INDEX

Acceptance testing, 160, 372
Accountability, 68, 161, 184. See also Authority
Acquisition, 94–95
Acquisition cycle, 30
Acquisition Preparation Phase, 93
Actual cost of work performed (ACWP), 306
Aerospace industry, 382
Affinity diagram, 427
Agility, 15–16, 114, 140, 352–354, 378
Aircraft turnaround project, WBS, 220–222
Allen, Judd, 38–39
Allocated requirements, 151–152
American Society for the Advancement of Project Management (ASAPM), 15
Amusement park exhibits/rides, project cycle for (Figure 7.3), 85
Analysis (verification method), 367
Analytical hierarchy process (AHP), 427
Analytical style, 335
Anomalies, 114–115, 379–380
Anscombe’s quartet (Figure 16.9a), 302
Architecture Vee. See Vee Model, Architecture
Aronstein, David, 382
Arrow Diagramming Method (ADM), 211
Artifacts:
 automatically generated electronic documentation, 353
 configuration management process improvement template, 395
 controlling, 267, 268
 lessons learned as, 42
 roles, 120–121, 359–360
Aspects of the project cycle, 99–102. See also Project cycle (one of five essentials)
 budget, 30, 31, 99, 101–102, 115–116
 as layers, 30
 technical:
 development tactics, 116–119
 modeling, 104–108
 periods and, 99
 systems engineering and, 102–104
 technology insertion, 119–120
Assembly (in system decomposition), 109
Attitudes/biases, 51–53, 73
Attributes/competencies, 182–183
Augustine’s Law, 269
Authority. See also Accountability; Responsibility:
 conflict in, 194
 control, 256
 project manager, 46–47, 183–184, 187–189
 project team, 184
Barrett, Craig, 340
Baseline(s):
 budget, 268
 chain of requirements, 141–142
 change control, 267
 defined, 427
 Eight Phase Estimating Process:
 Baseline Estimate Phase, 417–418
 Environment Baseline Phase, 417
 elaboration:
 artifact role, 360
 hierarchical/nonhierarchical (Figure 19.14), 353
 management, 120–121
 technical, 428 (see also Technical aspect of project cycle)
Bath Iron Works in Maine, 157–158
Behavior:
 diagrams, 66, 164
 leader (Figure 18.3), 328
 personal, and communication styles, 51
 relationship, 328
 requirements, 151–152
 task, 328
 team, 25
Bennis, Warren, 54, 320
Berlin, Irving, 381
Berlo, David (SMCR Model), 49, 50, 51
Best practices, 12, 387, 428
“Better, faster, cheaper” (BFC), 127, 384
“Better” as enemy of “good enough,” 114

441
Big bang approach, 359, 364
Blackhawk helicopter, 103
Boehm, Barry W., 107
Boeing 777, 231
Booher, Dianna, 54, 57
Boston Big Dig, 89, 92, 101
Bottom-up incremental integration approach, 364, 365
Brainstorming, 331
Brittleness, 373
Budget:
 aspect of project cycle, 30, 31, 101–102, 115–116
 baseline, 268
 cycle, 30
 underruns/overruns, 314
Budget at completion (BAC), 306
Budgeted cost of work performed (BCWP), 306, 307–308
Budgeted cost of work scheduled (BCWS), 306, 309
Budgeting Phase, Eight Phase Estimating Process, 420
Build-to (Critical Design Review, CDR) gates, 243, 351
Burgess, Thomas, 269
Burn rate slippages, 317–318
Business:
 baseline control, 121, 267
 case, 3–7, 13, 14, 110
 corrective actions, 316
 status, 293–294
Business manager/management, 190–191, 390, 432
BUYER project (COTS procurement support), 248–250
Buyer/seller viewpoints (Figure 11.6), 195

Candidate concepts, 152, 315
Capability Maturity Model Integrated (CMMI), 11–12,
 275, 387–389, 421–426
 collaboration, 17
 continuous representation, 423, 424–425
 Eight Phase Estimating Process and, 415
 Generic Goals, 424, 425
 Generic Practices, 394, 425
 glossary, 27
 ISO certification levels and, 41
 mapping to the five essentials, 396
 process improvement, 421–422
 Product Suite, 16, 404, 405
 representations, 422–423
 staged representation, 423, 425–426
 ten management elements and, 135
Cards-on-the-wall (COW) technique, 73, 200, 209–210, 215
Career paths, 40–41
Car selection criteria, 149–150
Celebrations, team, 80–81
CERT Coordination Center (CERT/CC), 406
Certification:
 professional, 16, 40, 41, 404
 quality, 373
 system, 375, 376
Champion, project, 185
Change control, 120, 267, 269–271, 353, 390. See also
 Configuration management
Change Control Board (CCB), 269–270
Chartering the project, 187–189
Check-and-balance system, 147
Christensen, Clayton, 139
CMM/CMMM. See Capability Maturity Model Integrated
 (CMMI)
Coaching, 327
Code of conduct, 74–76
Code-to-decision gate (CDR), 348
Collaboration, 17–18, 53, 330
Collocated matrix, 174–176
Commitment to project, 200, 201
Commitment to project management. See Organizational
 commitment (one of five essentials)
Communication, project (one of five essentials), 21, 26–27,
 48–68
 attitudes and biases, 51–53
 challenge of common vocabulary, 26–27
 feedback, 61
 isolation of stovepipes/silos, 61
 language/vocabulary, 62–68
 model (Figure 5.1), 49
 multiplication factors, 49
 participants, influence of, 50–53
 personal behaviors and communication styles, 51
 project environment, 60–61
 techniques, 53–60
 constructive feedback, 53, 58–60
 dialog, 54–55
 glance management, 55–56
 meetings/to follow-up, 58
 observing/listening, 56–57
 polling, 57–58
 in Wheel and Axle Model (Figure 3.3), 24
Competencies/attributes, 182–183
Competency models, 131, 185, 186. See also Capability
 Maturity Model Integrated (CMMI)
Competitors as stakeholders, 15
Complexity, planning for, 341–360, 385, 398–399
Component test (WBS dictionary excerpt), 207
Compromise, 330, 331
Computer aids/tools, 26, 46, 163–164, 219, 290, 417
Computer Resources Working Group, 274–275
Concept Definition Phase, 92–93, 121, 244–245
Concept of operations (CONOPS), 13, 14, 141, 434
Concurrent engineering, 191–192
Configuration items (CIs), 104, 300, 342, 428
Configuration management, 265–271, 395. See also Change control
Conflict resolution methods, 330
Confrontation/collaboration, 330
Congruency, 5, 7, 260, 266
Consensus:
 Collaborate to Consensus (C2C), 60
decision making, 79
Constructive challenge/confrontation, 52, 330
Constructive feedback, 58–60
Control. See Project control
Control gates. See Decision gates
Consultants, 191
Context of implementation, 149
Continuous Improvement Teams, 70
Continuous Quality Improvement (CQI), 272–273
Continuous representation, CMMI, 423, 424–425
Contract(s), 120, 168, 239, 261, 262
Contractors/subcontractors, 168, 191, 199, 218
Control. See Project control
Control gates. See Decision gates
Corona project, 382
Corrective action, 133, 312–318
closing the control loop (Figure 17.1), 314
determining, 315–316, 317
evaluating alternatives by weighted scoring (Figure 17.2), 317
implementing, 317–318
reasons for, 312–314, 315–316, 318
Cosmai, Robert, 340
Cosmetic anomalies, 379
Cost:
estimating/costing/pricing, 215–219
guidelines for control, 261
schedules, 208
status, 294, 304
variances/overruns, 306, 315
Cost as an independent variable (CAIV), 12, 149
Cost Performance Index (CPI), 309, 310
Cost-reimbursable contracts, risk management, 239
COTS (Commercial-Off-The-Shelf) products, 152, 162–163, 247–252, 346
Covey, Stephen, 72, 130, 191, 320, 325, 330
CPM, 208–209, 215. See also PERT
Credibility, 181
Critical Design Reviews (CDRs), 67, 97, 428
Critical path:
analysis, 22
defined, 211
example, vacation preparation (Figure 12.14), 213
selection of, 357–359
shortening, 212–213
Crosby, Phillip, 374
CSEP (Certified Systems Engineering Professional), 16, 41
CSE system certification, 375, 376
Cultural change, farming analogy, 38–39
Culture, high performance, 38–42, 354, 399
Customer(s), 379
in-plant representatives, 289–290
review meetings, 288
Cycle. See Project cycle (one of five essentials)
Dashboard, 207–208
Data:
collection phase, Eight Phase Estimating Process, 420–421
cost, 262
mining, 141
nonstandard input/output formats, 219
Deactivation Phase, 95, 96
Decisional meetings, 284
Decision gates:
 build-to, 243, 351
 business aspect, 30–31
 confusing titles, 66–67
 constructive feedback and, 59
criteria for definition of, 276
Critical Design Review (CDR), 351
decision options (acceptable, acceptable with reservations, unacceptable, unsalvageable), 97, 277
defined, 428
design-to gates, 116, 243, 351
importance of, 96–98
phasing of, 351–352
Preliminary Design Review (PDR), 66, 116, 351
in project cycle templates (Figure 7.2), 87
Systems Requirements Review (SRR), 98
tailoring gated cycle, 127
Decision matrix, risk (Table 13.1), 240
Decision processes, alternative (Figure 6.3), 79
Decision records, opportunity/risk (Figure 13.7), 241
Decision styles, 78–80, 328
Decomposition Analysis and Resolution (DAR), 109, 110–114, 144–159
architecture selection, 156–159
Architecture Vee and (Figure 9.8), 148
cost of implementation, 149
defining problem to be solved and establishing weighted evaluation criteria, 149–151
defining required behavior and performance, 151–152
definitions, 429
developing candidate logical/physical solutions, 152
Decomposition Analysis and Resolution (DAR) (Continued)
overview diagram (Figure 9.6), 146
selecting best solution, 152–155
flow chart (Figure 9.10), 153
quality function deployment (QFD), 155–156
sensitivity analysis (Figure 9.11), 154
study process (Figure 9.12), 155
sources/techniques for determining requirements, 147–149
Decomposition levels, 109
Defense. See U.S. Department of Defense (DoD)
Delegating, 327, 329
De Lesseps, Ferdinand, 100–101, 278
Deliverables, 202, 402
Delivery methods, 354, 429
Deming, W. Edwards, 374
Demonstrations, 367
Denver Airport, 92, 98, 196, 390
Deployment Phase, 95
Derived requirements, 151
Design:
artifacts, 395
drawings, 275
margin verification, 371–373
reviews, 97, 111, 113, 114, 348, 351, 390, 431
verification, 370–371
Design Baseline Phase, Eight Phase Estimating Process, 415
Design-to gates, 116, 243, 351. See also Preliminary Design
Reviews (PDRs)
Development methods:
definitions, 429
evolutionary, 116, 356, 357, 407–408, 429
incremental, 117, 118, 358, 364, 407–408, 429
linear, 117, 118, 200, 358, 430
strategy/tactics, 116–119, 200, 429
unified, 112, 434
Dialog, 54–55
Disk drives, evolution of, 139–140
DMAIC (Define, Measure, Analyze, Improve, Control), 391
Documentation. See Artifacts
DoD. See U.S. Department of Defense (DoD)
Driver style, 335
Drucker, Peter, 168, 260, 320
Dual Vee, 349, 350, 355, 434. See also Vee Model
Earned value, 26, 133, 197, 305–308
Earned Value Management (EVM) systems, 133, 305–308
Einstein, Albert, 11, 19
Electrical integration, 363
Electronics Industries Alliance (EIA), 15, 269, 403–404, 406
Emerson, Ralph Waldo, 383
Engineering, systems. See Systems engineering
Engineering tests, 160
Entity development/solution, 341–352. See also Vee Model
Environment, project:
communication, 60–61
leadership and, 323–327
organizational commitment, 42–44
requirements change (Figure 9.3), 143
Environmental testing, 160
Environment Baseline Phase, Eight Phase Estimating Process, 417
ESL, 38
Essentials of project management, five. See also specific essentials:
organizational commitment, 21, 25–26, 37–47
project communication, 21, 26–27, 48–68
project cycle, 22, 28–31, 84–128
situational techniques/tools (ten management elements),
22, 31–33, 129–134 (see also specific elements)
corrective action, 32, 133, 312–318
opportunities and risks, 32, 132, 223–253
organization options, 32, 33, 131, 167–180
project control, 32, 132–133, 254–277
project leadership, 32, 133–134, 319–337
project planning, 32, 131–132, 196–222
project requirements, 32, 130–131, 137–166
project status, 32, 133, 292–311
project team, 32, 131, 181–195
project visibility, 32, 33, 133, 278–291
teamwork, 21, 27–28, 69–83
Estimate at completion (EAC), 306, 307
Estimated completion date (ECD), 299
Estimate to complete (ETC), 306, 307
Estimating:
casting/pricing process, 215–219
Eight Phase Process, 415–420
Phase 1: Design Baseline Phase and Work Breakdown Structure (WBS), 415
Phase 2: Size Baseline Phase, 416
Phase 3: Environment Baseline Phase, 417
Phase 4: Baseline Estimate Phase, 417–418
Phase 5: Project Estimate Phase, 418–419
Phase 6: Risk Analysis Phase, 419–420
Phase 7: Budgeting Phase, 420
Phase 8: Dynamic Data Collection Phase, 420–421
Ethical/legal issues, 74–76
European Commission, 264–265
Evolutionary development, 116, 356, 357, 407–408, 429
Evolution of typical project, 42–43
Executive management review, 288
Expected value (EV), 237
Expenditure profile, typical (Figure 7.4), committed versus spent, 90
Expert reviews, 275–276
Expressive style, 335
Extreme Programming, 15, 140, 378
Failure:
 project (reasons for), 41–42, 70–71, 123, 325–326
 testing:
 mean time between failure (MTBF), 373
 unrepeatability (one-time anomalies), 370, 380 (see also
 Anomalies)
Failure Modes and Effects (and Criticality) Analysis
 (FMEA and FMECA), 235, 429
Failure review boards, 276
Farming metaphor, 41
Fast cycle time, 125–127
Fayol, Henri, 19, 31, 32, 255
Feasibility, hardware/software, 430
Feedback, 53, 58–60, 61
Financial management. See
 Budget
Firmware, 376
First article testing, 160
Flowcharts, 66
Focus groups, 148
Follower readiness, 329
Forcing style (power/dominance), 330
Ford, Henry, 69
Ford automobiles, 127, 234, 376
Forms/templates, website for, 401–402
Formality, 67–68
Formal testing, 160, 369
Frameworks, 11
France, Anatole, 56
Fuller, Thomas, 292
Functional integration, 364
Functional organizations, 45, 169–170
Gantt charts, 29, 211, 215
Gates, Bill, 141, 290, 293
Geostationary Operational Environment Satellite (weather
 satellite), 126
Glance Management, 55–56, 280–282
Goals, 72, 166, 424, 425
Government, U.S.:
 Department of Defense (see U.S. Department of Defense
 (DoD))
 Request for Proposal (RFPs), 42, 204
Government Furnished Equipment, Services, and Material
 (GFE), 215
Government-Off-The-Shelf (GOTS), 162
Graphical languages/tools, 26, 62, 66, 164. See also Systems
 Modeling Language (SysML); Unified Modeling
 Language (UML)
Grove, Andy, 340
Gruhl, Werner, 90–91
Hall, Rob, 241
Hallucinator, 323
Hardware/software. See also Software:
 erroneous separation of (Figure 7.7), 106
 low-risk solutions, 162–163
Hardware Model Shop Development, 140
Harley Davidson, 372
Harris, Sydney, 56
Harry, Mikel, 252
Hazard analysis, 235
Headcount:
 report (Figure 16.7), 301
 variance, 287
Heating system example, 149, 152, 153, 158
Heinlein, Robert A., 279
Hersey situational leadership model (Figure 18.3), 328
Herzberg, Frederick, 326–327
Hidden enemies, 51, 387–390
Historical templates, generalized, 236
Home building/remodeling, 127–128, 147, 158
House of Quality (quality function deployment, QFD),
 140–141, 155–156, 429, 432
Hubble Telescope, 159, 234, 312, 366
Hyundai, 76, 339–340
Iacocca, Lee, 234
IBM, 376, 382
-ilities verification, 375
Implementation:
 context of, 149
 computer-based tools, 219
 cycle, 30
 planning, 198–200
Implementation Period, 94–95, 99
 Source Selection Phase, 94
 System Development Phase, 94
 Verification Phase, 94–95
Incremental development, 117, 118, 358, 364, 407–408, 429
Informal testing, 160
Informational meetings, 284, 285, 286
Information center, project, 80
Ingersoll-Rand air grinder, 127
Inspection, 367
Institute of Electrical and Electronics Engineers (IEEE), 15, 405
Institute of Industrial Engineers (IIE), 15
Insurance, earthquake, 223
Integrated model, 19–33, 35–36
 modeling integration of project management and systems
 engineering, 19–20
 purposes of the model, 20
 validation criteria, 20
 visualizing relationship among five essentials, 22–24
 Wheel and Axle Model, elaboration of, 25–31
Integrated project teams and product teams, 176–178

Integration, verification, and validation (IV&V), 359, 361–380
anomaly management, 379–380
definitions, 361
integration, 362–366
risk and, 366
validation, 376–378
verification, 366–375
Integration, verification, and validation (IV&V), 359, 361–380
anomaly management, 379–380
definitions, 361
integration, 362–366
risk and, 366
validation, 376–378
verification, 366–375
Integrity, system, 266, 433
Intel Corporation, 326, 340, 382–383
International Council on Systems Engineering (INCOSE), 15, 16, 20, 403–404
Certified Systems Engineering Professional (CSEP) certification program, 16
current development, 25, 46, 387
INCOSE Systems Engineering Handbook, 16, 36
Object Oriented Systems Engineering Methodology (OOSEM), 165, 410–411, 414
overview table, 404
web site, 164
International Organization for Standardization (ISO), 15, 86, 87, 135, 269, 391, 406
International Project Management Association (IPMA), 15
Internet, 141, 290, 313
web site for templates/forms, 401–402
Interpersonal management role, 284
Interpersonal Relations Model, 334–335
Interpersonal traits, 330–331
Intuition, 399
Iridium Corporation, 3, 376
ISO 9000, 391. See also International Organization for Standardization (ISO)

Johnson, Kelly, 126, 382
Jung, Carl, 181, 336

Kendrick, Tom, 232–233, 237
Kepner-Tregoe Decision Analysis Methodology, 154–155, 186
Kerzner, Harold, 187
Kidd, Callium, 269
Kile, Ray, 415, 421
Kinder, Gary, 19, 385–386
Kohn, Alfie, 327

Language/vocabulary, 62–68. See also Communication, project (one of five essentials)
Larman, Craig, 112, 352
Leadership. See Project leadership
Learning organizations, 41, 264
Legal/ethical issues, 74–76
Lessons learned, 13, 14, 41–42, 236, 368–369
Lewis, C. S., 85
Life cycle. See Project cycle (one of five essentials)
Life testing, 160, 373
Lighthouse anecdote, 324
Linear development, 117, 118, 200, 358, 430
Listening, 56–57
Locke, John, 138
Lockheed, 126, 131, 167, 168, 382, 383
Logical integration, 364
Love Canal, 96
Lowest-configuration item (LCI), 102, 109, 342, 344, 345, 430
Lowest replaceable unit (LRU), 104, 342

Macro level of project management, 225
Malinowski, Len, 69
Management:
executive, role of, 39–40
executive management review, 288
versus leadership, 320
proactive, versus lip service, 39–40
styles, 79 (see also Project leadership, styles)
Management by objectives (MBOs), 193, 262–263, 273, 326
Management-by-walking-(or wandering)-around (MBWA), 56, 133, 281–282
Management elements, ten, 22, 31–33, 129–134. See also specific element:
corrective action, 32, 133, 312–318
opportunities and risks, 32, 132, 223–253
organization options, 32, 33, 131, 167–180
project control, 32, 132–133, 254–277
project leadership, 32, 133–134, 319–337
project planning, 32, 131–132, 196–222
project requirements, 32, 130–131, 137–166
project status, 32, 133, 292–311
project team, 32, 131, 181–195
project visibility, 32, 33, 133, 278–291
Management Methods Survey (Figure 21.3), 389
Management/project information center, 80
Management surveys, 263–264, 389, 390
Manager. See Project manager
Margin, qualification testing with, 160
Margin management, 295–298
Marketplace dynamics, 4–5, 192–193
Maslow’s needs hierarchy, 330
Material shortage list (Figure 16.6), 301
Matrix organization, 169
collocated, 174–176
conventional, 172–174, 176
management operations, 179, 180
typical (Figure 4.3), 44
Maturity Levels, 392, 425–426. See also Capability Maturity Model Integrated (CMMI)
McGregor, Douglas, 323–324
Mean time between failure (MTBF), 373
Measurement units, 368
Mechanical integration, 363
Meetings, 58, 77–78, 254–258, 326
Micromanagement, 263–265
Microsoft, 33, 87, 107, 141, 164, 252, 293, 356
Milestone reports (Figures 16.3, 16.4), 299
Military resource deployment, 173
Miller, Henry, 167, 320
Mission Compromised, 379

Model(s):
definitions, 11, 430–431
feasibility, hardware/software, 430
five essentials, 19–33
integrated, 19–33, 35–36
mastering complex systems with, 1–2
project and systems engineering, 19–20
purposes, 20
validation criteria, 20
visualizing relationship among five essentials, 22–24

Spiral (see Spiral Model)
Vee (see Vee Model)
visualizing the project environment, 8–18
Waterfall (see Waterfall Model)
Wheel and Axle (see Wheel and Axle Model)

Modeling language. See Systems Modeling Language (SysML)
Monte Carlo methods, 209, 236–237, 419, 431

Motivation:
factors, positive/negative (motivational/maintenance), 327
process improvement and, 392
techniques of project leadership, 322–333
coaching, 327
creating the environment, 323–327
delegation, 327
interpersonal traits, 330–331
reinforcement, 331
rewarding achievement, 332–333
setting example, 331–332
supervision maturity, 327–333
training, 333
vision, 322–323

Mt. Everest expedition (1996), 241
Mulcahy, Rita, 230, 233
Murray, James, 65
Musts/wants (exercise), 166
Myers-Briggs model, 336

N² diagram, 362–363, 431

NASA:
Apollo 13 disaster, 113
cycle, 86, 87
“faster, better, cheaper,” 100
Lewis spacecraft, 354
Mars Climate Orbiter, 276
Mars Pathfinder, 297, 384
Microrover System, 297, 298
Space Shuttle, 48, 51, 57–58, 60–61, 65, 74, 90–91, 113, 234, 281, 312, 390
space station, 96, 101
Study Period as percent of development cost (Figure 7.5), 91
technology insertion projects, 126
NDI (Nondevelopment Items), 162, 247–252. See also COTS (Commercial-Off-The-Shelf) products
Needs analysis, 412–413
Negative personal biases, 51
Network, project, 22, 126, 200, 208–214
Nietzsche, Friedrich, 57
Nit Management, 264
Nondevelopment-Items (NDIs), 162, 247–252
Nth article testing, 160

Oakland-San Francisco Bay Bridge, 89, 92
Objectives/process/drivers, overview (Figure 12.3), 199
Object Management Group (OMG), 141, 165–166, 410. See also Unified Modeling Language (UML)
Object Oriented (OO) approach, 410
Object Oriented Systems Engineering Methodology (OOSEM), 165, 410–411, 414
Off-core studies, 110, 243
Oliver, David, 164–165, 410
Olympics, 122
One-time anomalies or failures, 370, 380
Operations, artifacts’ role in, 360
Operations Period, 96–99
Opportunities/risks, 16–18, 32, 132, 223–253
agility and, 353
causative and preventive actions, 238–239
contingent actions, 238–239
Eight Phase Estimating Process, Risk Analysis Phase, 419–420
identification of risks, 223, 230–236
integration/verification, and risk philosophy, 366
levels (macro/tactical), 225–226
management of opportunity and risk actions (Figure 13.6), 238
objectives:
opportunity management (Figure 13.1), 228
risk management (Figure 13.2), 229
paradigm shift (gradual) in risk management, 223
planning, 200, 239–240
probability/impact assessment, 236–239
product risk areas, 233–234
project cycle and, 240–247
project-value-driven opportunity and risk management, 226–230
Opportunities/risks (Continued)
requirements management and risk philosophy, 150–151
risk decision, 151, 240
solution, risks of/to/by the, 233–234
strategies:
for negative risks (avoid, transfer, mitigate), 239
for positive risks (exploit/share/enhance), 239
Orchestra/musicians metaphor, 1–2, 20, 21, 26, 71, 181
Øresund Bridge-Tunnel project, 93, 101
Organization, defined, 168
Organizational commitment (one of five essentials), 21,
25–26, 37–47
career paths, 40–41
culture, 25, 38–42
effective management role, 39–40
interpersonal relationships, 25
learning organizations, getting to the ultimate “why,” 41
lessons learned, 41–42
project environment, 42–44
project resources, 45–47
staffing, 42
team behavior, 25
in Wheel and Axle Model (Figure 3.3), 24
Organizational isolation, 61
Organizational position, and leadership, 321–322
Organization options, 33, 131, 167–180
functional, 169–171, 176
guidelines for simple projects and subprojects, 176
integrated project teams and integrated product teams, 176–178
matrix, 169
collocated, 174–176
conventional, 172–174, 176
management operations, 179, 180
typical (Figure 4.3), 44
project, pure, 171–172, 176, 177
strengths/weaknesses of common structures, 170, 171,
172, 174, 175
symptoms of inappropriate organization, 178
systems engineer and, 179
Ouchi, William, 324
Outsourcing, 191
institutionalizing best practices, 387
mapping CMMI to the five essentials, 396
motivation, 392
overcoming “band-aid” approach, 393–394
payoff, 18
planning, improving accuracy of, 385, 386–387
process improvement, 390–398
schedule performance, 381–382
sustaining, 387–390, 396–397, 399
technical performance, 381
Performance measurement systems, 302–304. See also
Earned value
Periods. See Project cycle (one of five essentials)
Personal behaviors and communication styles, 51
Personnel schedules, 208
PERT, 29, 208–209, 215, 416
Phases. See Estimating, Eight Phase Process; Project cycle
(one of five essentials)
Planning. See Project planning
Plan-violator meetings, 287
PMBOK Guide (Project Management Institute’s A Guide
to the Project Management Body of Knowledge), 2, 12, 20, 36, 404
PMI. See Project Management Institute (PMI)
PMP. See Project Management Professional (PMP)
Polling techniques, 57–58
Post-It Notes, 376
Precedence Diagramming Method (PDM), 211
Preliminary Design Reviews (PDRs), 66–67, 97, 111, 113,
114, 348
Previously Developed Products, 162
Pricing, 215–219
Prioritization, 149
Proactive style:
control, 32, 260, 277
glance management, 55–56
management, 39–40, 334
prioritization, 149
Probability, assessing, 236–239
Problem solving and commitment (Figure 12.4), 201
Process:
as freedom, 339
improvement, 390–398
Product(s):
assets, 395
planning, 200
Project Product List Fact Sheets (PPLFS), 202, 204, 432
Project Products List (PPL), 202, 203, 432
Product Breakdown Structure (PBS), 157, 158, 362–364
Production Phase, 96
Productivity improvement, 18
Professional societies, 15, 403–405
Project(s):
evolution, typical, 42–43
facilities, 123
failure, causes of, 41–42, 70–71, 123, 325–326
production, 122
research and development, 123
“suicide run,” 5–6
system development, 122
system integration, 122
tree analogy, 43–44

<table>
<thead>
<tr>
<th>Types</th>
<th>122–123</th>
</tr>
</thead>
</table>

Project business management, 390, 432

Project control, 32, 132–133, 254–277

correction management and change control, 265–271

corrective action closing the control loop
(Figure 17.1), 314

decision gates, conduct/resolution of, 276–277

defined, 255

elements common to all control systems, 255–256

<table>
<thead>
<tr>
<th>Level of</th>
<th>259–261</th>
</tr>
</thead>
<tbody>
<tr>
<td>proactive/reactive, 32, 260, 277</td>
<td></td>
</tr>
</tbody>
</table>

process control, 255–258

requirements, 260

resistance to control systems, reasons for, 259

self-control, 262

techniques, 261–265

<table>
<thead>
<tr>
<th>Quality</th>
<th>271–273</th>
</tr>
</thead>
</table>

technical, 261, 274–276

variance control (Figure 14.2), 257, 258

Project coordinators, 289

Project cycle (one of five essentials), 22, 28–31, 84–128

<table>
<thead>
<tr>
<th>Amusement park exhibits and rides (Figure 7.3)</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspects, 30–31, 99–102</td>
<td></td>
</tr>
<tr>
<td>as axle (Figure 3.2), 23, 24</td>
<td></td>
</tr>
<tr>
<td>baseline management, 120–121</td>
<td></td>
</tr>
<tr>
<td>baseline template, 91</td>
<td></td>
</tr>
<tr>
<td>budget aspect, 30, 31, 99, 101–102, 115–116</td>
<td></td>
</tr>
<tr>
<td>decision gates, importance of, 96–98</td>
<td></td>
</tr>
<tr>
<td>defined, 22, 85</td>
<td></td>
</tr>
<tr>
<td>format, 29, 85</td>
<td></td>
</tr>
<tr>
<td>graph (Figure 3.4), 28</td>
<td></td>
</tr>
<tr>
<td>names for, 30</td>
<td></td>
</tr>
<tr>
<td>network and (Figure 7.16), 126</td>
<td></td>
</tr>
</tbody>
</table>

opportunities/risks and, 240–247

Period 1: Study Period, 89–93, 99
Acquisition Preparation Phase, 93
Concept Definition Phase, 92–93
expenditure profile, typical (Figure 7.4), committed versus spent, 90
System Specification Definition Phase, 93
User Requirements Definition Phase, 92

<table>
<thead>
<tr>
<th>Period 2: Implementation Period, 94–95, 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Selection Phase, 94</td>
</tr>
<tr>
<td>System Development Phase, 94</td>
</tr>
<tr>
<td>Verification Phase, 94–95</td>
</tr>
</tbody>
</table>

shortening, 125–127
tailoring (steps/techniques), 122–125
technical aspect, 99, 102–108
development tactics, 116–119
modeling, 104–108
systems engineering and, 102–104
technology insertion, 119–120
templates (Figure 7.2), 87
in Wheel and Axle Model (Figure 3.3), 24

Project Estimate Phase, Eight Phase Estimating Process, 418–419

Project Information Center, 80, 282–283

Project leadership, 24, 133–134, 185, 290–291, 319–337

<table>
<thead>
<tr>
<th>Influence categories</th>
<th>321</th>
</tr>
</thead>
<tbody>
<tr>
<td>management versus leadership, 320</td>
<td></td>
</tr>
</tbody>
</table>

motivational techniques, 322–333

principles (Useem), 319

project manager, 185 (see also Project manager)

right-brain activity, 320

styles, 329, 333–337

visibility and, 290–291

vision and, 320–323

Project management. See also Project manager:

<table>
<thead>
<tr>
<th>Adversarial</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined, 6</td>
<td></td>
</tr>
</tbody>
</table>

macro level, 225

survey on perception of importance of, 390

systems engineering, interdependency with, 6–7

Project Management Institute (PMI), 15, 16, 403, 404

certification, 16, 41, 404

Organizational Project Management Maturity Model (OPM3), 387

overview table, 404

Project Management Body Of Knowledge (PMBOK Guide), 2, 12, 20, 36, 404

Project Management Professional (PMP), 16, 41, 404

Project manager:

<table>
<thead>
<tr>
<th>Accountability</th>
<th>184</th>
</tr>
</thead>
</table>

authority, 46–47, 183–184, 187–189

as buyer of services provided by support managers, 195

competency model (Table 11.1), 185, 186

leadership, and personal factors, 321

operating style, 334

organization options and, 168–169

professional certification of, 16

responsibilities, 77, 168–169, 183–184

selecting, 185–187

technique versus styles, 334

weekly review, 287–288

Project network, 22, 126, 200, 208–214

Project office triad, 190

Project opportunity cycle, 30

Project organization, pure, 171–172. See also Organization options
Project performance. See Performance improvement
Project planning, 131–132, 196–222
commitments, 200
configuration management process improvement
template, 395
dashboard, WBS tasks and, 207–208
defined, 196
deliverables, determining, 202
development strategy and tactics, 200
elements/process/techniques (Table 12.1), 200
estimating, costing, pricing, 215–219
e Exercise (WBS for aircraft turnaround project), 220–222
implementation, 198–200
improving, 386–387
network/schedules, developing, 200, 208–214
opportunity/risk tactics, 200, 239–240
overview, objectives/process/drivers (Figure 12.3), 199
payoff, 218
process, 199–202
products, 200
resources, 200, 214–215
schedules, 200, 208–214
statusing and, 197
survey on perceived importance of, 390
tasks, 200, 202–207 (see also Work Breakdown Structure
(WBS))
teamwork, 78
total project plan consisting of multiple plans (Figure
12.1), 197
updating/maintaining the plan, 219
Project Product List Fact Sheets (PPLFS), 202, 204, 432
Project Products List (PPL), 202, 203, 432
Project requirements, 32, 130–131, 137–166
accountability, 161
artifacts, 395
chain of requirements baselines, 141–142
as critical issue, 3–7
Decomposition Analysis and Resolution (DAR), 109,
110–114, 144–159
derived, 151
potential for low-risk hardware and software solutions,
162–163
requirements management, 3–7, 142–143
chain of requirements baselines (Figure 9.2), 142
complexity, 143, 144
defined, 7
importance of, 3–7
intersection of project management and systems
engineering, 6–7
marketplace dynamics demanding
responsiveness/agility, 4–5
project cycle and, 142–143
project management and, 5–7
project success and, 5
requirements change and compliance management
(Figure 9.2), 142
requirements change environment (Figure 9.3), 143
tools, 163–164
requirements modeling language, 164–166 (see also
Systems Modeling Language (SysML))
simultaneous discovery (requirements/solutions), 140
system solutions and, 143–146
terminology/definitions, 65, 433
to-be-determined and to-be-resolved, 161–162
traceability, 161, 368, 390, 433
users/developers converging, 140–141
Vee Model and, 143–146
verification analysis and resolution (VAR) process, 144,
147, 159–160
Project status, 32, 133, 292–311
agenda checklist (Figure 16.1), 296
business, 293–294
Configuration Item Status Report (Figure 16.5), 300
cost, 294
determining, 298–301
earned value and planning, 305–308
evaluating, 295
headcount variance report (Figure 16.7), 301
Material Shortage list (Figure 16.6), 301
meetings, 395
milestone reports, 299
performance measurement systems, 302–304
report example (Figure 16.15), 311
reviews, major, 294–295
schedule, 294
technical, 293–294, 295–298
terminology, 26–27, 197, 313
Top Ten Problem Summary (Figure 16.8), 302
trend interpretation, 308–311
Project/system integrity, 266, 433
Project team, 32, 131, 181–195. See also Teamwork (one
of five essentials)
attributes and competencies, 182–183
chartering the project, 187–189
concurrent engineering, importance of, 191–192
managing major interfaces and interrelationships, 192–194
matrix functions chart (Figure 11.5), 193
project manager (see Project manager)
staffing, 189–191
business manager, 190–191
project office triad (Figure 11.3), 190
systems engineer/technical manager, 189–190
Project visibility, 33, 133, 278–291
decomposition (Figure 15.1), 279
glance management, 250–252
leadership and, 290–291
meetings, 284–288 (see also Meetings)
Project Information Center, 282–283
techniques for enhancing, 288–290
Tiger Teams, 283–284 (see also Tiger Teams)
tools/devices, 290
Project Work Authorizing Agreements (PWAA), 194, 198,
 200, 218–219, 262–263, 271

Qualification, 65, 160, 373, 432
Quality as process, 374
Quality assurance (QA), 74, 271–272
Quality controls and techniques, 271–273
Quality function deployment (QFD), 140–141, 155–156, 432
Quality verification, 372, 374. See also Verification
Quebin, Nido, 381

Recycling considerations, 96
Redline limits, 368
Red Teams, 51, 60, 70, 390, 432
Regulatory bodies and standards organizations, 406–408. See also
 Electronics Industries Alliance (EIA);
 International Organization for Standardization (ISO);
 U.S. Department of Defense (DoD)
Reinforcement, 81, 331
Relationship behavior, 328
Reliability testing/verification, 160, 373
Replication and repair (artifact role), 360
Request for Proposals (RFPs), 42, 64, 204
Requirements. See Project requirements
Requirements Traceability and Verification Matrix (RTVM),
 161, 368, 433
Resources, project, 45–47
 leveling and optimization, 213–214
 planning, 200, 214–215, 217
Respect, 72–73
Responsibility. See also Accountability; Authority:
 confusion of, 178
 matrix (Figure 12.17), 215, 217
 team, 184
REVIC parametric cost estimating model, 415
Review(s):
 artifacts, 395
customer, 288
design, 97, 111, 113, 114, 348, 351, 390, 431
executive management, 288
expert, 275–276
failure review boards, 276
meetings, 288
peer, 60, 251, 275–276
Red Team, 60
status, 294–295
System Concept Review, 67
Systems Requirements Review (SRR), 98
test readiness, 369
Tiger Team, 316
weekly, project manager’s, 287–288
Rewards/penalties, 76, 81, 321, 332–333
Right-brain activity (leadership), 320
Risk(s):
 management (see Opportunities/risks)
 project types characterized by, 123
Risk Analysis Phase, Eight Phase Estimating Process,
 419–420
Role biases, 73
Roles, clarifying, 194. See also Responsibility
Royce, Winston W., 106
Rusk, Dean, 57
Ruskin, John, 278
Sales channels as stakeholders, 15
Sales/Support Phase, 95, 96
San Francisco Bay Bridge, 89, 92, 149
Scenario planning, 235–236
Schedule(s):
 compression/expansion effects (Figure 12.15), 214
 control, guidelines for, 261
 corrective action, 315–316, 318
 performance, 381–382
 planning, 200, 208–214
 status determination, 294, 298–301, 309
 variances/overruns, 306, 315–316, 318
Schedule Performance Index (SPI), 309, 310
Scope, 65, 433
Scorpion submarine, 234, 312–313
SEI-CMMI. See Capability Maturity Model Integrated
 (CMMI)
Self-control, 262
Selling leadership style, 329
Sensitivity analysis, 154
Shaw, George Bernard, 48
Shedd, William, 223
Shelfware, 361–362, 376
Shimano American Corporation, 313
Ship building industry, 157
Ship of Gold in the Deep Blue Sea (Kinder), 19, 385–386
Silos, 61
Situational tools/techniques. See Management elements, ten
Six Sigma, 135, 391, 433
Size Baseline Phase, Eight Phase Estimating Process, 416
Size of project, and success/failure, 123
Skunk works, 126, 131, 167, 382, 383, 433
SMCR (source/message/channel/receiver) model, 49, 50, 51
Smoothing, 330
Software:
 brittleness, 373
control, 273, 274–275
Software (Continued)
development, cost and estimating process, 386–387
erroneous separation from hardware events (Figure 7.7), 106
fault tolerance, 373
quality verification, 374
tools, 417 (see also Computer aids/tools)
Software Capability Maturity Model (SW-CMM), 16, 405
Software Engineering Institute (SEI), 15, 16, 403, 404, 405, 406. See also Capability Maturity Model Integrated (CMMI)
Software Quality Assurance (SQA), 273
Solar radiation and stock prices (Figure 16.9c), 303
Solution(s):
entity, 341–352
initiation (Figure 7.13a), 117
risks by, 234
risks of, 233–234
risks to, 233
space shrinking to trade space (Figure 2.5), 12, 13
system, 9, 143–146
Solution trade space, 10–12
Source Selection Phase (Implementation Period, project cycle), 94
Space shuttle. See NASA
Specification owner, roles (Figure 20.9), 379
Spiral development approach, 95, 407–408, 433
Spiral Model, 108, 354, 355, 433
annotated (Figure 13.10), 245
complexity chapter, 354, 355–356
Figure 7.9, 108
overlaid on the Vee (Figure 13.11), 246
project cycle and, 107–108
risk and, 245, 246–248, 348, 355
Vee versus, 348 (see also Vee Model)
Staffing, 189–191
Staged representation, 423, 425–426
Stakeholder(s):
defined, 433
diverging interests of, 6–7
identifying, 12–15
influence, and concurrent engineering, 192
teamwork among, 27–28
types, 14–15
Standards:
professional environment, 403–405
project environment boundaries (Figures 2.4, 2.5), 13, 14
regulatory bodies and standards organizations, 406–408
Star Wars initiative, 243
Status/statusing (terminology), 26–27, 197, 313. See also Project status
Stillman, Rona, 106
Stovepipes, 61
Structure. See Organization options; Work Breakdown Structure (WBS)
Study Period, 89–93, 99
Styles, leadership, 329, 333–337
Subcontractors, 168, 191, 199, 218
“Suicide run,” 5–6
Superior team development inventory (STDI), 82
Supervision maturity, 327–333
Suppliers, 379
Support, pure, 170, 171
Surveys:
management, 263–264, 389, 390
users, 148
SysML. See Systems Modeling Language (SysML)
System concept of operations (CONOPS). See Concept of operations (CONOPS)
System Concept Review, 67
System Development Phase, 94
System integrity, 266, 433
Systems engineering, 6–7
certification (CSEP), 16, 41
defined, 6–7
versus design engineering, 103
failures, examples, 103
integration with project management and process, 18
organization options and, 179
staffing (systems engineer/technical manager), 189–190
survey results, 390
technical aspect, importance to, 102–104
Systems Engineering Capability Model, 404. See also Capability Maturity Model Integrated (CMMI)
Systems Engineering Domain Special Interest Group (SE DSIG/SEDESIG), 166, 411–412
Systems Engineering Modeling Language. See Systems Modeling Language (SysML)
Systems Engineering Society of Australia (SESA), 15
System solutions, 9, 143–146
System Specification Definition Phase, Study Period, 93
Systems Requirements Review (SRR), 98
Systems thinking, 8–10, 398
Tailoring the project cycle, 122–125. See also Project cycle (one of five essentials)
Task behavior, 328
Task descriptions, 207
Task planning, 200, 202–209, 212, 307–308
Task Responsibility Matrix (Figure 12.17), 215, 217
Taur, Roger, 3
Taylor, Chris, 95
Teamwork (one of five essentials), 21, 69–83. See also Project team
celebrations/events, 80–81
code of conduct, 74–76
decision process/style, 78–80
definitions, 20–21
failure, reasons for, 70–71
fundamentals of effective environment for, 71–77
goals, 72
indicators, positive/negative, 81–82
kick-off meeting, 77–78
orchestra/musicians metaphor, 1–2, 20, 21, 26, 71, 181
planning and problem solving, 78
project information center, 80
reinforcement, 81
rewarding achievement, 76, 80, 332–333
steps (three) for achieving, 70
techniques for building/sustaining, 77–88
training, 81
underperformers, 80
in Wheel and Axle Model (Figure 3.3), 24
for COTS and NDI components (Figure 13.13), 248
defined, 434
circular model (Figure 7.6), 105
Spiral Model, 107, 108, 354, 355–356 (see also Spiral Model)
Vee Models, 108–116, 354 (see also Vee Model)
Waterfall Model, 106, 107, 354, 355–356
off-core opportunity and risk investigations (Figure 13.9), 244
systems engineering and, 102–104
technology insertion, 119–120
technical baselines, 121, 267, 268
technical controls, 261, 274–276
See also Development methods
Technical Performance Measurements (TPMs), 133, 295, 297, 381
technical shortcomings, corrective actions, 316
technical status, 293–294, 295–298
technology:
insertion (project cycle), 119–120
language and trend toward emerging specialties, 26, 63
visibility, 290
telecommuting, 168
templates/forms, web site for, 401–402
ten management elements.
See Management elements, ten
terminology baseline/database, 64, 65
testing, 367–368
test readiness review, 369
thamhain, Hans, 321
thiory X/Y/Z, 323–325
therac-25 project, 250–252
thompson, Tommy, 386
threaded appropriate, 359, 364, 365
tiger teams, 70, 283–284, 316, 318
time, fast cycle, 125–127
time-of incentives, 332
time-phased networks, 211.
See also Network, project
time-phased resource requirements, 215
to be determined (TBD), 161–162
to be resolved (TBR), 161–162
tools/devices, 26, 46, 163–164, 219, 290
toothbrush, technical project cycle tailored for (Figure 7.15), 122
top-down incremental integration approach, 364, 365
top ten problem List, 288–289, 302
total quality management (TQM), 272–273
toys, hazards in, 313
traceability, requirements, 161, 368, 390, 417, 433
trade-off area, 9
trade-off studies, 10–12
trade space, 9
training, 81, 333, 388, 417
tree analogy, 43–44
trend interpretation, 308–311
tufte, Edward R., 304
typewriter/word processor, 138–139
underperformers, 80
unified development, 112, 434
unified modeling language (UML), 26, 62, 66, 164–165, 352, 409–414, 434
unified process, 112
unilateral decision making, 79
universities, and business/engineering, 16–17
U.S. department of defense (DoD):
aprival elements, project spans for (Figure 21.1), 383
chartering SEI-CMM, 393, 421
defense acquisition system directive, 407
project cycle, 86, 87, 88, 105
standards, 15, 105, 204, 384, 406–408
useem, Michael, 319, 320
user(s):
developers converging with, 140–141
reliance on wrong ones, 139
types of, 378
user concept of operations.
See Concept of operations (CONOPS)
user requirements definition phase, 92, 242, 244
user requirements document (URD), 141
validation:
criteria for integrated project management model, 20
definitions, 64, 114, 434
in-process, 352–354, 377
versus verification, 114 (see also Verification)
value-added tax (vat), 101
vaporware, 388
Variance(s):
control, 257, 258
corrective actions for, 312–314
cost, 306
headcount, 287, 301
indication, 256
performance measurement systems quantifying seriousness of, 302–304
schedule, 306
Vee Model, 108–116, 143–160
agile development practicing in-process validation, 352–354
Architecture, 109, 145, 341, 342
business and budget aspects and, 115–116
COTS and NDI and (Figure 13.12), 247
Decomposition Analysis and Resolution (DAR), 109, 110–114, 144, 146–159
Dual, 349, 350, 355, 434
technical aspect of project cycle and, 108–116
Verification Analysis and Resolution (VAR) process, 144, 145, 147, 159–160
Velocity/adaptability, 352
Vendors, 191
Verification, 366–375
analysis method, 367
artifacts’ role in, 360
certification, 375, 376
demonstration method, 367
design, 370–371
design margin (qualification), 371–373
-ilities, 375
inspection, 367
lessons learned from past experience, 368–369
methods, 367
qualification certification, 373
qualification testing, 160
quality, 374
testing, 160, 367–368
acceptance, 160, 372
engineering, 160
environmental, 160
first article, 160
formal/informal, 160
life, 160, 373
Nth article, 160
qualification, 160
reliability, 160, 373
validation versus, 63
Verification Analysis and Resolution (VAR) process, 144, 145, 147, 159–160
Verification Phase, Implementation Period, 94–95
Virtual teams, 168
Visibility. See Project visibility
Vision, 320–323
Vocabulary, 26–27, 35. See also Communication, project (one of five essentials)
Wall displays, 289
Walt Disney Imagineering, 88
Figure 7.8, 107
Weighted evaluation/scoring, 149–155, 237, 317
Welch, Jack, 59
Wetware, 210
Wheel and Axle Model, 19–33
axle (Figure 3.2), 24 (see also Project cycle (one of five essentials))
base and wheel and axle (Figure 3.3), 24 (see also Essentials of project management, five)
elaboration of, 25–31
spokes (Figure 3.1), 23 (see also Management elements, ten)
Wilson Learning Corporation, 321, 334–335
Windows, evolution of, 356
Withdrawal (denial/retreating), 330
Womach, James, 38
Work authorizing agreements, 193, 207. See also Project Work Authorizing Agreements (PWAAs)
Work Breakdown Structure (WBS), 22, 191, 202–214, 216, 263, 364, 415
Work packages, 207
Wright Brothers, 137–138
Yourdon, Edward, 393