Index

Note: Pages number in italics and Bold denotes figures and tables

AISC 360–10
bear connection verification
bearing strength, 387–388
hole positioning, 386
shear strength, 386, 386
tensile strength, 388
development
flange cover plates, 145
geometric properties, 145
tensile rupture limit state, 146
tensile strength, 144
single angle tension member
one side by bolts, 143
standard hole, 143, 144
tensile rupture limit state, 144
tensile strength, 143
AISC approach, 37
code defines, US standards, 118
DAM, 323–327, 324–327, 328
design for stability, 323
vs. EC3
analysis methods, 321, 332
first order analysis, 333
ELM, 327–329, 329
FOM, 329–330, 330
lateral deformability, 56
second order analysis, 330–332
torsion
non-HSS members, 267
resisting torsional moment, 265
restrained warping, 265, 266
round and rectangular HSS, 266–267
torsional stresses, 265
AISC Code of Standard Practice for Steel
Buildings and Bridges, 89
AISC Commentary, 60
AISC 360–10 Commentary of
Appendix 6, 89
allowable compressive strength, 162
allowable flexural strength, 242, 242
allowable strength design (ASD), 162, 174, 200, 203,
317, 480
approximate second order analysis, 330
DAM, 324–326
FOM, 329
gravity loads, 331
allowable stress design (ASD), 44, 47, 48, 56
allowable tensile strength, 137
allowable torsional strength, 266, 267
alternative method 1 (AM1), flexure and axial force
interaction coefficients, 277, 278
lateral flexural buckling, 275, 277
moment distribution, 277
relative slenderness, 275
torsional deformation, 275, 276
alternative method 2 (AM2), flexure and axial force
circular hollow cross-sections, 278
equivalent uniform moment factors, 278, 280
interaction coefficient, 278, 279
rectangular hollow sections, 278
torsional deformations, 278
American Iron and Steel Institute (AISI), 107
American Society for Testing and Materials (ASTM
International), 7, 8, 9
amplified sway moment method, 82–84, 83–84
annealing, 13
approximate second order analysis
beam-columns, 331
bending direction, 331
DAM/ELM, 330
lateral/gravity loads, 331
LRFD/ASD, 330, 331
arc welding, 395
articulated bearing connections
contact surfaces
common types, 427, 428, 429
cylindrical/spherical contact, 427, 428
knife contact plate, 427, 428
Hertz formulas, 427
metal surfaces, 427

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
articulated connections
deterioration, 426
elastic theory, 424
equilibrated calculation model, 424
pin joint, 425, 426
plastic theory, 424
roof beam, 426, 426
truss members, 425
ASD, see allowable strength design (ASD)
autogenous processes
welding, 395
available axial strength, 283
available lateral torsional strength, 283
axial compression, 274, 285
axial force, 148, 151, 157, 321
axial load, 303, 307, 310
and bending moments, 293–294, 297
and flexure, classification of
major axis, 123–125
minor axis, 126
axial strength, 291–292, 295
baseplate connections, 440
battened compound struts
batten flexure/plates, 473, 473, 474
chord flexure, 474
panel shear stiffness, 473
shear deformation, 474–475
battened compression members, see also built-up compression members
efficiency factor, 478, 478
inertia, effective moment of, 477
moments and forces, 478, 479
batten flexural deformation, 473, 473, 474
batten shear deformation, 473
beam-columns
displacement, 268
EC3 formulas, 321
beam continuity, simple connections, 451
beams
braces, 89
deformability, 176–177
design rules for, 228–233
dynamic effects, 178–179
European design approach
resistance verifications, 186–190
serviceability limit states, 184–185
uniform members, buckling resistance of, 190–199
height, 433
mechanism, 460, 460
slenderness, 177
splices
butt welded connection, 430, 431
full/partial strength connections, 430
internal forces and moments, 425, 430
stability, 179–184
US approach
flexural strength verification, 204–228
serviceability limit states, 199
shear strength verification, 200–204
vertical deflections, 199, 199
web, 311, 312
beam-to-beam connections
fin plate, 437
flexural resistance, 434, 436
flush end plate, 437
shear and tension, 437, 438
stiffened flush end plate, 437
stress distribution, 437, 438
von Mises criterion, 437
web cleat bolted, 435
web cleated bolted-welded, 436
web cleated connection, coped secondary beam, 436–437
beam-to-column joints, see also simple connections
beamflanges, 434
bolted connection resistance, 346, 346
end joints, 434
Europe-an approach, 57–59, 58–59
finite element model, 346, 346
flexural resistance, 459
joint modelling, 61–63, 63, 445, 446
panel stiffeners, 434
rigid frame, 57, 57
semi-continuous frame, 57, 57
simple frame, 56–57, 57
United States approach, 60, 60–61, 62
web column, 434, 435
bearing, 383
capacity, 311
connection verification
AISC 360-10, 386, 386–388
EC3, 384, 384–386
slip-critical connection evaluation, 391, 391–394
slip-resistant connection evaluation, 388–390, 389
resistance, 363, 366
bending
and compression
strong axis, 112, 112–115, 113
weak axis, 115, 115
deformability, 468
moment distribution, 70, 70, 71
moments, 151, 156, 179, 180, 268, 269, 307, 309, 310
moment-shear resistance domain, 190, 190
resistance, 186
stiffness, 282
stresses, 151
test, 32, 32
biaxial bending, 179, 225, 226
biaxial stress states, 2, 3
bilinear interaction equations, 302
bimoment, 250, 262, 264, 303, 307, 308
block shear failure mechanism, 437
bolted connection
installing of, 424
punching/drilling holes, 424
structural framing, 424
bolted connection resistance
beam-to-column joints, 346, 346
brittle and buckling phenomena, 346
design strength, 345
stress, effective distribution of, 345
uniform stress distribution, 347
bolts, see also bolted connection resistance
fastener assemblages, 358–359
metal pin, 345, 346
braced frames, 53, 284, 290, 328
tension force, 440, 442
structural analysis, 438
collapse mechanisms, 204
column bases
bending resistance, 432
concrete foundation, 440, 442
shear load transfer, 440, 442
shop fillet welds, 440
simple frames, 440, 441
structural analysis, 438
tension force, 440, 442
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
column splices, 430
combined shear and tension resistance, 365–366, 368
compact elements, 76
compound struts, behaviour of
batten plates, 467, 467
buttoned struts, 467–468, 468
connections, 468
elastic critical load, 470
isolated members (chords), 466
laced members, 466, 467
local buckling mode, 471, 471
midspan chords, 470, 470
CJP welds, see complete joint penetration (CJP) welds
class 4 sections, geometrical properties for, 115–118, 116, 117
class 2 web method, 109, 110, 111
close chords, strut, 466
closely spaced built-up members
AISC
bolted snug-tight, 490
slenderness, 488
equivalent slenderness, 480
lacing and tie plates, 478, 481
spacing interconnections, 478, 479, 479
Code of Standard Practice for Steel Building and Bridges, 325, 325
Codes of practice, column splices, 431
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
collapse mechanisms, 204
column bases
bending resistance, 432
concrete foundation, 440, 442
shear load transfer, 440, 442
shop fillet welds, 440
simple frames, 440, 441
structural analysis, 438
tension force, 440, 442
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
column splices, 430
combined shear and tension resistance, 365–366, 368
compact elements, 76
compound struts, behaviour of
batten plates, 467, 467
buttoned struts, 467–468, 468
connections, 468
elastic critical load, 470
isolated members (chords), 466
laced members, 466, 467
local buckling mode, 471, 471
midspan chords, 470, 470
CJP welds, see complete joint penetration (CJP) welds
class 4 sections, geometrical properties for, 115–118, 116, 117
class 2 web method, 109, 110, 111
close chords, strut, 466
closely spaced built-up members
AISC
bolted snug-tight, 490
slenderness, 488
equivalent slenderness, 480
lacing and tie plates, 478, 481
spacing interconnections, 478, 479, 479
Code of Standard Practice for Steel Building and Bridges, 325, 325
Codes of practice, column splices, 431
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
collapse mechanisms, 204
column bases
bending resistance, 432
concrete foundation, 440, 442
shear load transfer, 440, 442
shop fillet welds, 440
simple frames, 440, 441
structural analysis, 438
tension force, 440, 442
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
column splices, 430
combined shear and tension resistance, 365–366, 368
compact elements, 76
compound struts, behaviour of
batten plates, 467, 467
buttoned struts, 467–468, 468
connections, 468
elastic critical load, 470
isolated members (chords), 466
laced members, 466, 467
local buckling mode, 471, 471
midspan chords, 470, 470
CJP welds, see complete joint penetration (CJP) welds
class 4 sections, geometrical properties for, 115–118, 116, 117
class 2 web method, 109, 110, 111
close chords, strut, 466
closely spaced built-up members
AISC
bolted snug-tight, 490
slenderness, 488
equivalent slenderness, 480
lacing and tie plates, 478, 481
spacing interconnections, 478, 479, 479
Code of Standard Practice for Steel Building and Bridges, 325, 325
Codes of practice, column splices, 431
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
collapse mechanisms, 204
column bases
bending resistance, 432
concrete foundation, 440, 442
shear load transfer, 440, 442
shop fillet welds, 440
simple frames, 440, 441
structural analysis, 438
tension force, 440, 442
cold cracks, 396, 396, 403
cold-formed members, 309
cold-formed profiles, 11, 12, 13, 134
cold rolling, 11, 11
column splices, 430
combined shear and tension resistance, 365–366, 368
compact elements, 76
compound struts, behaviour of
batten plates, 467, 467
buttoned struts, 467–468, 468
connections, 468
elastic critical load, 470
isolated members (chords), 466
laced members, 466, 467
local buckling mode, 471, 471
midspan chords, 470, 470
overall buckling mode, 471, 471
second order effects, 470, 470
slippage force, 468, 469, 469
compression flange, 190, 198, 213, 215, 269, 282
column, 431–433
definition of, 429
static function, 468
tension, 354–358, 355–356
constructional steel, 1
Construction Products Regulation (CPR) No. 305/2011, 7
corner joints, 400, 401
cracks, welds, 396, 396
critical axial load, 269
critical elastic buckling load, 321
critical stress, 162–164
cross-sectional shape, 148, 152, 154
cross-section centroid, 148, 154, 306
cross-section classification
distortion of, 107, 108
European standards
compression or/and bending moment,
110–115
geometrical properties, class 4 sections,
115–118, 116, 117
internal or stiffened elements, 108
local buckling, 107
outstand (external) or unstiffened elements, 108
overall buckling, 107
US standards, 118–120, 119–120
cumulate density function (CDF), 37–38, 38
DAM, see direct analysis method (DAM)
deformability, beam
deflection, 176
load condition, 177
shear distribution, 177
deformed configuration, 52
degrees of freedom (DOFs), 303, 304, 306
depth-to-width ratio, 247
design approaches
European approach, 44–47, 45
and structural reliability, 39–44, 40–43
United States approach, 47, 47–48
design capacity, 158
design compressive strength, 147, 480
design for stability, 323
design resistance, 186, 190, 235
design rules
cross-section, 228, 229, 231
displacement limit, 229, 230
elastic modulus, 230, 233
EU approach, 233–238
floor beams, 233
limit conditions, 229
moment of inertia, 228
steel grades, 229, 230, 232
uniform load, 229, 232
US approach, 239–242
design shear force, 189
design strength, see also welding
available strength of, 417, 417
CJP groove welds, 417, 418
connections
articulated, 425–426
articulated bearing, 427–429
end joints
beam-to-beam, 434–437
beam-to-column, 434
beam-to-concrete wall, 441–444
bracing, 437–438
column bases, 438–441
joint modelling, 444–450
rigid joints, 454–458
semi-rigid, 458–462
simple connections, 450–454
joint standardization, 462–465
kinematic function, 468
pinned, 426–427
position of, 425
resistance of, 425
shear, 356, 358
bearing, 347–349, 348–349
slip resistant connection, 349–354, 350–354
shear and tension, 356, 358
slippage force, 468, 469, 469
splices
beam, 430–431
design strength, see also welding (cont’d)
fillet welds, 418
PJP groove welds, 418
plug and slot welds, 420
skewed T-joints, 418, 419
tensile and shear rupture, 417
welded joints, 418, 419
design stress, 428, 429
design tensile strength, 137
design torsional strength (LRFD), 266, 267
deterioration, articulated connections, 426
direct analysis method (DAM)
column out-of-plumbness, 325, 325
design steps, 323
LRFD/ASD, 324–326
notional loads, 325, 326
partial yielding, 326
P-D effects, 323–325, 324
residual stresses, 326
second order analysis, 323
stiffness reduction, 326
summary of, 327, 328
\mathbf{t}_b coefficient, 327, 327
direct tension indicator (DTI)
bearing connections, 375
compressible washers, 350, 351
hollow bumps, 376
washer, 351, 376
displacements, 303, 304
distant chords, strut, 466
distortion, 245
distortional buckling, 107
DOFs, see degrees of freedom (DOFs)
doubly symmetrical compact I-shaped members
channels bent
 major axis, 206–209
 minor axis, 217–218
compact and non-compact webs, 210
equal-leg single angle, 225–227
slender flanges, 210–215
slender webs, 215–217
DTI, see direct tension indicator (DTI)
ductile failure, 135
ductile failure mode, 440
dye-penetrant testing, 397–398, 400
dynamic effects
 beam end restraints, 178
damping, 179
 displacement, 178, 179
 frequency limit, 179
 serviceability limit state, 178, 179
 vibrations, 178
eccentric bracing system, 85, 85
eccentricity, 453
eddy current testing, 399
edge joints, 400, 401
effective area, 134, 136, 138, 403, 404
effective beam stiffness, 167, 168
effective length
EU approach
column stiffness, 167, 168
concrete floor slabs, 169, 169
continuous columns, distribution factor for,
 168, 168
effective beam stiffness, 167, 168
non-sway frame, 166, 167, 168
reduced beam stiffness, 167, 168
sway frame, 166, 167, 169
flexural buckling, 166
frames, members in, 166
idealized conditions, 166
US approach
beam-column connections, 171
flexural stiffness, 169
girder moment, 171
isolated column, effective length factor,
 169, 171
sideways inhibited frames, 169, 170
sideways uninhibited frames, 169, 170
effective length factor, 153, 164, 171
effective length method (ELM)
 braced frame systems, 328
 moment frame systems, 328
 second order analysis, 328
 summary of, 329, 329
effective net area, 138
effective throat area, 403, 404
effective width, 219
elastic analysis, 53, 263, 264
 elastic analysis with bending moment
 redistribution, 76–78
elastic and plastic stress distribution, 212, 212
elastic beam deflection, 176
elastic branch, 447
elastic buckling analysis, 181, 182
elastic buckling stress, 163
elastic critical buckling load, 285
elastic critical buckling stress, 173, 175, 291,
 295, 298
elastic critical load, 148, 148, 151, 156
elastic critical load multiplier, 53
elastic design, 188–189
elastic $[\mathbf{K}]_E$ and geometric $[\mathbf{K}]_G$ stiffness
 matrices, 54
elastic lateral-torsional buckling, 207, 225
elastic method, 76
elastic modulus, 178, 191, 217, 233
elastic phase, 2, 3
elastic section modulus, 186, 211, 215, 224
elastic structural analysis, 280
elastic torsional critical load, 154
elasto-plastic method (EP), 76
electric-resistance-welded (ERW), 203, 219
electroslag welding (ESW), 395
element slenderness, 152
EN 1993-1-1, 108, 109, 110
end fork conditions, 274
end joints
beam-to-beam connections
fin plate, 437
flexural resistance, 434, 436
flush end plate, 437
shear and tension, 437, 438
stiffened flush end plate, 437
stress distribution, 437, 438
Von Mises criterion, 437
web cleat bolted, 435
web cleated bolted-welded, 436
web cleated connection with coped secondary beam, 436–437
beam-to-column joints
beamflanges, 434
panel stiffeners, 434
web column, 434, 435
beam-to-concrete wall connection
frame performance, 441
reinforcing bars, 443
seismic resistance, 441
thin plate site slots, 444, 444
bracing connections
flange level, 438, 439
horizontal bracings, 437, 439
internal cross, 438, 440
vertical bracings, 438, 439
column bases
base joint performance, 438
cracking of concrete floor slabs, 169, 169
concrete floor slabs, 169, 169
distribution factor for continuous columns, 168, 168
reduced beam stiffness, 167, 168
saw frame, 167, 169
fastener assemblages
bolts, 358–359
bolts and pins clearances, 362, 362–363, 363
nests, 359
washers, 359–361, 360, 361, 361
frames analysis, 320, 321
fusion-welded joints, 397
lateral deformability, 53–56
magnetic particle testing, 398
material properties

batten check, 484
battened built-up member, 482
bending and shear
stress rate, 423
welded connections, 422, 422–423
inertia, effective moment of, 486
plate design tensile resistance, 385
procedure, 384
shear and moment verification, 479, 484
shear force, 388, 389
stress ratios, 487
tension member, 412
welded connections, 420–421, 421
Eurocode 3 part 1-1 (EN 1993-1-1), 53
European approach
angle in tension
design axial load, 140
linear interpolation, 141
standard holes, 140
tensile rupture strength, 141
beam-column, 284–290
bulk compression members
battened, 477–478, 478, 481
design model, 476, 476
elastic deformations, 475
laced compression members, 477, 477, 478
lacings or battened panel, 476, 476
compression, flexure, shear and torsion
tension force, 412

ENV 1993-1-1, 184, 185, 319, 320
European approach
angle in tension
design axial load, 140
linear interpolation, 141
standard holes, 140
tensile rupture strength, 141
beam-column, 284–290
bulk compression members
battened, 477–478, 478, 481
design model, 476, 476
elastic deformations, 475
laced compression members, 477, 477, 478
lacings or battened panel, 476, 476
compression, flexure, shear and torsion
tension force, 412

equal-leg single angle, 154, 154, 165
equal-leg single angle
bending moment, 225
effective length
column stiffness, 167, 168
cracking of concrete floor slabs, 169, 169
continuous columns, distribution factor for, 168, 168
effective beam stiffness, 167, 168
non-sway frame, 166, 167, 168
reduced beam stiffness, 167, 168
saw frame, 166, 167, 169
fastener assemblages
bolts, 358–359
bolts and pins clearances, 362, 362–363, 363
nests, 359
washers, 359–361, 360, 361, 361
frames analysis, 320, 321
fusion-welded joints, 397
lateral deformability, 53–56
magnetic particle testing, 398
material properties
European approach (cont’d)

Construction Products Regulation (CPR) No. 305/2011, 7
hollow profiles, mechanical characteristics of, 4
hot-rolled profiles, mechanical characteristics of, 4
nominal failure strength, 5
nominal yielding strength values, 5
non-alloyed steels, 6
production process, 6
structural steel design, 4
thermo-mechanical rolling processes, 6
yielding strength, 6
radiographic testing, 398–399

resistance checks
axial force, 272
bending resistance, 272
bi-axial bending verification, 273, 274
bolts fastener holes, 272, 273
cross-section, 271, 272
doubly symmetrical I-and H-shaped sections, 272
effective section modulus, 274
hollow profiles, 273
maximum longitudinal stress, 274
moment resistance, 271
plastic resistance, 272
rectangular solid section, 272
rectangular structural hollow sections, 273
uniform compression, 274
welded box sections, 273

resistance verifications
bending, 186, 189–190
elastic design, 188–189
plastic design, 187–188
shear, 187, 189–190
shear-torsion interaction, 189
second order analysis, 319

serviceability limit states
deformability, 184–185
vibrations, 185

stability checks
alternative method 1 (AM1), 275–278
alternative method 2 (AM2), 278–280
beam-columns, 275
bi-axial bending, 274
general method, 280–281
interaction factors, 275
reduction factor, 275

resistance, characteristic value for, 275, 275
second order effects, 274
single span members, 274
torsional deformations, 274

stability design
coefficient , 158, 161
cold-formed sections, 158, 160
design capacity, 158
elastic critical load, 160
flexural buckling, 161, 162
hot-rolled and built-up sections, 158, 159
imperfection coefficient, values of, 158, 158
relative slenderness, 161, 162
torsional buckling, 161, 162
for steel design standards, 35–36, 44–47, 45
structural verifications, 364
bearing resistance, 363, 363, 366
combined shear and tension resistance, 365–366, 368
combined tension and shear, 368
connections, categories of, 364, 364
long joints, 368–369, 369
shear resistance per shear plane, 365
slip-resistant connection, 364, 367–368
tension resistance, 365
tension resistance/connection, 364, 365
tension chord, joint of beam flange, 141
brittle collapse, 142
plastic collapse, 142
splice connection, trussed beam, 141
tension members
capacity design approach, 135
design axial force, 134
linear interpolation, 136
multi-linear line, 137
reduction factors, 136, 136
safety coefficient, 136
sectional areas, 136, 137
single angle, one leg, 135, 136
staggered holes, fasteners, 136, 137
staggered pitch, 137
tensile load carrying capacity, 135
tension resistance, cross-section, 135
torsion
elastic analysis, 263, 264
local buckling, 263
plastic shear resistance, 265
torsional moment, 264
torsion members, 263
St Venant torsion, 264, 265

ultrasonic testing, 399

uniform members, buckling resistance of
general approach, 191–192
I-or H-shaped profiles, 192–199
lateral-torsional buckling, 190, 191
reduction factor, 191
unrestrained beam, 191
visual testing, 397
welded joints
CJP, 411
directional method, 412, 412
effective throat dimension, 413
fillet welds, 414
PJP, 411
simplified method, 411, 412, 412
T-joint, 412, 413
uniform stress distribution, 413

European Committee for Standardization (CEN), 24
European I beams (IPE), 72, 72
European joint classification criteria, 59
European standards
cross-section classification
compression or/and bending moment, 110–115
geometrical properties, class 4 sections, 115–118, 116, 117
vs. US classification approaches, 127–133
design procedure
buckling resistance, 315
failure modes, 312, 312
linear elastic buckling theory, 316
patch loading types, 312, 313
stiff loaded length, 314, 314
transversal stiffeners, 313, 313, 315, 315
web resistance, 312
Young’s modulus, 313
European wide flange beams (HE), 72, 72
extended end plate, 434
external node
bolted end plate connection, 458
bolted knee-connection, 457
fully welded connection, 458
knee-connection, 458
welded T-connection, 458
fastener assemblages
European design practice
bolts and pins clearances, 358–359, 362
combined method, 360, 361, 361, 362
end and edge distances, 360, 361, 362
minimum free space, 360, 361
nominal hole diameter, 362, 362
nuts, 359
snug-tight condition, 359
steel painting, 359
tightening process, 360
torque method, 360
washers/plate washers, 359
US approach
ASTM A325 bolts, 369, 370
ASTM A490 bolts, 369, 370
atmospheric corrosion, 372
bolted connection design, 369
distance values, 372, 373
minimum edge distance, 372, 372
nominal holes, 371
pretensioned connections, 373–374
slip-critical connections, 374, 374–376, 376
snug-tightened connections, 373
steel grades, 370
tensile strength, 370
fillet welds, 401
design strength, 418
effective area, 403, 404
European design approach, 414
inclined, 405–406, 406
stresses, 403, 404
US design practice, length, 415, 416
finite element analysis, 280
finite element (FE) buckling analysis, 53–54
EC3-2b, 322
US and EC3 codes, 338
fin plate connection
beam-to-column joints, 434
beam web, 443
tubular columns, 450
web angles, 437
first order analysis method (FOM)
DAM, 329
horizontal and vertical loads, 322
LRFD/ASD, 329
summary of, 330, 330
first order elastic methods, 68
fixed torsional restraint (FTR), 258, 259
flange local buckling (FLB), 204, 217
flexural buckling, 148, 162, 166, 172
flexural buckling stress, 295, 298, 299
flexural strength, 292–293, 296, 299
collapse mechanisms, 204
doubly symmetrical compact I-shaped members
compact and non-compact webs, 210
equal-leg single angle, 225–227
major axis, channels bent, 206–209
minor axis, channels bent, 217–218
slender flanges, 210–215
slender webs, 215–217
limit states, 204, 205, 206
LRFD vs. ASD, 204
plane of symmetry
double angles loaded, 222–224
tees loaded, 220–222
rectangular bar and rounds, 227–228
round HSS, 219–220
single angles, 224
square and rectangular HSS, 218–219
unequal-leg single angle, 224–225
unsymmetrical shapes, 228
flexural-torsional buckling, 148, 154, 162, 164, 269, 287
flexure and axial forces, members
beam-columns, 268
beams, lateral buckling of, 270
bending moments, 268, 269
columns, axial buckling of, 270
compression, 269, 271
critical axial load, 269
deforbility, 268
displacement moment, 269, 270
European approach, design
resistance checks, 271–274
stability checks, 274–281
flexural buckling, 269, 269
flexural-torsional buckling, 269, 269
instability phenomena, 268
interaction domain, 271, 271
plastic moment, 271
flexure and axial forces, members (cont’d)
resistance, 268
squat load, 271
stability, 269
US approach, design
beam-column, 290–302
forces and torsion, 281–283
flush end plate, see full depth end plate
flush end plate connection (FPC-1), 450, 459
FOM, see first order analysis method (FOM)
force transfer mechanism, 134, 355, 355
forming processes, bending and shear
consist, 11
four way node, 445, 445
frame analysis design approaches
AISC
DAM, 323–327, 324–327, 328
vs. EC3, 325, 332–333
ELM, 327–329, 329
FOM, 329–330, 330
second order analysis, 330–332
European approach
EC3-1, 320
EC3-3, 322
EC3-2a, 321
EC3-2b, 321–322, 322
steel structure, 319, 320
structural analysis, 333–336, 334–344, 339, 344
frame classification, 49
framed systems
beam-to-column joint performance
Europe-an approach, 57–59, 58–59
joint modelling, 61–63, 63
rigid frame, 57, 57
semi-continuous frame, 57, 57
simple frame, 56–57, 57
United States approach, 60, 60–61, 62
generic imperfections
European approach, 63–67, 64, 64–67
United States approach, 67–68
local imperfections and system
imperfections, 67
girder moment, 171
global buckling mode, 322
global compression test, 27
global/local imperfections, 320
gavity loads, 331
groove welds, 401, 402
Guide to Design Criteria for Bolted and Riveted
gyration, effective radius of, 213, 216, 225
hardening branch, 27
hardening phase, 2, 3
hardness test, 32, 33
header plate connection, 434
hemi-symmetrical loading condition,
247, 248
Hertz formulas, 427
heterogeneous processes, welding, 396
hinge eccentricity, 453
hollow circular cold-formed profiles, 11, 12
hollow closed cross-section, 246, 246
hollow structural sections (HSS), 265, 266
hooked anchor bolts, 440
Hooke’s law, 249
Horne’s method, 54, 55, 322, 338
hot cracks, 396, 396, 403
hot-rolled profiles, 134
H-shaped hot-rolled profiles, 466
HSS, see hollow structural sections (HSS)
Huber–Hencky–Von Mises criterion, 2
hydrogen, 1
I-and H-shaped profiles
beams with end moments, 194, 195, 196
buckling moment resistance, 198
compression flange, 198
elastic critical load, 193
intermediate transverse load, coefficients, 194, 195, 196
LTB verification of, 192
mono-symmetrical cross-section, 193, 194
relative slenderness, 193, 198, 199
shear centre, 193, 197
two axes of symmetry
beam flanges, 252
flange boundary, 251
Jourawsky’s approach, 252
shear centre, 250
stress distribution, 251
torsional constant, 250
w and Sw, distribution of, 251, 251
values, 194
warping constant, 193, 197
I-beams, 407
image quality indicators (IQIs), 400
imperfection factor, 191, 191, 236
imperfections
geometric imperfections, 22–23, 23–24
mechanical imperfections, 19–22, 19–22
inclined fillets welds, 405–406, 406
industrial revolution, 14
inelastic analysis, 76
inertia, effective moment of, 477
initial imperfection, 151, 151
in-plane instability, 283, 298, 300
instability phenomena, 147, 148
internal forces, 303, 304, 304
internal or stiffened elements, 108
International Organization for
Standardization (ISO), 24
I-shape profile, rolling process, 10, 11
isolated members (chords), 466
joint
classification, 57
material ductility, 425
mixed typologies
ANSI/AISC360-10, 420
EC3, 420
modelling
beam-to-column joint, 445–446, 447
component approach, 449, 450
elastic branch, 447
experimental tests, 447–448, 448
finite element models, 448–449, 449
mathematical expressions, 448
moment-rotation relationship, 446, 447, 448
nodes, classification of, 445, 445
post-elastic branch, 447
rigid joints, 454–458, 455–457
semi-rigid joints, 458–462, 458–462
simple connections, 450–454, 451–454, 453
strain-hardening branch, 447
stress and deformations, 446, 446
terms and definitions, 444, 445
theoretical models, 449, 450
plasticity, 425
standardization
BCSA-SCI, 462, 463
end plate connections, 462, 464
green books, 462
seismic frames, 464, 465
standard components, 462
steel structures design, 462
stiffness, 62
K-bracing system, 85, 85, 86
kinematic mechanism method, 426, 459
laced compound struts
built-up laced member, 471, 472, 473
elongation, 471
N-type panel, 471
laced compression members, 477, 477, 478
lamellar tearing, 396, 397
lap joints, 400, 401, 416
lateral deformability
AISC procedure, 56
cantilever beam, 52, 53
European procedure, 53–56
no-sway frame, 52
sway frame, 52
lateral frame instability, deformed configuration, 54, 55
lateral loads, 331
lateral torsional buckling (LTB), 180, 190, 207, 213, 238, 282, 283, 285, 301
curves, 191, 191, 192
resistance, 280, 281
LFRD, see load and resistance factor design (LFRD)
limit analysis theory, 346
limit state design philosophy, 269
limit states, 43, 204, 205, 206, 310
linear elastic buckling theory, 316
linear elastic constitutive law, 68
linear interpolation, 136
linear products, 15
L-joints, 400, 401
load and resistance factor design (LFRD), 47, 56, 162, 174, 200, 203, 217, 317, 456, 457, 480
approximate second order analysis, 330, 331
vs. ASD approach, 204, 282, 310
DAM, 324–326
load carrying capacity, 151, 152
load conditions, 153, 153, 157
local buckling mode, 107, 471, 471
local elastic stiffness matrix, 303
local imperfections, 67

008728563.3D 311 11/2/2016 11:23:04 AM

Index 511
longitudinal fillet welds
shear and flexure, 406, 407
shear and torsion, 409, 409–410
tension, 404, 405
longitudinal imperfection, 23, 23
long joints, 368–369, 369
long-slotted holes, 371
LTB, see lateral torsional buckling (LTB)
magnetic particle testing, 398, 400
malleable iron, 14
manganese, 1
manpower cost, 424
material ductility, joints, 425
material properties, US vs. EC3 classification
approaches, 127–128
maximum shear stress, 245, 247, 252
mechanical fasteners
bearing connection verification
AISC 360-10, 386, 386–388
EC3, 384, 384–386
slip-critical connection evaluation, 391, 391–394
slip-resistant connection evaluation, 388–390, 389
bolted connection resistance, 345–347, 346
definition of, 345, 346
European design practice
fastener assemblages, 358–363, 360, 361, 361, 362, 363
structural verifications, 363–369, 364, 369
rivet connections, 382, 382–384
shear connections, 356, 358
bearing, 347–349, 348–349
slip resistant connection, 349–354, 350–354
tension connections, 354–358, 355–356
US approach, bolted connection design
fastener assemblage, 351, 369–376, 371–374, 376
structural verifications, 376–381, 377–379, 380, 381
mechanical imperfections, 19–22, 19–22
mechanical non-linearity, 68, 78–80
mechanical tests
bending test, 32, 32
hardness test, 32, 33
stub column test, 27–29, 28, 29
tensile testing, 25–27, 25–28
toughness test, 29–32, 30, 31, 31
member imperfections, 23, 23
member response, mixed torsion
bimoment, 261, 262
boundary conditions, 259, 260, 262
cantilever beam, 259, 260
concentrated torsional load, 263, 263
midspan, torque, 259, 261
pure and warping torsion, distribution of, 261, 261
rotation, 261, 262
torsional restraints, 258, 259
torsion parameter, 259
uniform torsional load, 263, 264
warping moment, 260
members buckling lengths, 322
Merchant–Rankine formula, 80
metal active gas welding (MAG), 395
metal inert gas welding (MIG), 395
Metallic Materials Conversion of Hardness
Values, 32
methods of analysis
elastic analysis with bending moment
redistribution, 76–78
geometrical non-linearity, 68
mechanical non-linearity, 68
plasticity and instability, 68–74, 69–71, 72, 73–74
European practice, 74–76, 75, 75
US practice, 76
simplified analysis approaches
amplified sway moment method, 82–84, 83–84
equivalent lateral force procedure, 80–82, 81–82
Merchant-Rankine formula, 80
structural analysis layout, 68
midspan chords, 470, 470
mixed mechanism, 460, 460
moment frame systems, 328
moment resistance, 438
moment-rotation curve, 61
mono-axial bending approach, 179
mono-axial yielding stress, 2
mono-dimensional elements, 15
mono-dimensional members, 424, 429
mono-symmetrical channel cross-sections
flexural shears, 252
Jourawsky approach, 253
parabolic distribution, 252
sectorial area, 254, 254
shear centre, 252, 253
shear force, 252
shear stress, 253
mono-symmetrical cross-section, 269
National Annex, 280, 313, 367
NDTs, see non-destructive tests (NDTs)
net reduction factor, 163
nickel, 1
nitrogen, 1
nodal bracings, 90
nodal column bracings, 90
nodal lateral beam bracings, 92
nodal torsional beam bracings, 92
nodal zone joints, 445
nominal compressive strength, 292, 296, 298
nominal flexural strengths, 204, 206, 217, 283
nominal shear strength, 200, 202, 240
nominal torsional strength, 266
noncompact elements, 76
non-compact flanges, 210, 212, 216
non-deformed configuration, 52
non-destructive tests (NDTs)
dye-penetrant testing, 397–398
eddy current testing, 399
magnetic particle testing, 398
radiographic testing, 398–399
ultrasonic testing, 399
visual testing, 397
non-dimensional slenderness, 280, 281
non-HSS members, 267
non-slender elements, 76
non-structural components, 438
non-sway frame, 166, 167, 168
non-uniform bending moment, 208
non-uniform shear stress, 250
non-uniform torsional moment, 243, 244, 249
normalization, 13
normal stresses, 247, 248, 307, 310
no-sway frame
vs. braced frame, 53
vs. sway frames, 52
nuts
fastener assemblages, 359
hexagonal shape, 345, 346
one way node, 445, 445
open cross-section, 246, 246
out-of-plane effect, 244
out-of-plane instability, 298
outstand (external) or unstiffened elements, 108
overall buckling mode, 471, 471
oversized holes, 371
oxyacetylene (oxyfuel) welding, 395
oxygen, 1
pack-hardening, 13
panel mechanism, 460, 460
parabolic distribution, 247, 252
parabolic interaction equation, 302
partial depth end plate, see header plate connection
partial joint penetration (PJP) welds
design strength, 418
European approach, welded joints, 411
groove welds, 401, 402
US design practice, 415
partial safety factor, 148, 158, 186, 188
partial strength connections
beam splices, 430
cross-sections of, 425, 425
partial strength joints, 58
P-D effects, 323–325, 324
phosphorous, 1
pinned connections, see also connections
bending moment, 427
definition of, 426, 427
eccentricity, 427
shear force, 427
pin or flexible joints, 58, 58
planar frame model, 49, 50
plane of symmetry
double angles loaded
elastic section modulus, 224
flange leg local buckling, 223
flexural compression, 223
limit states, 222
Mn values, 222, 222
nominal flexural strength, 220
non-compact flange, 221
slender flange, 221
yielding limit state, 220
plane products, 15
plastic analysis, 53
plastic beam moment, 70
plastic design, 187–188
plastic global analysis, 78
plasticity and instability, 68–74, 69–71, 72, 73–74
European practice, 74–76, 75, 75
US practice, 76
plastic method, 76
plastic modulus, 191, 217, 218
plastic moment, 207, 224, 241, 271, 292, 296, 299
plastic phase, 2, 3
plastic section modulus, 186
plastic shear resistance, 187, 189
plate washers, 359
plug and slot welds, 401
porosity, 402
post-elastic branch, 447
pretensioned connections, 373–374
primary rolling, 10, 11
probability density function (PDF), 37, 38, 41
production processes, 10–13, 11–13
proportionality slenderness, 150, 150, 162
protrusion length, 358
puddling furnace, 14
punching shear resistance, 365
pure torsional moment, 243, 260, 262
pure torsion shear stresses, 245, 246
quasi-permanent combination, 46
quasi-permanent values, 44
quenching, 13
quenching and tempering, 13
radiation imaging systems, 400
radiographic testing, 398–400
random variables, 37–39, 38–39
rebars, see reinforcing bars
rectangular bar and rounds, 227–228
rectangular cross-section, 247, 252
rectangular hollow square section (HSS), 203
reduced beam stiffness, 167, 168
reduction factors, 275, 281, 285
re-entrant corners, 246
reinforcing bars, 443
relative bracings, 90
relative column bracings, 90
relative lateral beam bracings, 90–91
relative slenderness, 161, 162, 172, 275, 278, 285
required axial strength, 282
required axial stress, 283
required flexural strength, 282
required flexural stresses, 283
residual stresses, 152, 157
resistance, 179
restrained warping torsion, 267
ribbed decking product, 16
rigid-continuous frame models, 49
rigid frame, 57
rigid joints, 57, 58
column flange local bending, 455, 455–456
column flange/web, 455
column web panel zone shear ASD, 456, 457
common solutions, 457, 457
external node, 457
forces, 456, 456
LRFD, 456, 457
deflection of, 455, 455
moment-resisting joints, 455
rigorous second order analysis, 320
rivet connections
EU design practice, 383
historical bridge, 382, 382
pin riveting, 382, 382
US design practice, 383–384
Rockwell Hardness Test, 32
rolling process, 10, 11
rotational stiffness, 438
round and rectangular HSS LRFD vs. ASD, 266
nominal torsional strength, 266
safety coefficient, 136
safety index (SI) evaluation, 42, 336–340, 344
St Venant’s theory, 69
St Venant torsion, 264, 265, 267, 309, 310
secondary rolling, 10
second order approximate analysis, 100–106
second order effects, 156, 274, 320, 324
sectorial area, 248, 249, 249
seismic design situations, combinations of actions, 46
semi-continuous frame models, 49, 57, 61, 62
semi-probabilistic limit state approach, 43, 152
semi-rigid joints, 58, 58, 63
correct design procedure, 459
FPC-1, 459
mechanical properties, 458
moment-rotation joint curve, EC3 criteria, 458, 458
plastic analysis
beam, bending resistance of, 459
collapse mechanism, 461, 462
hinged, activation of, 461, 461
isolated beam, 461, 461
lower-bound theorem, 461
semi-continuous planar frame, 459, 459, 460, 460
three-dimensional framed systems, 459
upper-bound theorem, 459
TSC-1, 459
shear, 383
area, 188, 234, 240
buckling, 188, 200
deformability, 155, 157, 466, 468
factor, 177
force, 155
lag factor, 138, 139, 140
resistance, 187
resistance per shear plane, 365
stiffness, 471
strain, 155
and tension, 383, 384
and tension connections, 356, 358
shear connections
bearing
bolted joints, 348, 348
firm contact, 347
hole deformation, 348, 349
plasticity, 347, 348
stress design approach, 347
failure of, 348, 349
schematic diagram of, 347, 348
shear force vs. relative displacement, 348
slip resistant
combined method, 350
DTI, 350, 351
HRC tightening method, 350, 351
inelastic settlements, 350
pre-loaded joints, 349
tightening, degree of, 348, 349, 350
torque method, 350
twisting moment, 349
shear stress, 309, 310
flexure welds
fillets, combination of, 407–408, 408
longitudinal fillets, 406, 407
transverse fillets, 407, 407
torsion welds
eccentric effect, 408
effective throat dimension, 411, 411
fillets, combination of, 410, 410–411
longitudinal fillets, 409, 409–410, 411
transverse fillets, 408–409, 409, 411
shear stress distribution, 245, 246
shear-torsion interaction, 189
shielded metal arc welding (SMAW), 395
short-slotted holes, 371
sideways inhibited frames, 169, 170
sideways uninhibited frames, 169, 170
silica, 1
simple connections
beam continuity, 451
beam-to-column joints, 450, 451
bending moment, 452
design modes, 452, 453
fin plate, 450
fin plate connection, tubular columns, 450
header plate connection, 454, 454
loaded beams, 453, 453
shear force mechanism, 452
simple frames, 451, 452
web and seat cleat, 450
web cleat, 450

simple-continuous frame models, 49
simple frames
bracing design, 85, 86
bracing systems, 84, 85
eccentric bracing system, 85, 85, 86
K-bracing system, 85, 85, 86
three-dimensional portal frame, 86
X-cross bracing system, 84–85, 85
simple torsional restraint, 258, 259
single angles, 224
single notched beam-to-beam connection, see web cleated connection with coped secondary beam
slag inclusion, 402
slender elements, 76
slender flanges, 210, 212, 216
slenderness ratio, 488
slip-critical connections, see also fastener assemblages
AISC 360-10 shear force, 391
ASD approach, 393, 394
connected elements, 394
hole positioning, 391
LRFD approach, 393, 394
minimum bolt pretension, 374, 375
shear/combined shear and tension, 374
shear resistance, 392
slip resistance, 374, 391, 392
tension calibrator, 375
washers, 374
slip critical joints, 420
slippage force, 468, 469, 469
slip-resistant connections
assemblies, 368
bolted connection, 350, 352
bolts per line connection, 353, 353
combined method, 350
design pre-loading force, 367
DTI, 350, 351
eccentric shear, 354, 354
EC3 shear force, 388, 389
failure paths, 353, 353
HRC tightening method, 350, 351
inelastic settlements, 350
plates, deformation capacity of, 352
pre-loaded joints, 349
serviceability limit states, 364, 368
shear and torsion, 353, 354
stiff bolts and weak plates, 350, 351, 352
stress distribution, 352, 353
tightening, degree of, 348, 349, 350
torque method, 350
torsional moment, 354
twisting moment, 349
ultimate limit states, 364, 368
snug-tightened connections, 373
sole pure torsion, 243, 261
specified minimum tensile strength, 138
specified minimum yield stress, 138
splice joints, 416
splices
axial force, 432
beam, 430
column, 430
connection types, 432
mono-dimensional members, 429
squash load, 271
stability
bending moment, 151
buckled shapes, 153, 153
buckling resistance, 180, 181
compression member, stability curve for, 152
critical load, effect of shear
built-up compression members, 157
elastic critical load, 156, 157
elastic curvature equation, 156
second order effects, 156
shear deformations, 155, 155, 157
transverse deflection, 155
cross-sectional shape, 152
effective length, 149, 149, 152, 153
elastic critical load, 148
elastic critical moment, 180, 181, 183
element slenderness, 152
equal-leg angle shape, 154, 154
Euler column, 148, 149
EUMF, 183
European approach
coefficient c, 158, 161
cold-formed sections, 158, 160
design capacity, 158
elastic critical load, 160
flexural buckling, 161, 162
hot-rolled and built-up sections, 158, 159
imperfection coefficient, values of, 158, 158
relative slenderness, 161, 162
torsional buckling, 161, 162
finite elements (FEs), 181
flexural buckling, 148, 154
generic cross-section, configuration of, 148, 148
initial imperfection, 151, 151
lateral torsional buckling, 179, 180
load application point, 180
load conditions, influence of, 153, 153
stability (cont’d)
load-transverse displacement relationship, 151, 151
mid-length cross-section, 151, 151
moment diagrams and values, 184, 184
mono-symmetrical unequal flange I profiles, 181, 182, 183
non-sway and sway frames, 152, 152
proportionality slenderness, 150, 150
shear centre, 180
shear modulus, 154
shell models, 181, 182
squeezing failure, 150
steel grade, 152
stiffened channel profile, 12, 13
stress vs. slenderness, 150, 150
torsional buckling, 148, 154
torsional coefficient, 154
US approach
ASD vs. LRFD, 162
compressive strength, 162
critical stress, 162
generic doubly-symmetric members, 163
particular generic doubly-symmetric members, 163–164
single angles with b/t > 20, 165
single angles with b/t ≤ 20, 165
singly symmetrical members, 164
T-shaped compression members, 165
unsymmetrical members, 164
Wagner coefficient, 183
warping coefficients, 154
warping restraints, 183, 184
staggered pitch, 137
static theorem, see limit analysis theory
steel-concrete composite floor system, 16, 17
Steel Construction Institute (SCI), 462
Steel-Conversion of Hardness Values to Tensile Strength Values, 33
steel design
European provisions, 35–36, 44–47, 45
United States provisions, 37, 47, 47–48
steel framed systems, 49, see also framed systems
steel grade, 118, 152, 172
steel material
carbon content, 1
deformability of, 1
European provisions, 4–7
imperfections
geometric imperfections, 22–23, 23–24
mechanical imperfections, 19–22, 19–22
iron–carbon alloys, 1
mechanical tests
bending test, 32, 32
hardness test, 32, 33
stub column test, 27–29, 28, 29
tensile testing, 25–27, 25–28
toughness test, 29–32, 30, 31, 31
thermal treatments, 13
United States provisions, 7–10
wrought iron, 1
stiffened channel profile, 12, 13
stiffened elements, 76, 118
stiffeners, 311, 315, 315
stiffness and resistance joint classification, 58
strain-hardening branch, 447
strength design
European approach, 147–148
US approach, 148
stress, 307, 309
design, 428, 429
distribution, 243, 247, 248, 251, 352, 353
tri-axial state, 427
welded joints
butt joint, 403, 403
shear and flexure, 406–408, 407, 408
shear and torsion, 408–411, 409–411
tension, 404–406, 405, 406
stress-strain diagram, 27
structural components, 438
Structural Eurocode programme, 35
structural reliability and design approaches, 39–44, 40–43
structural steel, 1, 2
structural system imperfections, 23, 23, 64
structural typology, 49, 51–52, 51–52
stub column test, 27–29, 28, 29
submerged arc welding (SAW), 203, 395
sulfur, 1
sway frame, 166, 167, 169
vs. no-sway frames, 52
symmetrical loading condition, 247, 248
symmetric constitutive stress-strain law (σ–ε), 2, 107
system imperfections, 67
tangential stress, 188
tapered splice, 433
tempering, 13, 14
tensile design load, 134
tensile rupture, 138
tensile stress values, 33
tensile testing, 25–27, 25–28
tensile yielding, 138
tension, 383
calibrator, 375
calibration
angle legs, 356
bending and shear, 356, 356
bolt shank elongation, 355, 355
design load, 356
force distribution, 354, 356
force transfer mechanism, 355, 355
neutral axis, 357
shear and torsion, 356, 356
tensile force, 355, 355, 358
field actions, 201, 202
resistance, 365
zone, 186
tension control (TC) bolt, 375, 376
tension flange yielding (TFY), 204, 214, 217
tension members
 connection location, 134, 135
design
 European approach, 134–137
 US approach, 137–140
load carrying capacity, 134
tension welds
 inclined fillets, 405–406, 406
 longitudinal fillet, 404, 405
tensile force, 404
 transverse fillet, 405, 405
TFY, see tension flange yielding (TFY)
thermal treatments, 13
thin-walled open cross-sections, 244, 246, 247
three-dimensional framed system, 49, 50
two way node, 445, 445
T-joints, 400, 401, 411
top-and-seat angle connection (TSC-1), 459
Torsion
 beam-to-column rigid joint, 244, 245
 concepts of
 I-and H-shaped profiles, 250–252
 mono-symmetrical channel cross-sections, 252–254
 warping constant, 255–258
cross-section, 243
design
 AISC procedure, 265–267
 European procedure, 263–265
 mixed torsion, member response, 258–263
 out-of-plane effect, 244
 pure torsional moment, 243, 260, 262
 shear centre, 243, 244
 steel structures, 243
 warping restraints, 244, 245
 warping torsional moment, 243, 244
torsional buckling, 148, 154, 161, 162
torsional deformations, 274, 276, 279, 287
torsional moment, 304, 306, 309
toughness test, 29–32, 30, 31, 31
transition temperature, 30, 30
transverse deflection, 155
transverse fillet welds
 shear and flexure, 407, 407
 shear and torsion, 408–409, 409
tension, 405, 405
T-shaped compression members, 165
Tungsten inert gas welding (TIG), 395
turn-of-nut method, 375, 376
twisting moment, 349
twist-off bolt, see tension control (TC) bolt
twist-off-type tension-control bolt pretensioning, 375, 376	wo way node, 445, 445
ultimate limit states, 43, 45
ultrasonic testing, 399, 400
unequal-leg single angle
 bending moment, 224
 biaxial bending, 225
 β_w values, 225, 225
 uniaxial constitutive law, 2, 3
 uniaxial tensile test, 25
 uniform dead load, 233, 239
 uniform live load, 233, 239
 uniform torsional moment, 243, see also St Venant
torsion
United States provisions
 material properties
 ASTM International, 7, 8, 9
 high-strength fasteners, 10
 hot-rolled structural steel shapes, 7–9, 8–9
 plate products, 9
 sheets, 10
 for steel design, 37, 47, 47–48
 unstiffened elements, 76, 118
 unsymmetrical shapes, 228
US and EC3 codes
 cantilever properties, 334
 FE buckling analysis, 338
 Horne’s method, 338
 safety index evaluation, 336–340, 344
 top displacement, 335, 335
US approach
 beam-column, 290–302
 bolted connection design
 bearing strength, bolt holes, 381
 bearing-type connections, 378
 bolts, tensile/shear strength of, 378
 fastener assemblage, 369–373, 371–373
 pretensioned connections, 373–374
 slip-critical connections, 374, 374–376, 376,
 379–381, 380
 snug-tightened connections, 373
 structural verifications, 376–377, 377
 bolts or welds, 479, 480
 built-up compression members
 design compressive strength, 480
 LRFD/ASD, 480
 built-up members, 480, 481
 compression, flexure, shear and torsion
 non-HSS members, 310
 round and rectangular HSS, 310
 effective length
 beam-column connections, 171
 flexural stiffness, 169
 girders moment, 171
 isolated column, effective length factor, 169, 171
 sidesway inhibited frames, 169, 170
 sidesway uninhibited frames, 169, 170
 flexural strength verification, 204–228
 forces and torsion
 flexure and axial force, 283
 flexure and compression, 281–282
 flexure and tension, 282
 single axis flexure and compression, 283
US approach (cont’d)
- serviceability limit states
 - deformability, 199
 - vibrations, 199
- shear strength verification
 - box-shaped members, 203
 - C_v values, 200, 201
 - design wall thickness, 203
 - k_0 evaluation, 200, 201
- LRFD vs. ASD, 200
- nominal shear strength, 200, 202
- post buckling strength, 201–204
- rectangular hollow square section, 203
- shear yielding vs. shear buckling, 200–201

stability design
- ASD vs. LRFD, 162
- compressive strength, 162
- critical stress, 162
- generic doubly-symmetric members, 163
- particular generic doubly-symmetric members, 163–164
- single angles with b/t > 20, 165
- singly symmetrical members, 164
- T-shaped compression members, 165
- unsymmetrical members, 164

US structural verifications
- bearing strength, bolt holes, 381
- bearing-type connections, 378
- bolts, tensile/shear strength, 378
- fasteners, nominal strength of, 376, 377
- nominal bearing strength, 381
- single bolt strength, 381
- slip-critical connections
 - ASD/LRFD, 380
 - LRDF vs. ASD, 380
- LRFD vs. ASD, 200
- nominal shear strength, 200, 202
- post buckling strength, 201–204
- rectangular hollow square section, 203
- shear yielding vs. shear buckling, 200–201
weldability characteristics, 25
weld defects, 403, see also geometric welding defects
welded connections, 424
bending and shear, EC3, 422, 422–423
defects and potential problems, 401–403
design strength, 417, 417–420, 419, 420
EC3 tension member, 420–421, 421
European approach, 411–414, 412, 413
European specifications
dye-penetrant testing, 397–398
eddy current testing, 399
magnetic particle testing, 398
radiographic testing, 398–399
ultrasonic testing, 399
visual testing, 397
generalities, 395–397, 396, 397
mixed joint typologies, 420
shear and flexure, 406–408, 407, 408
shear and torsion, 408–411, 409–411
tension, 404–406, 405, 406
US design practice, 414–416, 414–417
US specifications, 399–400
welded joints
classification of, 400–401, 401, 402
design of, 411
stresses, 403–404, 403–404
welded I-shaped beams, 210, 215
welded joints
classification
element relative position, 400, 401
groove welds, 401, 402
load-resisting elements, 400
position of, 400, 401
design of
design strength, 417, 417–420, 419, 420
European approach, 411–414, 412, 413
stress contributions, 411
US design practice, 414–416, 414–417
stresses
butt joint, 403, 403
CJP groove welds, 403
effective area, 403
fillet welds, 403, 404
shear and flexure, 406–408, 407, 408
shear and torsion, 408–411, 409–411
state of, 403, 404
tension, 404–406, 405, 406
welding
autogenous processes, 395
base material, 395
cracks, 396, 396
definition of, 395
general defects, 396–397
inclusions, 396
lamellar tearing, 396, 397
metallurgical phenomena, 396
NDTs, 397
width-to-thickness ratios, 76, 118, 246
wrought iron, 1, 14
X-cross bracing system, 84–85, 85
yielding limit state, 204, 217, 218
yield strength, 108
Young’s modulus, 62, 149, 169, 313, 469, 476