, Jeffrey W., 337, 338
Voluntary Protection Programs (VPPs)
 authority and line accountability, 474
 contract employees, 474–475
Corporate Pilot Program, 497
employee involvement, 475–476
features, 496
hazard prevention and control
disciplinary system, 480
emergency procedures, 480
PPE, 480
preventive/predictive maintenance, 480
PSM, 480–481
management commitment & leadership,
473–474
occupational health care program, 481
OSHA, 41, 491
performance-based criteria, 493
planning, 474
recognitions, 497, 498
recordkeeping, 481
requirements, 492–494
safety and health management system
evaluation, 476
safety and health training, 481–482
site-based participation evaluation report,
472
Star designation, requirements, 497–498
worksite analysis
accident/incident investigations,
478–479
baseline hazard, 476–477
hazard, changes, 477
hazard, routine activities, 477
reporting and tracking, hazard, 477
routine inspections, 477–478
trend, 479
written safety and health management
system, 473
VPP Corporate Pilot Program, 497
VPPs. See Voluntary Protection Programs
(VPPs)
Walton, Mary, 133
Watts, Richard, 53
Whittingham, R.B., 70, 89, 90, 144, 446
WHO. See World Health Organization
(WHO)
Wiegman, Douglas A., 107, 108
Wiese, Kay J., 465
William T. Fine system, 242
Womack, James P., 342
Worker-focused behavior-based safety, 92,
104–105
World Health Organization (WHO),
40–41
Written safety and health management
system, 473