Contents

List of Figures ... xiii
List of Tables ... xvi
List of Examples ... xxi
Foreword ... xxv
Preface to Volume IV xxix

IV.1 Value at Risk and Other Risk Metrics 1
 IV.1.1 Introduction 1
 IV.1.2 An Overview of Market Risk Assessment 4
 IV.1.2.1 Risk Measurement in Banks 4
 IV.1.2.2 Risk Measurement in Portfolio Management ... 6
 IV.1.2.3 Risk Measurement in Large Corporations ... 7
 IV.1.3 Downside and Quantile Risk Metrics 9
 IV.1.3.1 Semi-Standard Deviation and Second Order Lower Partial Moment 9
 IV.1.3.2 Other Lower Partial Moments 10
 IV.1.3.3 Quantile Risk Metrics 11
 IV.1.4 Defining Value at Risk 13
 IV.1.4.1 Confidence Level and Risk Horizon 13
 IV.1.4.2 Discounted P&L 15
 IV.1.4.3 Mathematical Definition of VaR 15
 IV.1.5 Foundations of Value-at-Risk Measurement 17
 IV.1.5.1 Normal Linear VaR Formula: Portfolio Level 18
 IV.1.5.2 Static Portfolios 20
 IV.1.5.3 Scaling VaR 21
 IV.1.5.4 Discounting and the Expected Return 23
 IV.1.6 Risk Factor Value at Risk 25
 IV.1.6.1 Motivation 26
 IV.1.6.2 Normal Linear Equity VaR 27
 IV.1.6.3 Normal Linear Interest Rate VaR 29
IV.1.7 Decomposition of Value at Risk
 IV.1.7.1 Systematic and Specific VaR
 IV.1.7.2 Stand-alone VaR
 IV.1.7.3 Marginal and Incremental VaR
IV.1.8 Risk Metrics Associated with Value at Risk
 IV.1.8.1 Benchmark VaR
 IV.1.8.2 Conditional VaR: Expected Tail Loss and Expected Shortfall
 IV.1.8.3 Coherent Risk Metrics
IV.1.9 Introduction to Value-at-Risk Models
 IV.1.9.1 Normal Linear VaR
 IV.1.9.2 Historical Simulation
 IV.1.9.3 Monte Carlo Simulation
 IV.1.9.4 Case Study: VaR of the S&P 500 Index
IV.1.10 Summary and Conclusions

IV.2 Parametric Linear VaR Models
IV.2.1 Introduction
IV.2.2 Foundations of Normal Linear Value at Risk
 IV.2.2.1 Understanding the Normal Linear VaR Formula
 IV.2.2.2 Analytic Formula for Normal VaR when Returns are Autocorrelated
 IV.2.2.3 Systematic Normal Linear VaR
 IV.2.2.4 Stand-Alone Normal Linear VaR
 IV.2.2.5 Marginal and Incremental Normal Linear VaR
IV.2.3 Normal Linear Value at Risk for Cash-Flow Maps
 IV.2.3.1 Normal Linear Interest Rate VaR
 IV.2.3.2 Calculating PV01
 IV.2.3.3 Approximating Marginal and Incremental VaR
 IV.2.3.4 Disaggregating Normal Linear Interest Rate VaR
 IV.2.3.5 Normal Linear Credit Spread VaR
IV.2.4 Case Study: PC Value at Risk of a UK Fixed Income Portfolio
 IV.2.4.1 Calculating the Volatility and VaR of the Portfolio
 IV.2.4.2 Combining Cash-Flow Mapping with PCA
 IV.2.4.3 Advantages of Using PC Factors for Interest Rate VaR
IV.2.5 Normal Linear Value at Risk for Stock Portfolios
 IV.2.5.1 Cash Positions on a Few Stocks
 IV.2.5.2 Systematic and Specific VaR for Domestic Stock Portfolios
 IV.2.5.3 Empirical Estimation of Specific VaR
 IV.2.5.4 EWMA Estimates of Specific VaR
IV.2.6 Systematic Value-at-Risk Decomposition for Stock Portfolios
 IV.2.6.1 Portfolios Exposed to One Foreign Currency
 IV.2.6.2 Portfolios Exposed to Several Foreign Currencies
 IV.2.6.3 Interest Rate VaR of Equity Portfolios
 IV.2.6.4 Hedging the Risks of International Equity Portfolios
IV.2.7 Case Study: Normal Linear Value at Risk for Commodity Futures
IV.2.8 Student t Distributed Linear Value at Risk
- IV.2.8.1 Effect of Leptokurtosis and Skewness on VaR 106
- IV.2.8.2 Student t Linear VaR Formula 107
- IV.2.8.3 Empirical Examples of Student t Linear VaR 109

IV.2.9 Linear Value at Risk with Mixture Distributions
- IV.2.9.1 Mixture Distributions 111
- IV.2.9.2 Mixture Linear VaR Formula 113
- IV.2.9.3 Mixture Parameter Estimation 114
- IV.2.9.4 Examples of Mixture Linear VaR 115
- IV.2.9.5 Normal Mixture Risk Factor VaR 119

IV.2.10 Exponential Weighting with Parametric Linear Value at Risk
- IV.2.10.1 Exponentially Weighted Moving Averages 121
- IV.2.10.2 EWMA VaR at the Portfolio Level 124
- IV.2.10.3 RiskMetrics™ VaR Methodology 126

IV.2.11 Expected Tail Loss (Conditional VaR)
- IV.2.11.1 ETL in the Normal Linear VaR Model 129
- IV.2.11.2 ETL in the Student t Linear VaR Model 130
- IV.2.11.3 ETL in the Normal Mixture Linear VaR Model 132
- IV.2.11.4 ETL under a Mixture of Student t Distributions 133

IV.2.12 Case Study: Credit Spread Parametric Linear Value at Risk and ETL
- IV.2.12.1 The iTraxx Europe Index 135
- IV.2.12.2 VaR Estimates 137

IV.2.13 Summary and Conclusions

IV.3 Historical Simulation
- IV.3.1 Introduction 141
- IV.3.2 Properties of Historical Value at Risk
 - IV.3.2.1 Definition of Historical VaR 144
 - IV.3.2.2 Sample Size and Data Frequency 145
 - IV.3.2.3 Power Law Scale Exponents 146
 - IV.3.2.4 Case Study: Scale Exponents for Major Risk Factors 147
 - IV.3.2.5 Scaling Historical VaR for Linear Portfolios 150
 - IV.3.2.6 Errors from Square-Root Scaling of Historical VaR 151
 - IV.3.2.7 Overlapping Data and Multi-Step Historical Simulation 151
- IV.3.3 Improving the Accuracy of Historical Value at Risk
 - IV.3.3.1 Case Study: Equally Weighted Historical and Linear VaR 153
 - IV.3.3.2 Exponential Weighting of Return Distributions 156
 - IV.3.3.3 Volatility Adjustment 158
 - IV.3.3.4 Filtered Historical Simulation 163
- IV.3.4 Precision of Historical Value at Risk at Extreme Quantiles
 - IV.3.4.1 Kernel Fitting 165
 - IV.3.4.2 Extreme Value Distributions 167
 - IV.3.4.3 Cornish–Fisher Approximation 170
 - IV.3.4.4 Johnson Distributions 172
- IV.3.5 Historical Value at Risk for Linear Portfolios
 - IV.3.5.1 Historical VaR for Cash Flows 176
 - IV.3.5.2 Total, Systematic and Specific VaR of a Stock Portfolio 179
| IV.3.5.3 | Equity and Forex VaR of an International Stock Portfolio | 185 |
| IV.3.5.4 | Interest Rate and Forex VaR of an International Bond Position | 190 |
| IV.3.5.5 | Case Study: Historical VaR for a Crack Spread Trader | 192 |
| IV.3.6 | Estimating Expected Tail Loss in the Historical Value-at-Risk Model | 195 |
| IV.3.6.1 | Parametric Historical ETL | 195 |
| IV.3.6.2 | Empirical Results on Historical ETL | 195 |
| IV.3.6.3 | Disaggregation of Historical ETL | 197 |
| IV.3.7 | Summary and Conclusions | 198 |

IV.4	Monte Carlo VaR	201
IV.4.1	Introduction	201
IV.4.2	Basic Concepts	203
IV.4.2.1	Pseudo-Random Number Generation	203
IV.4.2.2	Low Discrepancy Sequences	204
IV.4.2.3	Variance Reduction	206
IV.4.2.4	Sampling from Univariate Distributions	211
IV.4.2.5	Sampling from Multivariate Distributions	213
IV.4.2.6	Introduction to Monte Carlo VaR	213
IV.4.3	Modelling Dynamic Properties in Risk Factor Returns	215
IV.4.3.1	Multi-Step Monte Carlo	215
IV.4.3.2	Volatility Clustering and Mean Reversion	218
IV.4.3.3	Regime Switching Models	223
IV.4.4	Modelling Risk Factor Dependence	225
IV.4.4.1	Multivariate Distributions for i.i.d. Returns	226
IV.4.4.2	Principal Component Analysis	230
IV.4.4.3	Behavioural Models	232
IV.4.4.4	Case Study: Modelling the Price – Volatility Relationship	232
IV.4.5	Monte Carlo Value at Risk for Linear Portfolios	233
IV.4.5.1	Algorithms for VaR and ETL	235
IV.4.5.2	Cash-Flow Portfolios: Copula VaR and PC VaR	236
IV.4.5.3	Equity Portfolios: ‘Crash’ Scenario VaR	239
IV.4.5.4	Currency Portfolios: VaR with Volatility Clustering	241
IV.4.6	Summary and Conclusions	244

IV.5	Value at Risk for Option Portfolios	247
IV.5.1	Introduction	247
IV.5.2	Risk Characteristics of Option Portfolios	250
IV.5.2.1	Gamma Effects	250
IV.5.2.2	Delta and Vega Effects	252
IV.5.2.3	Theta and Rho Effects	253
IV.5.2.4	Static and Dynamic VaR Estimates	254
IV.5.3	Analytic Value-at-Risk Approximations	257
IV.5.3.1	Delta Approximation and Delta–Normal VaR	257
IV.5.3.2	P&L Distributions for Option Portfolios	259
IV.5.3.3	Delta–Gamma VaR	260
IV.5.4 Historical Value at Risk for Option Portfolios
 IV.5.4.1 VaR and ETL with Exact Revaluation
 IV.5.4.2 Dynamically Hedged Option Portfolios
 IV.5.4.3 Greeks Approximation
 IV.5.4.4 Historical VaR for Path-Dependent Options
 IV.5.4.5 Case Study: Historical VaR for an Energy Options Trading Book

IV.5.5 Monte Carlo Value at Risk for Option Portfolios
 IV.5.5.1 Monte Carlo VaR and ETL with Exact Revaluation
 IV.5.5.2 Risk Factor Models for Simulating Options VaR
 IV.5.5.3 Capturing Non-normality and Non-linearity
 IV.5.5.4 Capturing Gamma, Vega and Theta Effects
 IV.5.5.5 Path Dependency
 IV.5.5.6 Option Portfolios with a Single Underlying
 IV.5.5.7 Option Portfolios with Several Underlyings
 IV.5.5.8 Case Study: Monte Carlo VaR for an Energy Options Trading Book

IV.6 Risk Model Risk
 IV.6.1 Introduction
 IV.6.2 Sources of Risk Model Risk
 IV.6.2.1 Risk Factor Mapping
 IV.6.2.2 Risk Factor or Asset Returns Model
 IV.6.2.3 VaR Resolution Method
 IV.6.2.4 Scaling
 IV.6.3 Estimation Risk
 IV.6.3.1 Distribution of VaR Estimators in Parametric Linear Models
 IV.6.3.2 Distribution of VaR Estimators in Simulation Models
 IV.6.4 Model Validation
 IV.6.4.1 Backtesting Methodology
 IV.6.4.2 Guidelines for Backtesting from Banking Regulators
 IV.6.4.3 Coverage Tests
 IV.6.4.4 Backtests Based on Regression
 IV.6.4.5 Backtesting ETL Forecasts
 IV.6.4.6 Bias Statistics for Normal Linear VaR
 IV.6.4.7 Distribution Forecasts
 IV.6.4.8 Some Backtesting Results
 IV.6.5 Summary and Conclusions

IV.7 Scenario Analysis and Stress Testing
 IV.7.1 Introduction
 IV.7.2 Scenarios on Financial Risk Factors
 IV.7.2.1 Broad Categorization of Scenarios
 IV.7.2.2 Historical Scenarios
 IV.7.2.3 Hypothetical Scenarios
 IV.7.2.4 Distribution Scenario Design