INDEX

Note: Page numbers in *italics* indicate figures; tables are denoted with ‘t’.

- abiotic challenges
 - costs of adaptation, 297–298
 - trade-offs, 297–298
- adaptation costs, abiotic challenges, 297–298
- adaptive animal personality, 56
- adaptive explanations, personality-related differences in plasticity, 61–63, 62
- adaptive value of seasonality, 247–250
- adaptive values of endogenous circadian clocks, 240–244
- additive effects, population genetics, 93
- aging. See senescence
- allocation (or compensation) model, energy metabolism, 223
- allostasis, 120–121, 121, 122–123
- allostasis model, stress responses, 188–189
- *Anolis sagrei* (brown anole), integrating costs of reproduction, 161–163, 162
- Antagonistic Pleiotropy theory, senescence, 258
- anuran development
 - phenotypic plasticity, 82–83
 - polyphenic morphs, 82–83
 - resource polymorphism, 83
 - aphids, dispersal polyphenism, 78–79
- *Arabidopsis thaliana*, epigenetics, 114–115, 114
- atavisms, Selection-Pleiotropy-Compensation (SPC) model, 99–100
- bacteria, trade-offs: viral defense vs competitive ability, 296–297, 296
- basis functions, curve-thinking, 42
- behavioral plasticity
 - individual differences, 58–59
 - personality-related differences, 58–61
 - behavioral reaction norm (BRN) approach personality and plasticity, 56–58
- phenotypic plasticity, 56–58, 59
- random regression, 57
- best-linear unbiased predictors (BLUPs), individual by environment interaction (I × E), 29–32
- *Bicyclus* butterflies, wing polyphenism, 80–82
- biological rhythms. See also circadian rhythms; circannual cycles and seasonality; timekeeping properties, 238
- BLUPs. See best-linear unbiased predictors
- body size. See also growth and size regulation
- environmental gradients, 294–295
- resource availability, 294–295
- trade-offs, 294–295
- BRN. See behavioral reaction norm approach
- brown anole (*Anolis sagrei*), integrating costs of reproduction, 161–163, 162
- catecholamines, stress responses, 189–190
- change and stasis. See stasis and change
- circadian rhythms, 238–244. See also circannual cycles and seasonality; timekeeping
- adaptive values, endogenous circadian clocks, 240–244
- extrinsic adaptive value, 242–244
- individual variation, 244
- intrinsic adaptive value, 241–242
- molecular genetic mechanisms, 238–240, 239
- neural and endocrine organization, 240, 241–242
- physiological mechanisms, 240, 241–242
- population variation, 244
- suprachiasmatic nuclei (SCN), 240, 241–242, 243
circannual cycles and seasonality, 244–250. See also circadian rhythms; timekeeping
adaptive value of seasonality, 247–250
human photoperiodism, 249–250
individual variation, 248–250
photoperiod response systems in birds, 248–249
photoperiod transduction, 241–242, 245–247
photoperiodic polyphenism in rodents, 247–248
physiological mechanisms, 241–242, 245–247
population variation, 248–249
climate change, geographic ranges, 286–287
climatic variability hypothesis (CVH), geographic ranges, 279, 281–282, 283–285
competitive ability vs viral defense, trade-offs, 296–297, 296
complexity, 2, 9–11
caricature, 11, 12
core theme characterizing integrative organismal biology, 310
history, 10–11
modularity, 10–11, 12
trait integration, 10–11
traits/environment interactions, 311–312
context-dependence hypothesis, energy metabolism, 223–225, 224
core themes characterizing integrative organismal biology, 310–311
costs, stasis and change, 130–131
costs of adaptation, abiotic challenges, 297–298
costs of reproduction, integrating, 153–164
brown anole (Anolis sagrei), 161–163, 162
currencies, 154–156
endocrine control, 160
ergetic costs, 154–156
fitness-based framework of costs, 155–158
immunocompetence handicap hypothesis (ICHH), 158–159
intraspecific sexual conflict, 156–158, 157
life-history evolution, 156–158, 157
sex-specific costs, 158–163, 160
shared regulatory axes, 159–163, 160
curve-thinking, 39–52
basis functions, 42
characterizing curves, 41–42
early growth-final size tradeoff, 44, 45, 52
functional form parameters, 41
landmark values, 41
thermal performance curves (TPCs), 42–50, 43, 44
variation, 42–47
vertical shift hypothesis, 42–45, 43, 44, 48, 49, 50
curve variation, principal components analysis (PCA), 42–51
CVH. See climatic variability hypothesis
de-differentiation, Selection-Pleiotropy-Compensation (SPC) model, 99–100
developmental environment, senescence, 266–269
developmental plasticity vs phenotypic plasticity, 191–193
stress responses, 191–196, 192, 193
developmental reaction norms, phenotypic plasticity, 35
developmental systems drift, Selection-Pleiotropy-Compensation (SPC) model, 98–99
dispersal polyphenism in locusts, aphids and Gryllus crickets, 77–79
Disposable Soma theory, senescence, 259
distributional ranges. See geographic ranges
distributions of species, trade-offs, 298–299
DNA methylation, polyphenic morphs, 84
Dobzhansky-Muller incompatibilities, trade-offs, 303
drug development, reductionism, 313
dung beetles, horn polyphenism, 80–82
early growth-final size tradeoff, 44, 45, 52
ecdysteroids (ECDs), polyphenic morphs, 83–84
ecological defense, trade-offs, 295–297
ecological epigenetics, 112–115
ecological implications epigenetics, 110–111
personality and plasticity, 63–64
ecology of growth and size, 213–214
eigenfunctions, principal components analysis (PCA), 42–46, 43, 48–49
emergence consequences for organismal biology, 314–315
enantiostasis, 121–122
endocrine control. See also hormonal pathways
INDEX

ecdysteroids (ECDs), 83–84
integrating costs of reproduction, 160
polyphenic morphs, 73, 74–76, 75, 83–85
energetic costs, integrating costs of reproduction, 154–156
energy metabolism, 219–229
aerobic scopes, 226–227
allocation (or compensation) model, 223
context-dependence hypothesis, 223–225, 224
definitions, 220–221
ectotherms vs endotherms, 219–229
energy budgets, 223–225
foraging, 228
habitat selection, 229
increased-intake (or acquisition, or additive) model, 223
individual behavior, 227–229
key terms, 220–221
metabolic rate (MR), factors explaining variation, 221–223
metabolic scopes, 226–227
spontaneous activity, 227–228
trade-offs, 223, 225, 227, 228
Y-model, 223–225, 224
environment/trait interactions, complexity, 311–312
environmental effects, personality and plasticity, 64–65
environmental gradients
body size, 294–295
resource availability, 294–295
trade-offs, 294–295
epigenetics, 109–115, 110
Arabidopsis thaliana, 114–115, 114
categories, 109–110
defining, 109–110
and development, 113–114
ecological epigenetics, 112–115
ecological implications, 110–111
gene expression, 111
invasive species, 112
mechanisms, 111–112
models, 111–112
phenotypic plasticity, 110–111
response to the environment, 112–113
epistasis, 94–100, 94
defining, 93
physiological/functional, 94–95
statistical, 94–95
evolution of growth and size, 213–214
evolutionary biology, unification with functional biology, 11–14
evolutionary developmental biology, or evo-devo (2000+), 5
evolutionary forces, trade-offs, 300
Evolutionary Physiological Ecology (1987), 5
evolutionary systems biology, context-dependency of genetic effects, 91–104
evolutionary theory, senescence, 258, 259
evolutionary trade-offs, distributions of species, 298–299
evolvability
physiological regulatory networks (PRNs), 146–147
Selection-Pleiotropy-Compensation (SPC) model, 99
field and laboratory studies integration, phenotypic plasticity, 32–34
fitness
stasis and change, 127–128
trade-offs, 292–294, 292
fitness-based framework of costs, integrating costs of reproduction, 155–158
food availability effects
individual by environment interaction (I × E), 30–32
phenotypic plasticity, 30–32
free-running period, phenotypic plasticity, 32
function-valued traits (FVTs), 39–40
functional biology, unification with evolutionary biology, 11–14
functional form parameters, curve-thinking, 41
FVTs. See function-valued traits
gene expression
epigenetics, 111
polyphenic morphs, 76
gene regulation, polyphenic morphs, 74–76, 75, 83–85
genetic complexity of traits, Selection-Pleiotropy-Compensation (SPC) model, 98
genetic effects
context-dependency, 91–104
personality and plasticity, 64–65
variational modularity, 95
Genomic Red Queen, Selection-Pleiotropy-Compensation (SPC) model, 99
genetic ranges, 277–287
climate change, 286–287
climatic variability hypothesis (CVH), 279, 281–282, 283–285
definitions, 279
hypotheses, 278
geographic ranges (cont’d)
macrophysiological patterns, 283–286
metabolic rate (MR), 280–281, 282, 284, 285–286
plasticity, 281–282
Rapoport’s rule, 278–279
spatial scales, 283, 284
temperature effects, 279–281, 280, 283–286, 285
trade-offs, distributions of species, 298–299
Gerbillus spp., body size trade-offs, 295
*glucocorticoids (GCs) senescence, 263–264
stress responses, 188–193, 196–200
growth and size regulation, 207–214. See also body size
cessation of growth, 208–209, 211–212
commonalities across taxa, 209–212
decision point, 208–209, 210–211
ecology of growth and size, 213–214
evolution of growth and size, 213–214
framework, 208–209, 209, 210–212
growth rate, 208–209, 212
Manduca sexta (tobacco hornworm), 208–214
terminal growth period (TGP), 208–209, 211
Gryllus crickets, dispersal polyphenism, 79

habitat effects
individual by environment interaction (I × E), 30–32
phenotypic plasticity, 30–32
habitat selection, energy metabolism, 229
heat shock proteins (hsp), 13–14
homeostasis, 120–121, 121
homeostatic noise, 124
homologous traits, Selection-Pleiotropy-Compensation (SPC) model, 98
hormesis, senescence, 268
hormonal pathways. See also endocrine control
senescence, 263–264
horn polyphenism, dung beetles, 80–82
hsp. See heat shock proteins

I × E. See individual by environment interaction
ICHH. See immunocompetence handicap hypothesis
IGF-1. See insulin/insulin-like growth factor 1 signaling pathway
immune systems, 169–181
between-host models, 173–178
classification, 170–172, 171
drivers of immune heterogeneity, 172–173
empirical studies, consequences of immune heterogeneity, 178–181, 179
generational span, 173
interactions, 169–170, 173–174, 176, 181
mechanisms, 170–172
parasite resistance, 179
physiological regulatory networks, 173
Schmid-Hempel and Ebert system, 170–172, 171
theoretical studies, consequences of immune heterogeneity, 173–178, 180–181
trade-offs, 169–170, 172–173, 177
within-host models, 173–178, 176
immunocompetence handicap hypothesis (ICHH), integrating costs of reproduction, 158–159
Impatiens capensis (Jewelweed) plants, thermal performance curves (TPCs), 46–50, 48, 49
increased-intake (or acquisition, or additive) model, energy metabolism, 223
individual by environment interaction (I × E) best-linear unbiased predictors (BLUPs), 29–32
food availability effects, 30–32
habitat effects, 30–32
random regression, 26–27, 29–32
reaction norms, 24, 25–27, 29–32
temperature effects, 30–34
individual differences in behavioral plasticity, 58–59
insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, senescence, 263
integrative organismal biology core themes, 310–311
intraclonal sexual conflict integrating costs of reproduction, 156–158, 157
life-history evolution, 156–158, 157
invasive species, speciogenetics, 112
laboratory and field studies integration, phenotypic plasticity, 32–34
landmark values, curve-thinking, 41
large mutational target, Selection-Pleiotropy-Compensation (SPC) model, 99
life-history evolution integrating costs of reproduction, 156–158, 157
intraclonal sexual conflict, 156–158, 157
life history reaction norms. See reaction norms
loci, dispersal polyphenism, 77–78
macrophysiological patterns, geographic ranges, 283–286
Manduca sexta (tobacco hornworm), growth and size regulation, 208–214
maternal matching hypothesis
phenotypic plasticity, 194–195
stress responses, 194–195
metabolic rate (MR). See also energy metabolism
factors explaining variation, 221–224
geographic ranges, 280–281, 282, 284, 285–286
Modern Synthesis, vs organismal biology, 1–2, 3
modularity
complexity, 10–11, 12
core theme characterizing integrative organismal biology, 311
phenotypic plasticity, 74, 82–83
physiological regulatory networks (PRNs), 139, 140–142, 147
polyphenic morphs, 77–78
variational modularity, genetic effects, 95
variational modularity, Wagner-Altenberg model, 100–101, 101
molecular genetic basis, polyphenic morphs, 73
molecular genetic mechanisms, circadian rhythms, 238–240, 239
morphology-performance-fitness framework (1983), 5
MR. See metabolic rate
multidimensional plasticity, 35
Mutation Accumulation theory, senescence, 258
natural selection, phenotypic plasticity, 8
network theories of aging, 264–265
New Directions in Ecological Physiology (1987), 5, 310
niches, trade-offs, 293
observational field studies, personality and plasticity, 65–66
optimality approach, personality and plasticity, 55–56
organismal biology
vs *Modern Synthesis*, 1–2, 3
progress to date, 4–6
unification need, 3–4
organismal diversity, origins and evolution, 312–313
oxidative stress, senescence, 261
parental care
adaptive significance of the phenotypic modification, 194–195, 195
stress responses, 191–196, 195, 197
PARs. See predictive adaptive responses
partitioning variance, stasis and change, 130
PCA. See principal components analysis
personality and plasticity, 55–66
adaptive animal personality, 56
adaptive plasticity, 63
behavioral plasticity, 58–61
behavioral reaction norm (BRN) approach, 56–58
designs to study, 65–66
ecological implications, 63–64
environmental effects, 64–65
evolutionary implications, 63–64
experimental approach, 66
genetic effects, 64–65
observational field studies, 65–66
optimality approach, 55–56
personality-related differences in plasticity, 60–63, 60
adaptive explanations, 61–63, 62
phenotypic integration, 35
phenotypic plasticity, 2, 6–9
adaptive plasticity, 63
anuran development, 82–83
behavioral plasticity, 58–59
behavioral reaction norm (BRN) approach, 56–58, 59
core theme characterizing integrative organismal biology, 311
curve-thinking, 39–52
defining, 7
vs developmental plasticity, 191–193
developmental reaction norms, 35
epigenetics, 110–111
food availability effects, 30–32
free-running period, 32
function-valued traits (FVTs), 39–40
habitat effects, 30–32
history, 6–7
individual differences in behavioral plasticity, 58–59
integrating field and laboratory studies, 32–34
maternal matching hypothesis, 194–195
measuring, 7
modularity, 74, 82–83
multidimensional plasticity, 35
natural selection, 8
phenotypic plasticity (cont’d)
personality-related differences, 60–63, 60
phenotypic integration, 35
photoperiod effects, 33
random regression, 26–27, 29–32
reaction norm perspective, 8–9, 9
review, 6–7
specialization, 294
stasis and change, 127, 128–129, 129
stress responses, 191–196
temperature effects, 30–34
trade-offs, 194, 294
variation causes, 27–32, 27
variation consequences, 27–32, 27
variation reasons, 27–29, 27
photoperiod effects, phenotypic plasticity, 33
photoperiod response systems in birds,
circannual cycles and seasonality,
248–249
photoperiod transduction, circannual cycles and
seasonality, 241–242, 245–247
photoperiodic polyphenism in rodents,
circannual cycles and seasonality,
247–248
Physiological Ecology of Animals: An
Evolutionary Approach (1986), 5
physiological/functional epistasis, 94–95
physiological regulatory networks (PRNs),
137–149, 139, 140
aging, 146
characteristics, 140–142, 143
connectivity, 140–142
constraints, 146–147
defining, 138–140
evolvability, 146–147
glossary, 148–149
heart pacemaker activity, 142, 144, 145
hierarchy, 140–142
modularity, 139, 140–142, 147
predictive adaptive responses (PARs), 145
resiliency, 142–146
stability, 142–146
stasis and change, 123–124, 125, 128, 129
statistical and analytical approaches, 148
trade-offs, 143, 146–147
physiological stasis and change. See stasis and
case change
Pieris rapae (Imported Cabbageworm) larvae,
thermal performance curves (TPCs),
46–47, 47, 49, 50
plant adaptation to serpentine soils, trade-offs,
297–298, 298
plasticity. See developmental plasticity;
personality and plasticity; phenotypic
pleiotropy, 95–98
mechanism, 97–98, 97
QTL mapping method, 96, 96
Selection-Pleiotropy-Compensation (SPC)
model, 97–103, 97
transcription factors, 101–102
variation prevalence, 96
polyphenic morphs, 71–85
anuran development, 82–83
aphids, dispersal polyphenism, 78–79
case studies, 77–83
DNA methylation, 84
ecdysteroids (ECDs), 83–84
endocrine control, 73, 74–76, 75, 83–85
examples, 71–72, 72
gene expression, 76
gene regulation, 74–76, 75, 83–85
Gryllus crickets, dispersal polyphenism, 79
horn polyphenism, dung beetles, 80–82
induction and function, 73–74
locusts, dispersal polyphenism, 77–78
modularity, 77–78
molecular genetic basis, 73
proximate mechanisms, 74
wing polyphenism, Bicyclus butterflies,
80–82
population genetics
additive effects, 93
context-dependency, 94–100, 94
predation, trade-offs, 295–297
predictive adaptive responses (PARs),
physiological regulatory networks
(PRNs), 145
principal components analysis (PCA)
curve variation, 42–51
eigenfunctions, 42–46, 43, 48–49
limitation, 48
template mode of variation (TMV), 48
PRNs. See physiological regulatory networks
proteostasis, 122
proximate theories of aging, senescence,
259–265
QTL mapping method, pleiotropy, 96, 96
random regression
behavioral reaction norm (BRN) approach, 57
individual by environment interaction (I × E),
26–27, 29–32
phenotypic plasticity, 26–27, 29–32
ranges, geographic. See geographic ranges
Rapoport’s rule, geographic ranges, 278–279
reaction norms, 23–35
 applications, 24
 individual by environment interaction (I × E), 24, 25–27, 29–32
reaction norm perspective, phenotypic plasticity, 8–9, 9
variation in plasticity, 24–25, 24
variation in plasticity, reasons, 27–29, 27
reactive oxygen species (ROS), senescence, 261
reactive scope model
 stasis and change, 123
 stress responses, 189
reductionism, 313
reproduction costs. See costs of reproduction, integrating
resource availability
 body size, 294–295
 environmental gradients, 294–295
 trade-offs, 294–295
resource polymorphism, anuran development, 83
rheostasis, 122
SCN. See suprachiasmatic nuclei
Selection-Pleiotropy-Compensation (SPC) model
 atavisms, 99–100
 context-dependency, 97–103, 97
de-differentiation, 99–100
developmental systems drift, 98–99
evolvability, 99
genetic complexity of traits, 98
Genomic Red Queen, 99
homologous traits, 98
implications, 98–100
large mutational target, 99
sexual dimorphism, 98
variational modularity, 100–101, 101
Wagner-Altenberg model, 100–101, 101
senescence, 257–269
 Antagonistic Pleiotropy theory, 258
developmental environment, 266–269
Disposable Soma theory, 259
evolutionary theory, 258, 259
glucocorticoids (GCs), 263–264
hormesis, 268
hormonal pathways, 263–264
insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, 263
maternal effects, 268
Mutation Accumulation theory, 258
network theories of aging, 264–265
oxidative stress, 261
physiological regulatory networks (PRNs), 146
proxiimate theories of aging, 259–265
reactive oxygen species (ROS), 261
somatic mutation theory, 260
telomeres, 262–263
theories of aging, 258–265
thyroid hormones, 264
trade-offs, 259
ultimate theories of aging, 258–259
wild animals, 265–266, 267
sex-specific costs of reproduction
 immunocompetence handicap hypothesis (ICHH), 158–159
 integrating costs of reproduction, 158–163, 160
 shared regulatory axes, 159–163, 160
sexual dimorphism, Selection-Pleiotropy-Compensation (SPC) model, 98
size and growth regulation. See growth and size regulation
somatic mutation theory, senescence, 260
SPC model. See Selection-Pleiotropy-Compensation model
specialization
 phenotypic plasticity, 294
 trade-offs, 294
species formation, trade-offs, 303
stasis and change, 119–132
allostasis, 120–121, 121, 122–123
axes of (dis)similarity, 124–126
canalization, 127
change through stability, 126–127
constraints, 130–131
costs, 130–131
enantiotaxis, 121–122
fitness, 127–128
fixed vs changing setpoints, 124–125
homeostasis, 120–121, 121
homeostatic noise, 124
‘lumpers’ vs ‘splitters’, 131–132
partitioning variance, 130
phenotypic plasticity, 127, 128–129, 129
physiological/functional epistasis, 94–95
physiological regulatory networks (PRNs), 123–124, 125, 128, 129
proteostasis, 122
reactive scope model, 123
reactive vs anticipatory, 125
reciprocal coupling, 126
rheostasis, 122
simple vs complex, 125–126
stasis and change (cont’d)
statistical epistasis, 94–95
time scales, 126, 128–129, 129
statistical epistasis, 94–95
stress responses, 187–200
adaptive significance of the phenotypic modification, 194–195, 195
allostasis model, 188–189
catecholamines, 189–190
connections, physiological mediators, 199–200
definitions, 187–188
developmental plasticity, 191–196, 192, 193
epigenetic modifications by stressors, 198–199
glucocorticoids (GCs), 188–193, 196–200
hormonal responses, 189–191
maternal matching hypothesis, 194–195
organismal responses to stressors, 189–191
parental care, 191–196, 195, 197
phenotypic plasticity, 191–196
reactive scope model, 189
regulators, 190–191
variation, individual, 196–198
suprachiasmatic nuclei (SCN), circadian rhythms, 240, 241–242, 243
telomer, senescence, 262–263
temperature effects. See also thermal performance curves (TPCs)
geographic ranges, 279–281, 280, 283–286, 285
individual by environment interaction (I × E), 30–32
phenotypic plasticity, 30–32
template mode of variation (TMV), principal components analysis (PCA), 48
thermal performance curves (TPCs). See also temperature effects
curve-thinking, 42–50, 43, 44
Impatiens capensis (Jewelweed) plants, 46–50, 48, 49
Pieris rapae (Imported Cabbageworm) larvae, 46–47, 47, 49, 50
thyroid hormones, senescence, 264
timekeeping, 235–250
biological rhythms, 238
circadian rhythms, 238–244
circannual cycles and seasonality, 244–250
endogenous vs environmental drivers, 235–238, 237
entrainment variation, 236–238, 237
TMV. See template mode of variation
TPCs. See thermal performance curves
trade-offs, 291–303
abiotic challenges, 297–298
bacteria, 296–297, 296
biological diversity, 291–303
body size, 294–295
competitive ability vs viral defense, 296–297, 296
conflicting evidence, 299–300
core theme characterizing integrative organismal biology, 310
distributions of species, 298–299
Dobzhansky-Muller incompatibilities, 303
early growth-final size tradeoff, 44, 45, 52
ecological defense, 295–297
energy metabolism, 223, 225, 227, 228
environmental gradients, 294–295
evolutionary forces, 300
evolutionary trade-offs, 298–299
fitness, 292–294, 292
Gerbillus spp., 295
immune systems, 169–170, 172–173, 177
natural enemies, 295–297
niches, 293
phenotypic plasticity, 194, 294
physiological regulatory networks (PRNs), 143, 146–147
plant adaptation to serpentine soils, 297–298, 298
predation, 295–297
resource availability, 294–295
senescence, 259
specialization, 294
species formation, 303
universality? 299–300
variation, 299–300
viral defense vs competitive ability, 296–297, 296
warblers (Parulidae), 300–302
trait integration
complexity, 10–11
function-valued traits (FVTs), 39–40
traits/environment interactions, complexity, 311–312
transcription factors, pleiotropy, 101–102
ultimate theories of aging, senescence, 258–259
unification need, organismal biology, 3–4
variational modularity
genetic effects, 95
Wagner-Altenberg model, 100–101, 101
vertical shift hypothesis, 42–45, 43, 44, 48, 49, 50

Wagner-Altenberg model
Selection-Pleiotropy-Compensation (SPC) model, 100–101, 101
variational modularity, 100–101, 101

warblers (Parulidae), trade-offs, 300–302
wild animals, senescence, 265–266, 267
wing polyphenism, Bicyclus butterflies, 80–82
Y-model, energy metabolism, 223–225, 224