Contents

Preface xvii
Contributors xxi

1 Genetic Crosses Experiments 1
Murari Singh, Sudhir Gupta, and Rajender Parsad

1.1 Introduction, 1
1.2 Basic Objectives and Models, 2
 1.2.1 Generation Mean Analysis, 4
 1.2.2 Generation Variance Analysis, 5
 1.2.3 Covariance between Relatives, 6
 1.2.4 Mating (M) and Environmental (E) Designs, 6
 1.2.5 Fixed Effects and Random Effects Models, 7
1.3 Diallel Mating Design of Type I, 8
 1.3.1 North Carolina Design I (NCI), 9
 1.3.2 North Carolina Design II (NCII), 10
 1.3.3 Sets of North Carolina Design II, 11
 1.3.4 North Carolina Design III (NCIII), 11
 1.3.5 Line × Tester Approach, 12
 1.3.6 A Modified Line × Tester Approach, 13
1.4 Diallel Crosses: Type II Designs, 14
 1.4.1 Hayman Approach for Diallel Analysis, 14
 1.4.2 Griffing’s Method, 21
1.5 Partial Diallel Crosses: No Blocking or Complete Blocks, 25
1.6 Partial Diallel Crosses in Incomplete Blocks, 32
 1.6.1 Construction of Mating–Environment Designs, 33
 1.6.2 Analysis of M–E Design, 36
1.6.3 An Example of PDC in Incomplete Blocks, 41
1.6.4 Other M–E Designs, 41

1.7 Optimality, 44
1.7.1 Optimal CDC Designs for Estimation of gca, 45
1.7.2 Optimal Partial Diallel Crosses, 53
1.7.3 Estimation of Heritability, 57

1.8 Robustness, 59

1.9 Three- or Higher-Way Crosses, 61
1.9.1 Triallel or Three-Way Crosses, 61
1.9.2 Double- or Four-Way Crosses, 63

1.10 Computation, 65
Acknowledgments, 65
References, 66

2 Design of Gene Expression Microarray Experiments
Dan Nettleton

2.1 Introduction, 73
2.2 Gene Expression Microarray Technology, 74
 2.2.1 Introduction, 74
 2.2.2 Definition of a Microarray, 74
 2.2.3 Using Microarrays to Measure Gene Expression, 74
 2.2.4 Types of Gene Expression in Microarrays, 75

2.3 Preprocessing of Microarray Fluorescence Intensities, 76
 2.3.1 Introduction, 76
 2.3.2 Background Correction, 76
 2.3.3 Normalization, 77
 2.3.4 Summarization, 78

2.4 Introduction to Gene Expression Microarray Experimental Design, 80

2.5 Two-Treatment Experiments Using Two-Color Microarrays, 81

2.6 Two-Color Microarray Experiments Involving More Than Two Treatments, 86

2.7 Multifactor Two-Color Microarray Experiments, 89
 2.7.1 Introduction, 89
 2.7.2 Admissible Designs, 89
 2.7.3 w-Optimal Designs, 92
 2.7.4 e-Efficiency, 93

2.8 Phase 2 Designs for Complex Phase 1 Designs, 94
References, 106
3 Spatial Analysis of Agricultural Field Experiments
Joanne K. Stringer, Alison B. Smith, and Brian R. Cullis

3.1 Introduction, 109
3.2 Methods to Account for Spatial Variation, 110
3.2.1 Design of Experiments, 110
3.2.2 Spatial Analysis Methods, 112
3.3 A Spatial Linear Mixed Model, 116
3.3.1 Estimation, Prediction and Testing, 118
3.3.2 The Spatial Modeling Process, 119
3.4 Analysis of Examples, 122
3.4.1 Herbicide Tolerance Trial, 122
3.4.2 Variety Trial, 126
References, 132

4 Optimal Designs for Generalized Linear Models
John Stufken and Min Yang

4.1 Introduction, 137
4.2 Notation and Basic Concepts, 141
4.2.1 Binary Data, 142
4.2.2 Count Data, 142
4.2.3 Optimality Criteria, 143
4.3 Tools for Finding Locally Optimal Designs, 145
4.3.1 Traditional Approaches, 145
4.3.2 An Analytical Approach, 146
4.4 GLMs with Two Parameters, 149
4.5 GLMs with Multiple Parameters, 155
4.5.1 GLMs with Multiple Covariates, 155
4.5.2 GLMs with Group Effects, 158
4.6 Summary and Concluding Comments, 161
Acknowledgments, 162
References, 162

5 Design and Analysis of Randomized Clinical Trials
Janet Wittes and Zi-Fan Yu

5.1 Overview, 165
5.2 Components of a Randomized Clinical Trial, 168
5.2.1 Target, or Reference, Population, 168
5.2.2 Study Population, 170
5.2.3 Outcomes, 171
5.2.4 Projected Timeline, 173
5.2.5 Choice of Control Group, 174

5.3 Bias, 175
5.3.1 Unbiased Entry Criteria and Recruitment, 175
5.3.2 Outcome Measures—Unbiased Assessment, 177
5.3.3 Once Randomized, Always Analyzed (Intent-to-Treat), 177
5.3.4 Masking Participants, Investigators, and Others, 178
5.3.5 Noncompliance and Study Dropout, 179

5.4 Statistical Analysis of Randomized Clinical Trials, 182

5.5 Failure Time Studies, 184
5.5.1 Basic Theory, 184
5.5.2 Actuarial and Product-Limit Survival Curves, 185
5.5.3 Exponential Survival, Hazard Rates, and Ratios and Proportional Hazard Ratios, 192
5.5.4 The Logrank Family of Tests, 192
5.5.5 The Cox Proportional Hazards Model, 194
5.5.6 Some Sample SAS Code, 195
5.5.7 Some Sample Splus Code, 201
5.5.8 Calculations of Number of Replications, or Sample Size, 203
5.5.9 Group Sequential Analysis, 206

5.6 Other Topics, 206
5.6.1 Multiplicity, 206
5.6.2 Subgroups, 208
5.6.3 Large, Simple Trials, 209
5.6.4 Equivalence and Noninferiority Trials, 209

References, 210

6 Monitoring Randomized Clinical Trials
Eric S. Leifer and Nancy L. Geller

6.1 Introduction, 213
6.2 Normally Distributed Outcomes, 215
6.3 Brownian Motion Properties, 217
6.4 Brief Historical Overview of Group Sequential Methods, 219
6.5 Dichotomous Outcomes, 223
6.6 Time-to-Event Outcomes, 225
6.7 Unconditional Power, 227
6.8 Conditional Power, 229
6.9 Spending Functions, 232
6.10 Flexibility and Properties of Spending Functions, 233
6.11 Modifying the Trial’s Sample Size Based on a Nuisance Parameter, 235
 6.11.1 Sample Size Modification for a Continuous Outcome Based on an Interim Variance Estimate, 236
 6.11.2 Sample Size Modification for a Dichotomous Outcome Based on an Interim Estimate of the Pooled Event Rate, 239
6.12 Sample Size Modification Based on the Interim Treatment Effect, 240
6.13 Concluding Remarks, 246
References, 246

7 Adaptive Randomization in Clinical Trials 251
Lanju Zhang and William F. Rosenberger

7.1 Introduction, 251
7.2 Adaptive Randomization Procedures, 252
 7.2.1 Restricted Randomization Procedures, 253
 7.2.2 Covariate-Adaptive Randomization, 256
 7.2.3 Response-Adaptive Randomization, 258
7.3 Likelihood-Based Inference, 264
 7.3.1 Restricted Randomization, 266
 7.3.2 Covariate-Adaptive Randomization, 266
 7.3.3 Response-Adaptive Randomization, 266
 7.3.4 Asymptotically “Best” Procedures, 268
7.4 Randomization-Based Inference, 269
 7.4.1 Randomization Tests, 269
 7.4.2 Monte Carlo Unconditional Tests, 271
 7.4.3 Monte Carlo Conditional Tests, 271
 7.4.4 Expanding the Reference Set, 273
 7.4.5 Stratified Tests, 273
 7.4.6 Regression Modeling, 274
 7.4.7 Covariate-Adaptive Randomization, 275
 7.4.8 Power, 275
7.5 Conclusions and Practical Considerations, 276
Acknowledgment, 278
References, 279
8 Search Linear Model for Identification and Discrimination
Subir Ghosh

8.1 Introduction, 283
8.2 General Linear Model with Fixed Effects, 284
8.3 Search Linear Model, 285
8.4 Applications, 288
 8.4.1 2^m Factorial Designs, 288
 8.4.2 3^m Factorial Experiments, 291
8.5 Effects of Noise in Performance Comparison, 293
References, 297

9 Minimum Aberration and Related Criteria for Fractional Factorial Designs
Hegang H. Chen and Ching-Shui Cheng

9.1 Introduction, 299
9.2 Projections of Fractional Factorial Designs, 302
9.3 Estimation Capacity, 304
9.4 Clear Two-Factor Interactions, 307
9.5 Estimation Index, 310
9.6 Estimation Index, Minimum Aberration, and Maximum Estimation Capacity, 314
9.7 Complementary Design Theory for Minimum Aberration Designs, 315
9.8 Nonregular Designs and Orthogonal Arrays, 317
9.9 Generalized Minimum Aberration, 320
9.10 Optimal Fractional Factorial Block Designs, 322
References, 326

10 Designs for Choice Experiments for the Multinomial Logit Model
Deborah J. Street and Leonie Burgess

10.1 Introduction, 331
10.2 Definitions, 332
 10.2.1 Standard Designs, 334
10.3 The MNL Model, 335
10.4 Design Comparisons, 338
 10.4.1 Optimality, 338
 10.4.2 Structural Properties, 339
10.5 Optimal Designs for DCEs, 340
 10.5.1 Generic Forced Choice DCEs, 340
 10.5.2 Extensions, 351
 10.5.3 Alternative-Specific Attributes, 362
10.6 Using Combinatorial Designs to Construct DCEs, 364
 10.6.1 OAAs and BIBDs, 364
 10.6.2 A Recursive Construction using DCEs and BIBDs, 365
 10.6.3 Using the OA Symbols as Ordered Pairs, 365
 10.6.4 Using Hadamard Matrices to Construct DCEs, 366
 10.6.5 Partial Profiles, 367
10.7 Bayesian Work, 368
10.8 Best–Worst Experiments, 368
 10.8.1 Multiattribute Best–Worst Experiments, 369
 10.8.2 Attribute-Level Best–Worst Experiments, 369
10.9 Miscellaneous Topics, 370
 10.9.1 Other Models, 370
 10.9.2 Complete Determination of Optimal Designs, 370
 10.9.3 Analyzing Results from a DCE, 370
References, 374

11 Computer Experiments 379
Max D. Morris

11.1 Introduction, 379
 11.1.1 Models, 379
 11.1.2 Some Notation, 381
 11.1.3 Computer Experiments, 381
11.2 Sensitivity/Uncertainty Analysis, 382
 11.2.1 Descriptive Methods for Local Analysis, 382
 11.2.2 Methods Based on Input Sampling and Conditional Variance, 383
 11.2.3 Fourier Amplitude Sensitivity Test, 385
11.3 Gaussian Stochastic Process Models, 385
 11.3.1 Model Structure, 386
 11.3.2 Accommodating Random Noise, 388
11.4 Inference, 389
 11.4.1 Maximum Likelihood Parameter Estimation, 389
 11.4.2 Numerical Issues, 390
 11.4.3 Bayesian Approach, 392
11.5 Experimental Designs, 398
 11.5.1 Model-Based Designs, 398
 11.5.2 Distance-Based Designs, 399
 11.5.3 Latin Hypercube Designs, 400
 11.5.4 Uniform Designs, 402
11.6 Multivariate Output, 403
 11.6.1 Extending the Univariate GaSP Model, 403
 11.6.2 Principal Components, 405
 11.6.3 Derivatives, 405
11.7 Multiple Data Sources, 406
 11.7.1 Multiple Models, 406
 11.7.2 Model and Reality, 407
11.8 Conclusion, 409
References, 409

12 Designs for Large-Scale Simulation Experiments, with Applications to Defense and Homeland Security 413
Susan M. Sanchez, Thomas W. Lucas, Paul J. Sanchez, Christopher J. Nannini, and Hong Wan

12.1 Introduction, 413
12.2 Philosophy: Evolution of Computational Experiments, 414
 12.2.1 Context, 414
 12.2.2 Why Simulation?, 415
 12.2.3 Why DOE?, 416
 12.2.4 Which DOE?, 417
 12.2.5 Implementing Large-Scale DOE, 422
12.3 Application: U.S. Army Unmanned Aerial Vehicle (UAV) Mix Study, 422
 12.3.1 Study Overview, 423
 12.3.2 Study Goals, 424
 12.3.3 Experimental Setup, 424
 12.3.4 Results, 425
 12.3.5 Descriptive Statistics, 426
 12.3.6 Interactive Regression Modeling, 427
 12.3.7 Regression Trees, 430
 12.3.8 Other Useful Plots, 434
 12.3.9 Summary, 437
12.4 Parting Thoughts, 437
References, 438
13 Robust Parameter Designs

Timothy J. Robinson and Christine M. Anderson-Cook

13.1 Introduction, 443
13.2 Taguchi Signal-to-Noise Ratio Approach, 445
13.3 Dual Model Response Surface Methodology, 448
 13.3.1 Overview, 448
 13.3.2 Designs for Dual Response Modeling, 448
 13.3.3 Analysis with Dual Response Modeling, 449
13.4 Single Model Response Surface Methods Using Combined Arrays, 451
 13.4.1 Overview, 451
 13.4.2 Combined Array Designs, 453
 13.4.3 Analysis of Combined Array RPD Experiments, 456
 13.4.4 Analysis of Combined Arrays with Multiple Responses, 460
13.5 Computer Generated Combined Arrays, 461
13.6 RPD Involving Quantitative and Qualitative Factors, 465
13.7 Conclusions, 466
References, 467

14 Split-Plot Response Surface Designs

G. Geoffrey Vining

14.1 Introduction, 471
14.2 Differences between Agricultural and Industrial Experimentation, 472
 14.2.1 Basic Differences, 472
 14.2.2 Classical Agricultural Split-Plot Design and Analysis, 474
 14.2.3 First-Order Industrial Split-Plot Design and Analysis, 477
 14.2.4 Issues for Second-Order Industrial Split-Plot Designs, 477
14.3 OLS–GLS Equivalent Second-Order Split-Plot Designs and Analysis, 482
 14.3.1 Balanced Equivalent Designs, 482
 14.3.2 Non-VKM Balanced OLS–GLS Equivalent Designs, 485
 14.3.3 Unbalanced OLS–GLS Equivalent Designs, 486
14.4 Exact Tests for the Coefficients, 488
14.5 Proper Residuals for Checking Assumptions, 493
14.6 “Optimal” Second-Order Split-Plot Designs, 496
References, 499

15 Design and Analysis of Experiments for Directional Data 501
Sango B. Otieno and Christine M. Anderson-Cook

15.1 Summary, 501
15.2 Introduction and Historical Background, 501
 15.2.1 Overview of Directional Data, 502
 15.2.2 Existing Designs for Directional Data, 508
15.3 ANOVA for Circular Data, 509
 15.3.1 One-Way ANOVA, 510
 15.3.2 Multiway ANOVA, 518
15.4 ANOVA for Cylindrical Data, 521
15.5 ANOVA for Spherical Data, 524
 15.5.1 One-Way ANOVA for Spherical Data, 525
 15.5.2 One-Way ANOVA for Axial Data, 526
 15.5.3 Multiway ANOVA for Axial Data, 528
15.6 Conclusions, 530
References, 531

Author Index 533
Subject Index 545