INDEX

Absorption spectra:
gold nanoparticles, fluorescence quenching, collagen spectra, 590–592
metal-enhanced fluorescence, spectral modification, 27–28
metallic nanoparticles, 204–205
microwave-accelerated MEF:
planar metallic surfaces, 162–165
silver island films, 166–168
multi-photon excitation, colloidal nanoparticles, 530–534
nanoaperture-enhanced fluorescence, single molecule studies, 500–501
optical biosensors, plasmonic enhancement, 141–143
plasmon enhanced radiative rates, organic electronics, 545–547
singlet oxygen generation, Rose Bengal photosensitization, 282–286
superoxide generation, 289–290
surface plasmon enhanced photochemistry, photodissociation, 266–268
Acrildan-based chemiluminescence:
microwave-triggered MEC, 443–457
ultra-fast/ultra-sensitive clinical assays, 445–448
Acrilide emission, metal-enhanced superoxide generation, 287–288
Active plasmonic model, surface plasmon grating coupled emission, 472–474
multilayer enhancement and tunability, 474–480
quantitative surfaces, pitch size effect, 480–483
Adsorption protocols:
colloidal particles, 223–224
optical fiber surface modification, 216
poly(methyl methacrylate), 216–217
Affinity sensing, sub-wavelength apertures, 520–521
Aggregate structures:
metallic nanoparticle fluorescence enhancement, 301–304
surface plasmon enhanced photochemistry, 272–273
Alexa 647 spectra, microwave-accelerated metal-enhanced fluorescence, immunoassays, 171–172
Alexa Fluor 488 fluorophore, silver nanoprisn, plasmon peak position, 102–105
Alexa Fluor 532 fluorophore, silver nanoprisn, plasmon peak position, 104–105
Alexa Fluor 680, controlled colloidal aggregation, near-infrared metal-enhanced fluorescence, 128–130
Alpha-fetoprotein (AFP) identification, localized surface plasmon coupled fluorescence fiber (LSPCF) biosensor, 237–238
Aluminum island films:
nanoaperture-enhanced fluorescence:
excitation enhancement, 504–505
single molecule studies, 497–501
near-infrared metal-enhanced fluorescence, 124–125
plasmon enhanced radiative rates, organic electroluminescent devices, 560–564
surface plasmon polaritons:
metal-insulator-metal transmission enhancement, 412–413
zinc-oxide emission mediation, 397–404
Aluminum planar geometrical shapes:
microwave-triggered metal-enhanced chemiluminescence, 449–454
biological assays and Western blots, 455–457
disposable surface assays, transferable substrates, 452–453
finite different time domain simulations, 449–452
multiplexed assay format, 454–455
transferable triangle structures, 453–454
Amine-modified poly(methyl methacrylate) (PMMA), covalent bonding, 217–218
3-Aminopropyltrimethoxysilane (APS), near-infrared metal-enhanced fluorescence, colloidal coated surfaces, 125–126
Aminopropyltriethoxysilane (APTES), optical fibers, covalent bonding, 220
Angular dependence:
aperture arrays, surface plasmon coupled emission, 510–513
Angular dependence (cont'd)
surface plasmon grating coupled emission:
multi-layer gratings, active plasmonic models, 476–480
quantitative active surfaces, 481–483
Anisotropic synthesis:
aqueous surfactant methods:
gold nanocubes, 324
gold nanowires/nanorods, 315–319
silver nanocubes, 324–325
bipyramids, 326
computational studies, one-dimensional
growth, 319–321
dendritic structures, 334–335
electrical + surfactant methods, gold
nanocubes, 325–326
nanoparticles and nanostructures, 310–354
nanoprisms:
synthetic techniques, 335
thermal methods, 339–348
aqueous surfactant preps, 340–348
DMF reduction, 339
PVP reduction, 339–340
rube noble metallic nanoparticles:
basic principles, 295–296
highly shaped gold and silver nanoparticles, 310–354
plasmon-driven deposition, gold/silver
nanoparticles, 350–351
polycr techniques:
nanocubes, 321–326
silver nanowires, 313–315
selective binding model, 326–335
gold nanodecahedra, 329–330
nanocahedra, 327–329
templated nanostructures, 351–353
Anthrax detection, microwave-accelerated metal-enhanced fluorescence, 174–176
Antibodies, localized surface plasmon coupled
fluorescence fiber (LSPCF) biosensor, 235–238
Anti-immunoglobulin G (anti-IgG) sandwich
immunoassay, binding kinetics, 233–234
Aperture arrays, fluorescence enhancement,
507–517
optical transmission modeling, 513–515
surface plasmon coupled emission, 509–513
Aqueous assays, microwave-accelerated metal-enhanced
fluorescence, 161–162
Aqueous surfactant methods, anisotropic
synthesis:
gold nanocubes, 324
gold nanowires/nanorods, 315–319
halide ions, 319
impurities, 319
nanoprisms, 340–348
silver nanocubes, 324–325
silver nanowires, 316–317
single crystal gold nanorods/nanowires, 317–318
Association rate constant:
biomolecular binding, fluorescence-based
biosensor detection, 232–233
microarray applications, 240–242
Atomic force microscopy (AFM):
electron beam lithography, device fabrication, 469–471
metal-enhanced fluorescence applications, 4–12
metallic nanoparticles, localized surface
plasmon, 193
microwave-accelerated metal-enhanced
fluorescence, planar metallic surfaces, 164–165
near-infrared metal-enhanced fluorescence,
silver island films, 124–125
optical biosensors, plasmonic enhancement:
dipole resonance peak tuning, 143–145
uniform nanoparticle deposition, 146–148
plasmonic engineering, island film imaging, 82–85
singlet oxygen generation, Rose Bengal
photosensitization, 282–286
spontaneous galvanic displacement reactions, 431–433
surface plasmon enhanced photochemistry,
isomerization, 269–272
surface plasmon polaritons, zinc-oxide
nanoparticles, 396
Attenuated total reflection (ATR):
fiber optic evanescent wave sensor, 186–189
grating-based fluorescence enhancement,
metal-organic interface, 467–469
surface plasmon waves, 189–192
Antifluorescein, gold nanoparticles, fluorescent
quenching, 586–588
Averaged field-enhancement:
controlled colloidal aggregation, near-infrared
metal-enhanced fluorescence, 128–130
metallic nanoparticles, 203
Averaging, metal-enhanced fluorescence, spectral
modification effects, 43
Azob dye molecules, surface plasmon enhanced
photochemistry, isomerization, 268–272
Azulene, metal-enhanced fluorescence
applications, 8–12
Background fluorescence, optical biosensors,
plasmonic enhancement, distance
dependence, fluorophore separation, 156–157
Background subtraction, metal-enhanced
fluorescence, spectral modification, 49–52
INDEX 603

Band-edge emission enhancement ratio, surface plasmon polaritons, zinc-oxide emission mediation, 398–399, 402–404
Bandgap properties, zinc oxide nanomaterials, 365–366
Bessel functions, evanescent wave scattering, spherical metallic nanoparticles, 198–200
Bicrystalline silver nanowires, anisotropic synthesis, 313–314
Bioassays:
metal-enhanced chemiluminescence, ultra-fast/ultra-sensitive clinical assays, 445–448
microwave-triggered metal-enhanced chemiluminescence:
disposable surface assays, transferable aluminum substrates, 452–453
multiplexed assay format, 454–455
Western blot applications and, 455–457
zinc oxide nanomaterials:
cytokine assay, 382–383
DNA hybridization, 373–375
protein-protein reactions, 375–378
telomerase assay, 380–382
Biodetection platforms, zinc oxide nanomaterials, 366–369
Biological reactions, zinc oxide nanomaterials, 372–378
cytokine assay, 382–383
DNA hybridization, 372–375
protein-protein reaction, 375–378
telomerase assay, 380–382
Biomedical technology, gold nanoparticles, fluorescent quenching, 580–595
auto-fluorophore quenching, 586–588
cancer and cellular imaging, 586–595
collagen quenching, 590–592
NADH quenching, 588–590
in vitro DNA detection, 580–582
in vitro immunosensor, 582–584
in vivo tumor imaging, 584–585
whole cell quenching, 592–595
Biomolecular interactions:
fluorescence-based biosensor detection, 231–233
metallic nanomaterials, 364–365
surface plasmon wave monitoring, 191–192
Biosensors:
localized surface plasmon resonance (LSPR):
absorption-based fluorescence, 204–205
cleaning protocols, 215–216
coupled fluorescence, 205–207, 234–238
covalent bonding, 217–219
development de-cladding fiber-optic preparation, 214–215
evanescent wave sensor, 186–189
fluorescence detection FOB, biomolecular binding, 231–233
fluorescence-enhanced local field, 200–203
fluorophores and adsorbed colloidal particles or nano-metal surfaces, 223–224
fluorophores and suspended colloid particles, 221–222
IgG/anti-IgG binding kinetics, 233–234
immunosensors, 230
liposome-based fluorescence amplification, 227–229
liposome-based metal-enhanced fluorescence, 229–230
liposome preparation, 226–227
liposome signal amplifiers, 224–226
local-field enhancement, metallic nanoparticles, 196–197
metallic nanoparticles, 192–193, 196–197
microarray applications, 238–241
optical fiber characteristics, 183–186
PMMA fiber core, 216–219
quasi-static approximation, 193–196
signal-amplified probing, metal-enhanced fluorescence, 220–221
silica dioxide fiber, 219–220
silver nitride fiber, 220
spherical metallic nanoparticles, evanescent wave scattering, 197–200
surface modification, 216
surface plasmon wave theory, 189–192
waveguide evanescent, 208–214
sub-wavelength apertures, 520–521
Biotinylated bovine serum albumin (BBSA):
metal-enhanced chemiluminescence, ultra-fast/ultra-sensitive clinical assays, 445–448
microwave-triggered metal-enhanced chemiluminescence, Western blot applications, 455–457
zinc oxide nanomaterials, protein-protein reactions, 377–378
Bipyramid nanoparticles, anisotropic synthesis, 326
Biotinning techniques, microwave-triggered metal-enhanced chemiluminescence, 448–449
Western blot applications, 455–457
Blue-shifted free-space fluorescence profile, metal-enhanced fluorescence, ultra-fast-dynamics metal-enhanced fluorescence regime, 39
Cadmium-selenium quantum dots, wavelength dependence, excitation enhancement, single nanoparticles, 106–112
Carbon monoxide flux, surface plasmon enhanced photochemistry, photodissociation, 267–268
Carboxylate-terminated poly(methyl methacrylate), covalent bonding, 218–219
INDEX

Cardiac marker immunoassay, microwave-accelerated metal-enhanced fluorescence, 171–172

Cellular imaging, gold nanoparticles, fluorescent quenching:
- autofluorophores, 586–588
- collagen quenching, 590–592
- NADH quenching, 588–590
- whole cell quenching, 592–595

Cetyltrimethylammonium bromide (CTAB), anisotropic synthesis, gold nanowires/nanorods, aqueous surfactant methods, 315–319

Charge-coupled device camera:
- grating-based fluorescence enhancement, 471–472
- nanopore-enhanced fluorescence, single molecule studies, 501
- near-infrared metal-enhanced fluorescence, 122
- silver nanopism, fluorescence enhancement, 94–99
- surface plasmon polaritons, zinc-oxide nanoparticles, 396

Chemiluminescence intensity:
- metal-enhanced chemiluminescence, 439–443
- metal-enhanced chemiluminescence principles, 439

CIE-1931 chromaticity coordinates, surface plasmon grating coupled emission, multilayer gratings, active plasmonic models, 478–480

Cladding layer, fiber optic biosensing, 183–189

Cleaning protocols, decladded fibers, 215–217

Coating removal process, decladded fibers, 214–215

Collagen quenching, gold nanoparticles, 590–592

Colloidal nanoparticles:
- adsorbed fluorophore properties, 223–224
- electron beam lithography, 422–427
- fluorophore properties, 221–222
- metal-enhanced chemiluminescence, 424–427
- multi-photon excitation:
 - basic principles, 529–530
 - fluorescence emission, 534–535
 - future research and applications, 540–541
 - nonlinear light-matter interaction, composite materials, 530–534
- tryptophan-silver colloid, 536–540
- near-infrared metal-enhanced fluorescence, coated surfaces, 125–126
- silver nanopism, fluorescence enhancement, 94–99
- spatially controlled applications, 420–421

Complementary fluorophore-conjugated DNA, silver nanopism, plasmon peak position, 101–105

Composite materials, multi-photon excitation, colloidal nanoparticles, 532–534

Confocal measurements:
- colloidal quantum dots, 426–427
- core-shell nanoparticles, 298–301

Controlled colloidal aggregation (CCA):
- dynamic range, 131–132
- near-infrared metal-enhanced fluorescence:
 - limits of detection, 131
 - nanoparticle interaction-based enhancement, 127–130

Coordination number (CN), gold/silver nanoparticles, anisotropic synthesis, selective binding, 311–312

Core-shell nanoparticles:
- confocal measurements, 298–301
- electron beam lithography, 422–427
- fluorescence quenching, 297–298
- metal-enhanced fluorescence, 7–12
- microarray applications, 241–242
- signal-amplified fluorescent probing, 221

Coupled dipole equations (CDE), plasmonic engineering:
- molecule-plasmon coupling, 71–75
- unified model, surface-enhanced fluorescence, 78–79

Coupling rate, surface plasmon polaritons, 394–396

Covalent bonding:
- optical fiber surface modification, 216
- poly(methyl methacrylate), 217–219

Coverage artifacts, nanotextured surfaces, plasmon-enhanced distance dependence, 555–558

Coverslip geometries, microwave-triggered metal-enhanced chemiluminescence, transferable aluminum substrates, 452–453

Cytokine assay, zinc oxide nanomaterials, 382–383

Darkfield scattering spectroscopy:
- silver nanopism, plasmon peak position, 99–105
- single metal nanoparticle enhancement, 96–99

Decay enhancement:
- metallic nanoparticles, local field enhancement, 201–203
- plasmonic engineering, unified model, surface-enhanced fluorescence, 75–79

Decay rate, metal-enhanced fluorescence, spectral modification, 28–29

Decladded fibers:
- local field enhancement, 200–203
- preparation protocols, 214–215

Dendritic structures, anisotropic synthesis, 334–335

Density-of-states (DOS), surface plasmon polaritons, 394–396

Metal alloy resonance tuning, 405–406

Plasmonic DOS and Fp, metal alloy/semiconductor, 406–408

Zinc-oxide emission mediation, 398–404
INDEX

Deoxyribonucleotide triphosphate (dNTPs), zinc oxide nanomaterials, 382
Design optimization, optical biosensors, plasmonic enhancement, nanoparticle size, 148–154
Detergent solubilization, liposome preparation, optical fiber biosensors, 226–227
Device fabrication, electron beam lithography, 469–471
Diagonal molecular Hamiltonian, plasmonic engineering, unified model, surface-enhanced fluorescence, 75–79
Dichlorotriazinylaminofluorescein (DTAF), zinc oxide nanomaterials, protein–protein reactions, 377–378
Dielectric constant:
- particle–fluorophore interactions, gold nanoparticles, fluorescent quenching, 579
- surface plasmon enhanced photochemistry, 265
- surface plasmon polaritons:
 - metal alloy resonance tuning, 405–406
 - metal-insulator-metal structures, radiative SPPs in, 410–412
 - plasmonic DOS and F_r metal alloy/semiconductor, 406–408
 - zinc oxide emission mediation, 401–402
Diffusion analysis, nanoaperture-enhanced fluorescence, lipid membrane subdiffraction, 519–520
Dihydroethidium (DHE):
- metal-enhanced phosphorescence, 17–19
- metal-enhanced superoxide generation, 287–288
Dihydrorhodamine adenine dinucleotide (NADH), gold nanoparticles, fluorescent quenching, autofluorophores, 587–590
Dimethyl cadmium, surface plasmon enhanced photochemistry, photodissociation, 266–268
Dimethylformamide (DMF) reduction, thermal anisotropic synthesis, nanoprisms, 339
Dipole moment calculations:
- optical biosensors, plasmonic enhancement, 142–143
- plasmonic engineering, unified model, surface-enhanced fluorescence, 75–79
- surface plasmon enhanced photochemistry, 261–262
Nitzan-Brus-Gerstan model, 262–265
Dipole resonance peak tuning:
- localized surface plasmon resonance, quasi-static approximation, 195–196
- optical biosensors, plasmonic enhancement:
 - basic principles, 139–140
 - distance dependence, fluorophore separation, 154–157
 - uniform metal NP deposition, 145–148
 - visible spectrum, 143–145
Direct assay techniques, microwave-accelerated MEF, silver island films, 167–168
Discrete dipole approximation (DDA):
- local field enhancement, 306–308
- metal-enhanced chemiluminescence, 423–427
- metal-enhanced phosphorescence, 17–19
- near-infrared metal-enhanced fluorescence, nanoparticle interaction-based enhancement, 127–130
- plasmon-enhanced radiative rates, organic electronics, 545–547
- surface plasmon resonance tuning, 304–306
Disease markers, cytokine assay, zinc oxide nanomaterials, 382–383
Dispersion relations, surface plasmon polaritons:
- metal-insulator-metal structures, radiative SPPs in, 410–412
- metal-insulator-metal transmission enhancement, 412–413
- zinc oxide emission mediation, 398–399
Dispersible surface assays, microwave-triggered metal-enhanced chemiluminescence, transferable aluminum substrates, 452–453
Dissociation rate constant:
- biomolecular binding, fluorescence-based biosensor detection, 232–233
- microarray applications, 240–242
Distance dependence:
- core-shell nanoparticles, fluorescence quenching, 297–298
- metal enhanced superoxide generation, 289–290
- metallic nanoparticles, local field enhancement, 201–203
- microwave-accelerated MEF, planar metallic surfaces, 162–165
- optical biosensors, plasmonic enhancement, 154–157
- plasmon-enhanced photoluminescence, organic electronics applications, 555–558
- singlet oxygen generation, Rose Bengal photosensitization, 286
DNA hybridization:
- fluorophore-metallic nanoparticles or adsorbed colloidal particles, 223–224
- microwave-accelerated metal-enhanced fluorescence, 172–174
- optical fibers, covalent bonding, silica nitride, 220
- zinc oxide nanomaterials, 372–375
DNA sequencing:
- gold nanoparticles, fluorescent quenching, in vitro DNA detection, 580–582
- real-time single molecule studies, nanoaperture-enhanced fluorescence, 518–519
Donor-acceptor probes, particle-fluorophore interactions, gold nanoparticles, fluorescent quenching, 577–578
Donor-gold nanoparticle probes, particle-fluorophore interactions, 579
Double-stranded DNA linkers, silver nanoprisms, plasmon peak position, 101–106
Drude model:
localized surface plasmon resonance, quasi-static approximation, 195–196
surface plasmon polaritons:
metal-insulator-metal structures, radiative SPPs, in, 409–412
zinc-oxide emission mediation, 400–402
Dye molecules:
metallic nanoparticle fluorescence enhancement, 300–301
octadecylamine (ODA)-Langmuir-Blodgett layers, 302–304
optical biosensors, plasmonic enhancement, 140–143
distance dependence, fluorophore separation, 156–157
nanoparticle size optimization, 153–154
surface plasmon coupled chemiluminescence, 457–461
Dynamic range, controlled colloidal aggregation, 131–132
Edge-on molecular orientation, plasmonic engineering, surface-enhanced fluorescence experiments, 83–85
Effective index method, waveguide evanescent waves, 208–214
Electrical and surfactant methods, anisotropic synthesis, gold nanocubes, 325–326
Electric field calculations:
metallic nanoparticles, local field enhancement, 193, 196–197
plasmonic engineering:
island films, 81–85
molecule-plasmon coupling, 74–75
singlet oxygen generation, Rose Bengal photosensitization, 286
Electroluminescence:
grating-based fluorescence enhancement: fabricated devices, 470–471
metal-organic interface, 466–471
plasmon-enhanced radiative rates, organic electroluminescent devices, 560–564
Electromagnetic enhancement:
metal-enhanced fluorescence, spectral modification, 543–544
local field enhancement, 31
modified quantum yield, 32–33
plasmonic effects, 30–31
predictions, 45–46
radiative and non-radiative enhancement, 31–32
microwave-triggered metal-enhanced chemiluminescence, aluminum planar geometrical shapes, 451–452
nanoaperture-enhanced fluorescence, 502–505
optical biosensors, plasmonic enhancement, 130–143
surface plasmon enhanced photochemistry, 261–262
surface plasmon waves, 189–192
Electron beam lithography (EBL):
fabricated devices, 469–471
metal-enhanced fluorescence, 421–427
multilayer grating coupled emission, active plasmonic models, 474–480
nanoaperture-enhanced fluorescence, self-assembled monolayers, 493–496
quantitative active surface plasmon grating coupled emission, 480–483
spatially controlled MEF applications, research background, 420–421
Electron transfer, zinc oxide nanomaterials, fluorescence enhancement, 379–380
Emission enhancement:
core-shell nanoparticles:
fluorescence quenching, 297–298
fluorophore distance measurement, 298–301
metal-enhanced chemiluminescence, 424–427, 441–443
nanoaperture-enhanced fluorescence, 502–503
dipole emission, 505–507
single molecule studies, 500–501
single metal nanoparticles, spectral overlap, 92–94
spontaneous galvanic displacement reactions, 430–433
surface plasmon grating coupled emission, multilayer gratings, active plasmonic models, 477–480
surface plasmon polaritons, plasmonic DOS and F_p, metal alloy/semiconductor, 407–408
Emission mediation, surface plasmon polaritons, zinc-oxide emissions, 397–404
Encapsulation techniques, liposome-based fluorescence amplification, 227–229
Energy relaxation, metal-enhanced fluorescence, spectral modification, 28
Enhancement factors, plasmonic engineering, 80–85
Enzyme-linked immunosorbent assay (ELISA):
liposome-based fluorescence amplification, 228–229
localized surface plasmon coupled fluorescence fiber (LSPCF) biosensor, 237–238
zinc oxide nanomaterials, protein-protein reactions, 376–378
Eosin, metal-enhanced fluorescence applications, 11–12
F-type fluorescence/phosphorescence emission spectra, metal-enhanced fluorescence applications, 10–12
Evanescent waves:
 fiber optic sensors:
 basic properties, 186–189
 metallic nanoparticles, 192–193
 waveguide properties, 208–214
 grating-based fluorescence enhancement, 468–471
 microarray applications, 238–242
 spherical metallic nanoparticle scattering, 197–200
 zinc oxide nanomaterials, fluorescence enhancement, 380
Excitation enhancement factor:
 aperture arrays fluorescence, 514–515
 fluorophore surface plasmon resonance coupling, 308–309
 nanoperture-enhanced fluorescence, 502–505
 self-assembled monolayers, 493–496
 optical biosensors, plasmonic enhancement, 139–140
 distance dependence, fluorophore separation, 154–157
 dye molecule orientation, 142–143
 nanoparticle size optimization, 149–154
 single metal nanoparticles, spectral overlap, 92–94
 structured aperture enhancement, 515–517
 wavelength dependence, single nanoparticles, 109–112
Excitation light polarization, metallic nanoparticle characteristics, 207
External quantum efficiency, light-emitting diodes, 393
Extinction profile:
 excited-state fluorophore coupling, 309
 gold nanoparticles, fluorescent quenching, autoquenches, 386–388
 local field enhancement, theoretical background, 306–308
 localized surface plasmon of metallic nanoparticles, 192–193
 quasi-static approximation, 195–196
 metal-enhanced fluorescence, spectral modification, 49
 background subtraction, 51–52
 evidence-based techniques, 52–53
 limitations, 56
 optical biosensors, plasmonic enhancement, 141–143
 uniform nanoparticle deposition, 147–148
silver nanoprisms, fluorescence enhancement, 94–99, 113–114
surface plasmon resonance tuning, 304–306
Extraordinary optical transmission (EOT) phenomenon, aperture arrays, 507–517
Extrinsic sensors, fiber optic properties, 185–186
Face-centered cubic lattices, anisotropic synthesis, aqueous surfactant methods, 346–348
Fast-dynamics metal-enhanced fluorescence (FDMEF), spectral profile modification:
 basic properties, 35
 evidence for, 54–55
 fluorescence intensity, 43–45
Fermi's golden rule:
 plasmonic engineering, unified model, 75–79
 surface-enhanced fluorescence, 489–490
 sub-wavelength metallic apertures, 489–490
 surface plasmon polaritons, 394–396
Fiber optic biosensors (FOBs). See Optical biosensors
Fiber optic evanescent wave sensor (FO-EWS):
 basic properties, 186–189
 localized surface plasmon coupled fluorescence, 237–238
Field enhancement factor:
 metallic nanoparticles, 307–308
 plasmonic engineering, unified model,
 surface-enhanced fluorescence, 75–79
Finite difference time domain (FDTD):
 metal-enhanced phosphorescence, 17–19
 microwave-accelerated MEF, planar metallic surfaces, 163–165
 microwave-triggered metal-enhanced chemiluminescence, aluminum planar geometrical shapes, 449–452
 near-infrared metal-enhanced fluorescence, nanoparticle interaction-based enhancement, 127–133
 plasmon-enhanced radiative rates, organic electronics, 545–547
 single metal nanoparticle fluorescence enhancement, spectral overlap, 92–94
 surface plasmon enhanced photochemistry, isomerization, 270–272
 waveguide evanescent waves, 208–214
Flow-injection analysis, liposome-based fluorescence amplification, 228–229
Fluorescein isothiocyanate (FITC):
 gold nanoparticles, fluorescent quenching, in vitro immunoassays, 382–384
 IgG/anti-IgG binding kinetics, 233–234
 metal-enhanced fluorescence, 3–12
 spontaneous galvanic displacement reactions, 420–433
Fluorescein isothiocyanate (FITC) (cont'd)
microwave-accelerated metal-enhanced fluorescence, protein assays, 168–171
Fluorescence correlation spectroscopy (FCS), nanoaperture-enhanced fluorescence:
single molecule studies, 496–501
solution-enhanced single-molecule analysis, 517–518
Fluorescence detection, zinc oxide nanomaterials for, 363–365
Fluorescence intensity:
fluorophores and suspended colloidal particles, 221–222
gold nanoparticles, whole cell quenching, 592–595
liposome-based amplification, 227–229
metal-enhanced fluorescence:
fast-dynamics metal-enhanced fluorescence regime, 43–45
intensity predictions, 47–48
slow-dynamics metal-enhanced fluorescence regime, 37–38, 43–45
intensity predictions, 47–48
zinc oxide nanomaterials, 370–372, 376–378
microwave-accelerated metal-enhanced fluorescence, protein assays, 168–170
multi-photon excitation:
colloidal nanoparticles, 534–536
tryptophan-silver colloid, 536–540
silver nanoprisms, plasmon peak position, 104–105
Fluorescence quenching, See Quenching
Fluorescence rate per molecule (CRM), nanoaperture-enhanced fluorescence, 492–493
single molecule studies, 496–501
Fluorophore absorption band, metallic nanoparticle characteristics, 207
Fluorophore–nanostructure combinations:
microwave-accelerated MEF, 161–162
optical biosensors, plasmonic enhancement, separation parameters, 154–157
plasmonic engineering, 79–85
Fluorophore properties:
excited state surface plasmon resonance coupling, 308–309
localized surface plasmon coupled fluorescence fiber (LSPCF) biosensor, 235–238
metal-enhanced chemiluminescence, 440–443
metal-enhanced chemiluminescence principles, 440–443
metal-enhanced fluorescence:
microwave-accelerated MEF, 161–162
spectral profile modification, 55–56, 91–94
metallic nanoparticle surfaces or adsorbed colloidal particles, 223–224
fluorescence detection, 363–365
microwave-accelerated metal-enhanced fluorescence, DNA hybridization, 172–174
near-infrared metal-enhanced fluorescence, silver island films, 124–125
particle-fluorophore interactions, gold nanoparticles, fluorescent quenching, 576–580
silver nanoprisms, plasmon peak position, 99–105
suspended colloid particles, 221–222
zinc oxide nanomaterials, fluorescence enhancement, 379–380
Fluorophore quantum efficiency, optical biosensors, plasmonic enhancement, 139–140
Förster energy transfer:
grating-based fluorescence enhancement, metal-organic interface, 466–469
particle-fluorophore interactions, gold nanoparticles, fluorescent quenching, 577–578
surface plasmon polaritons, zinc-oxide emission mediation, 396–399
Forward emission enhancement, surface plasmon polaritons, 413–415
Franck-Condon approximation:
metal-enhanced fluorescence, spectral modification, 29–30
plasmonic engineering, unified model, surface-enhanced fluorescence, 75–79
Free prostate-specific antigen (f-PSA), surface plasmon wave sensors, 191–192
Free-space fluorescence spectrum:
metal-enhanced fluorescence, spectral profile modification, 48–49
molecular adsorption, 56
singlet oxygen generation, Rose Bengal photosensitization, 285–286
surface plasmon coupled chemiluminescence, 457–461
Free-space fluorophore, metal-enhanced fluorescence, spectral modification, 27–28
Full-width half-maximum (FWHM), multilayer grating coupled emission, active plasmonic models, 474–480, 483–484
Gas-phase growth mechanisms, zinc oxide nanomaterials, biodetection platforms, 366–369
Genomics analysis, zinc oxide nanoparticles, 375–378
Glass optical fibers, basic properties, 184
Glass surface:
metal-enhanced chemiluminescence, 428–433
INDEX
609

ultra-fast/ultra-sensitive clinical assays, 443–448
metal-enhanced chemiluminescence principles, 441–457
microwave-accelerated metal-enhanced fluorescence, protein detection assay, 166–168
Glow stick experiments, metal-enhanced chemiluminescence, 440–443
Glutaraldehyde, poly(methyl methacrylate) covalent bonding, 218
Gold nanocubes, anisotropic synthesis: electrical + surfactant methods, 325–326 polylol techniques, 323–324
Gold nanoctahedra, anisotropic synthesis, 327–328
Hankel functions, evanescent wave scattering, spherical metallic nanoparticles, 199–200
Hep crystal structures, anisotropic synthesis, aqueous surfactant methods, 345–348
Helmholtz equation, waveguide evanescent waves, 210–214
Hexamethylene diamine (HMD), poly(methyl methacrylate), covalent bonding, 217–218
High-throughput screening: real-time single molecule DNA sequencing, nanopore-enhanced fluorescence, 518–519 zinc oxide nanoparticles, protein-protein reactions, 375–378
Immunocessaries. See also Bioassays
INDEX

Lamellar defect structure, anisotropic synthesis, aqueous surfactant methods, 345–348
Langmuir-Blodgett (LB) films:
octadecylamine (ODA)-Langmuir-Blodgett layers, 302–304
plasmonic engineering, 68–71
surface-enhanced fluorescence experiments, 81–85
Laplace's equation, localized surface plasmon resonance, quasi-static approximation, 194–196
Laser beam polarization, core-shell nanoparticles, 299–301
Lattice structures, anisotropic synthesis, aqueous surfactant methods, 345–348
Layer-by-layer (LbL) films:
core-shell nanoparticles, fluorescence quenching, 297–298
plasmonic engineering, 68–71
Light-emitting diode (LED). See also Organic light-emitting diode evolution of, 393
Light microscopy, controlled colloidal aggregation, near-infrared metal-enhanced fluorescence, 128–130
Like-like attractive interactions, computational studies, one-dimensional growth, 321
Limits of detection (LOD), near-infrared metal-enhanced fluorescence, 130–131
Linewidth calculations:
single metal nanoparticle enhancement, silver nanoprism, 98–99
surface plasmon resonances, 307–308
Lipidic membranes, sub-diffraction diffusion analysis, nanoporeture-enhanced fluorescence, 519–520
Liposomes, optical fiber biosensors:
fluorescence amplification, 227–229
metal-enhanced fluorescence, 229–230
preparation, 226–227
signal amplification, 224–226
Lithography-defined metallic nanoclusters, spatially controlled applications, 420–421
Local density of states, sub-wavelength metallic apertures, 489–490
Local field enhancement:
metal-enhanced fluorescence, spectral modification, 31–33
regime comparisons, 40–43
metallic nanoparticles, 193, 196–197
fluorescence and, 200–203
theoretical background, 306–308
silver nanoprism, wavelength-dependent excitation enhancement, 110–112
Localized surface plasmon coupled fluorescence fiber (LSPCF) biosensor, 192–193
averaged-field enhancement, 203
configuration and sensitivity, 234–238
enhancement factors, 205–207
evanescent wave scattering, 200
Localized surface plasmon resonance (LSPR):
fiber optic biosensing:
absorption-based fluorescence, 204–205
cleaning protocols, 215–216
coupled fluorescence, 205–207, 234–238
cova lent bonding, 217–219
development, de-cladding fiber-optic preparation, 214–215
evanescent wave sensor, 186–189
fluorescence detection FOB, biomolecular binding, 231–233
fluorescence-enhanced local field, 200–203
fluorophores and adsorbed colloidal particles or nano-metal surfaces, 225–224
fluorophores and suspended colloid particles, 221–222
IgG/anti-IgG binding kinetics, 233–234
immunosensors, 230
liposome-based fluorescence amplification, 227–229
liposome-based metal-enhanced fluorescence, 229–230
liposome preparation, 226–227
liposome signal amplifiers, 224–226
local-field enhancement, metallic nanoparticles, 196–197
metallic nanoparticles, 192–193, 196–197
microarray applications, 238–241
optical fiber characteristics, 183–186
PMMA fiber core, 216–219
quasi-static approximation, 193–196
signal-amplified probing, metal-enhanced fluorescence, 220–221
silica dioxide fiber, 219–220
silver nitride fiber, 220
spherical metallic nanoparticles, evanescent wave scattering, 197–200
surface modification, 216
surface plasmon wave theory, 189–192
waveguide evanescent, 208–214
metal-enhanced fluorescence, spectral modification, predictions, 46
microwave-accelerated MEF, planar metallic surfaces, 162–165
multi-photon excitation, tryptophan-silver colloid, 537–540
nanoperture enhancement, 502–503
dipole emission, 506–507
optical biosensors, plasmonic enhancement: basic principles, 139–140
nanoparticle size optimization, 153–154
silver nanoprisms:
fluorescence enhancement, 96–99
plasmon peak position, 102–105
wavelength-dependent excitation enhancement, 108–112
Localized surface plasmon resonance (LSPR) (cont’d)
- single metal nanoparticle enhancement, 91–94
- surface-enhanced fluorescence:
 - basic principles, 67–71
 - experimental techniques, 79–85
 - future research issues, 85–86
 - molecule-plasmon coupling, 71–75
- unified model, 75–79

Long-range surface plasmon polaritons (LR-SPPs), surface plasmon grating coupled emission, multilayer gratings, active plasmonic models, 477–480

Lorentzian oscillator absorption model:
- surface plasmon enhanced photochemistry, 263–265
- surface plasmon polaritons, zinc-oxide emission mediation, 400–402

Luminescence intensity:
- metal-enhanced luminescence, 442–443
- metal-enhanced chemiluminescence principles, 441–443
- plasmon-enhanced radiative rates, organic electronics, 545–547

Magnetic field distribution, waveguide evanescent waves, 211–214

Matrix metalloproteinases (MMPs), gold nanoparticles, fluorescent quenching, in vivo tumor imaging, 586–586

Maxwell Garnett geometry, multi-photon excitation, colloidal nanoparticles, 533–534

Maxwell’s equation, evanescent wave scattering, spherical metallic nanoparticles, 199–200

Mechanical dispersion, liposome preparation, optical fiber biosensors, 226–227

Metal alloys, surface plasmon polaritons
- plasmonic DOS and Fns, metal alloy/semiconductor, 406–408
- resonance tuning, 405–406

Metal deposition thickness, metal-enhanced chemiluminescence, 13–14

Metal-enhanced chemiluminescence (MEC):
- basic principles, 13–14, 439–443
- current applications, 439–443
- microwave-triggered MEC, 443–457
 - aluminum planar geometrical shapes, 449–454
 - biological assays and Western blots, 455–457
 - blotting technologies, 448–449
 - disposable surface assay applications, transferable aluminum substrates, 452–453
 - finite different time domain simulations, 449–452

Multiplexed chemiluminescent assay format, 454–455
- transferable triangle structures, 453–454
- ultra-fast and ultra-sensitive clinical assays, 445–448
- surface plasmon coupled chemiluminescence, 457–459

Metal-enhanced fluorescence (MEF):
- basic principles, 2–12
- electron beam lithography, 421–427
- liposomal amplification, 229–230
- metallic nanoparticles, 296–304
 - absorption, 204–205
 - aggregates, 301–304
 - enhanced local field, 200–203
 - quenching, 297–298
- single molecule fluorescence, 298–301

Microwave-accelerated MEF:
- anthrax detection, 174–176
- DNA hybridization assays, 172–174
- immunoassays, 170–172
- low-power MAME, 165–176
- overview, 161–162
- planar surface characteristics, 162–165
- protein assays, 168–170

Near-infrared techniques:
- advantages, 122–123
- colloid coated surfaces, 125–126
- dynamic range, 131–132
- limits of detection, 130–131
- nanoparticle interactions, 126–130
- silver island films, 123–125
- optical biosensors, plasmonic enhancement, 145–148
- dipole resonance tuning, 145–148
- oxygen-rich species, 279–280
- singlet oxygen generation, 281–286
- superoxide generation, 287–290
- plasmonic engineering, 68–71
- research background, 1–2, 121
- signal-amplified fluorescent probing, metallic nanoparticles, 220–221
- silver nanoprisms, plasmon peak position, 99–105
- singlet oxygen generation, 281–286
- distance dependence, 286
- electric field enhancement, 286
- Rose Bengal photosensitizer, 281–286
- spatially controlled applications, research background, 419–421
- spectral overlap, 25–62
- absorption process, 27–28
- averaging effect, 43
- background subtraction, 49–52
- decay process, 28–29
- electromagnetic predictions, 45–47
- evidence-based approach, 52–54
- fast-dynamics regime evidence, 54–55
- fast-dynamics regime signal intensity, 47–48
Metal-organic interface, grating-based fluorescence enhancement, 466–469
Microarray technologies, localized surface plasmon coupled fluorescence, 238–242
Microcontact printing technique, zinc oxide nanomaterials, 367–369
Microwave-accelerated metal-enhanced fluorescence (MAMEF): anthrax detection, 174–176
DNA hybridization assays, 172–174
immunoassays, 170–172
low-power MAMEF, 165–176
overview, 161–162
planar surface characteristics, 162–165
protein assays, 168–170
Microwave-triggered metal-enhanced chemiluminescence (MT-MEC), 443–462
aluminum planar geometrical shapes, 449–454
biological assays and Western blots, 455–457
disposable surface assays, transferable substrates, 452–453
finite different time domain simulations, 449–452
multiplexed assay format, 454–455
transferable triangle structures, 453–454
biological assays and Western blots, 455–457
blotting technologies, 448–449
disposable surface assay applications, transferable aluminum substrates, 452–453
finite different time domain simulations, 449–452
multiplexed chemiluminescent assay format, 454–455
surface plasmon coupled chemiluminescence, 457–461
transferable triangle structures, 453–454
ultra-fast and ultra-sensitive clinical assays, 445–448
ultra-fast/ultra-sensitive clinical assays, 445–447
Mie coefficients:
evanescence wave scattering, spherical metallic nanoparticles, 199–200
extinction spectra, 304–309
optical biosensors, plasmonic enhancement, 140–143
“Mirror symmetry,” metal-enhanced fluorescence, spectral modification, 30
Modified quantum yield, metal-enhanced fluorescence, spectral modification, 32–33
Molecular fluorescence mechanism, particle-fluorophore interactions, gold nanoparticles, fluorescent quenching, 576–577
Molecular photophysics, plasmonic modeling, 550–551
phosphor-based OLED, 552–555
Molecular spectroscopy, plasmon-enhanced photoluminescence, organic electronics applications, 558–559
Molecule-plasmon coupling, plasmonic engineering, 71–75
Morphological effects, surface plasmon polaritons, zinc oxide emission mediation, 402–404
Multilayer grating coupled emission, active plasmonic enhancement and tunability, 474–480
Multimode fibers (MMFs):
basic properties, 183–189
evanescence wave scattering, spherical metallic nanoparticles, 198–200
local field enhancement, fluorescence and, 200–203
localized surface plasmon coupled fluorescence fiber (LSPCF) biosensor, 234–238
waveguide evanescent waves, 210–214
Multi-photon excitation:
gold nanoparticles, optical enhancement, 575–576
metallic nanoparticles:
basic principles, 529–530
fluorescence emission, 534–535
future research and applications, 540–541
nonlinear light-matter interaction, composite materials, 530–534
tryptophan-silver colloid, 536–540
Multi-plasmon mode substrates, plasmonic engineering, 81–85
Multiplexed chemiluminescent assay format, microwave-triggered metal-enhanced chemiluminescence, 454–455
Myoglobin immunoassay, microwave-accelerated metal-enhanced fluorescence, 171–172
Nanoaperture-enhanced fluorescence, 490–507
background, 492–493
emission properties, 505–507
excitation enhancement, 503–505
radiation pattern, 507
self-assembled monolayers, 493–496
simulation results, 502–503
single molecule studies, 496–501
Nanoboxes and nanocages, anisotropic synthesis, 351–352
Nanocubes, anisotropic synthesis, 321–326
Nanoeptihedron, anisotropic synthesis, 327–329
Nanoparticle-fluorophore distance, metal nanoparticle enhancement, 298–301
Nanoparticles and nanostructures. See also Metal nanoparticles; Single metal nanoparticles
anisotropic synthesis, 310–354
selective binding model, 326–335
 templated nanostructures, 351–353
 fluorescence detection, 363–365
 liposomal amplification of metal-enhanced fluorescence (MEF), 229–230
 local field enhancement, 306–308
 metal-enhanced fluorescence, 5–12
 spectral modification, background subtraction, 49–52
 metal-enhanced phosphorescence, 15–19
 microarray applications, 238–242
 microwave-accelerated metal-enhanced fluorescence:
 basic principles, 161–162
 planar metallic surfaces, 162–165
 near-infrared metal-enhanced fluorescence, 120–121
 interaction-based enhancement, 126–130
 optical biosensors, plasmonic enhancement:
 basic principles, 139–140
 dipole resonance peak tuning, visible spectrum, 143–148
 distance dependence, 154–157
 future research issues, 157–158
 modelling techniques, 140–143
 size optimization, 148–154
 plasmonic engineering, 79–85
 silver nanoparticle:
 fluorescence enhancement, 94–99
 plasmon peak position, 99–105
 wavelength-dependent excitation enhancement, 106–112
 single metal nanoparticles, spectral overlap and fluorescence enhancement, 91–94
 Nanoparticles, anisotropic synthesis:
 combined selective/non-selective growth modes, 333–334
 photochemical methods, 348–350
 physical aspects, 335–338
 synthetic techniques, 338
 thermal methods, 339–348
 aqueous surfactant preps, 340–348
 DMF reduction, 339
 PVP reduction, 339–340
 Nanorods:
 anisotropic synthesis, 312–321
 aqueous surfactant methods, 315–319
 pentagonal nanorods, 332–334
 polyol methods, 313–315
 zinc oxide characterization, 368–378
 Nanosphere lithography (NSL), optical biosensors, plasmonic enhancement, dipole resonance peak tuning, 143–145
 Nanostars, anisotropic synthesis, 334–335
 Nanowires, anisotropic synthesis, 312–321
 aqueous surfactant methods, 315–319
 polyol methods, 313–315
 Near-field effects:
 silver nanoparticle, wavelength-dependent excitation enhancement, 108–112
 silver nanoparticle, plasmon peak position, 100–105
 Near-infrared (near-IR) metal-enhanced fluorescence:
 basic principles, 119–121
 gold nanoparticles, fluorescent quenching, 573–574
 in vivo tumor imaging, 584–586
 Near-infrared (near-IR) metal-enhanced fluorescence (MEF):
 advantages, 122–123
 colloid coated surfaces, 125–126
 dynamic range, 131–132
 limits of detection, 130–131
 nanoparticle interactions, 126–130
 silver island films, 123–125
 Near infrared (NIR) regions, glass optical fibers, 184
 Net system absorption, metal-enhanced fluorescence, 289–290
 Nicotinamide adenine dinucleotide (NAD+), gold nanoparticles, fluorescent quenching, autofluorophores, 587–588
 Nitzen-Brus-Gersten (NBG) model, surface plasmon enhanced photochemistry, 262–265
 photodissociation, 266–268
 Non-contact laser-assisted jacket removal, decladded fibers, 215
 Nonlinear spectroscopy, multi-photon excitation, colloidal nanoparticles, 534–536
 Non-passivated sampling, aperture arrays, surface plasmon coupled emission, 511–513
 Non-radiative decay rate:
 excited-state fluorophore coupling, 309
 gold nanoparticles, optical enhancement, 574–576
 grating-based fluorescence enhancement, 467–471
 local field enhancement, 307–308
 metal-enhanced fluorescence, spectral modification, 29–30
 emission-dominated substrates, 44–45
 enhancement mechanisms, 31–32
 local field enhancement, 33–34
 optical biosensors, plasmonic enhancement, nanoparticle size optimization, 153–154
 single metal nanoparticle enhancement, silver nanoparticle, 97–99
 zinc oxide nanomaterials, fluorescence enhancement, 379–380
 Novotny group model, silver nanoparticle, plasmon peak position, 104–105
INDEX

Octadecylamine (ODA)-Langmuir-Blodgett layers, metal-enhanced fluorescence, 302–304

Oligonucleotide targeting:
microwave-accelerated metal-enhanced fluorescence:
anti-ââæ± detection, 174–176
DNA hybridization, 173–174
sub-wavelength apertures, biosensing applications, 520–521
zinc oxide nanomaterials, telomerase assay, 381–382

One-dimensional growth, computational studies, spherical nanoparticles, 319–321

Optical fiber biosensors:
localized surface plasmon resonance (LSPR):
absorption-based fluorescence, 204–205
cleaning protocols, 215–216
coupled fluorescence, 205–207, 234–238
covalent bonding, 217–219
development de-cladding fiber-optic preparation, 214–215
evanescent wave sensor, 186–189
fluorescence detection FOB, biomolecular binding, 231–233
fluorescence-enhanced local field, 200–203
fluorophores and adsorbed colloidal particles or nano-metal surfaces, 223–224
fluorophores and suspended colloid particles, 221–222
IgG/anti-IgG binding kinetics, 233–234
immunosensors, 230
liposome-based fluorescence amplification, 227–229
liposome-based metal-enhanced fluorescence, 229–230
liposome preparation, 226–227
liposome signal amplifiers, 224–226
local-field enhancement, metallic nanoparticles, 196–197
metallic nanoparticles, 192–193, 196–197
microarray applications, 238–241
optical fiber characteristics, 183–186
PMMA fiber core, 216–219
quasi-static approximation, 193–196
signal-amplified probing, metal-enhanced fluorescence, 220–221
silica dioxide fiber, 219–220
silver nitride fiber, 220
spherical metallic nanoparticles, evanescent wave scattering, 197–200
surface modification, 216
surface plasmon wave theory, 189–192
waveguide evanescent, 208–214
plasmonic fluorescence enhancement:
basic principles, 139–140
dipole resonance peak tuning, visible spectrum, 143–148
distance dependence, 154–157
future research issues, 157–158
modelling techniques, 140–143
nanoparticle size optimization, 148–154
surface modification, 216
Optical fibers:
basic properties, 183–189
biosensor applications, 185–186
evanescent wave sensor, 186–189
glass materials, 184
plastic materials, 184–185
Optical field distribution, waveguide evanescent waves, 210–214

Organic electronics, plasmon-enhanced radiative rates:
absorption and luminescence properties, 545–547
distance dependence and coverage artifacts, 555–558
electroluminescent devices, 560–564
future research issues, 566–567
metallic nanoparticles, photoluminescence enhancement, 547–550
molecular photophysics, 550–551
molecular spectroscopy, 558–559
OLED phosphor enhancement, 551–555
photoluminescence enhancement limitations, 559–560
photovoltaics, 564–566
research background, 543–544

Organic light-emitting diode (OLED), plasmon-enhanced radiative rates:
limitations of, 559–560
phosphor applications, 551–555
research background, 544

Orientation-averaged extinction efficiency, surface plasmon resonance tuning, 304–306

Oxygen-rich species:
plasmon engineering, 281–290
singlet oxygen generation, 281–286
superoxide generation, 287–290
properties and applications, 277–279

Particle-fluorophore interactions, gold nanoparticles, fluorescent quenching, 576–580
donor-acceptor probes, 577–578
donor-AuNP probes, 579
fluorescence enhancement, 579
molecular fluorescence mechanism, 576–577
Passivated sampling, aperture arrays, surface plasmon coupled emission, 511–513
Peak emission wavelength, surface plasmon grating coupled emission, multilayer
INDEX

gratings, active plasmonic models, 478–479
Pentagonal nanorods, anisotropic synthesis, combined selective/non-selective growth modes, 359–334
Pentagonal silver nanowires, anisotropic synthesis, 313
Perylene, metal-enhanced fluorescence applications, 10–12
Perylene tetracarboxylic (PTCD) derivatives, plasmonic engineering, 69–71, 82–85
Phosphor-based organic light-emitting diode, plasmon-enhanced radiative rates, 551–555
Phosphorescence:
metal-enhanced phosphorescence, 14–19
plasmon-enhanced radiative rates, phosphor-based organic light-emitting diode, 552–555
Photobleaching, metallic nanoparticle characteristics, 207
Photochemical syntheses:
anisotropic synthesis, nanoprisms, 338
nanoparticle formation, 348–350
Photoinduced dissociation, surface plasmon enhanced photochemistry:
case study, 266–268
cross section, 264–265
Photodynamic therapy (PDT):
metal-enhanced phosphorescence, 14–19
singlet oxygen, 278
Photoionic mode density (PMD), metal-enhanced fluorescence, 1–2
Photoluminescence:
grating-based fluorescence enhancement:
fabricated devices, 470–471
metal-organic interface, 466–469
plasmon-enhanced:
limitations of, 559–560
molecular spectroscopy, 558–559
silver nanoparticle, wavelength-dependent excitation enhancement, 108–112
surface plasmon grating coupled emission:
multilayer gratings, active plasmonic models, 475–480
quantitative active surfaces, 481–483
surface plasmon polaritons, zinc-oxide emission mediation, 399–402
wavelength-dependent excitation enhancement, single nanoparticles, 107–112
zinc oxide nanoparticles, 369
Photomultiplier tubes (PMTs), nanocaperture-enhanced fluorescence, self-assembled monolayers, 494–496
Photon detection, metal-enhanced chemiluminescence, 444
Photopolymerization, surface plasmon enhanced photochemistry, aggregation processes, 272–273
Photosensitizers:
singlet oxygen generation, Rose Bengal photosensitizer, 281–286
superoxide generation, dihydrothidium photosensitizer, 287–288
Photovoltaics, plasmon-enhanced radiative rates, organic electroluminescent devices, 564–566
Pitch size effect, surface plasmon grating coupled emission:
multilayer gratings, active plasmonic models, 478–480
quantitative active surfaces, 480–483
Planar metallic surfaces:
aluminum planar geometrical shapes, 561–562
microwave-triggered metal-enhanced chemiluminescence, 449–454
biological assays and Western blots, 455–457
disposable surface assays, transferable substrates, 452–453
finite different time domain simulations, 449–452
multiplexed assay format, 454–455
transferable triangle structures, 453–454
microwave-accelerated MEF, 162–165
Plasmon-driven deposition, silver-on-gold nanoparticles, 350–351
Plasmon-enhanced radiative rates, organic electronics applications:
absorption and luminescence properties, 545–547
distance dependence and coverage artifacts, 555–558
electroluminescent devices, 560–564
future research issues, 566–567
metallic nanoparticles, photoluminescence enhancement, 547–550
molecular photophysics, 550–551
molecular spectroscopy, 538–539
OLED phosphor enhancement, 551–555
photoluminescence enhancement limitations, 559–560
photovoltaics, 564–566
research background, 543–544
Plasmon frequency, metallic nanoparticle characteristics, 207
Plasmonic engineering:
microwave-accelerated metal-enhanced fluorescence, 161–162
optical biosensor fluorescence enhancement:
bigc principles, 139–140
dipole resonance peak tuning, visible spectrum, 143–148
distance dependence, 154–157
Plasmonic engineering (cont'd)
 future research issues, 157–158
 modelling techniques, 140–143
 nanoparticle size optimization, 148–154
 oxygen-rich species, 281–290
 singlet oxygen generation, 281–286
 superoxide generation, 287–290
 surface-enhanced fluorescence:
 basic principles, 67–71
 experimental techniques, 79–85
 future research issues, 85–86
 molecule-plasmon coupling, 71–75
 unified model, 75–79

Plasmon peak position:
 metal-enhanced fluorescence, spectral
 modification, 30–31
 silver nanopism fluorescence enhancement, 99–105

Plastic optical fibers, basic properties, 184–186
Platinum octaethyl porphyrin (PtOEP), plasmon-
 enhanced radiative rates, phosphorus-
 based organic light-emitting diode, 551–555
Polarization effects:
 metal-enhanced fluorescence, spectral
 modification, 58–60
 multi-photon excitation, colloidal nanoparticles,
 532–534
 surface plasmon coupled chemiluminescence, 457–461
Polydimethylsiloxane (PDMS), zinc oxide
 nanomaterials, 367–369
Polyelectrolyte (PEL) layers:
 fluorescence enhancement, 303–304
 optical biosensors, plasmonic enhancement:
 distance dependence, fluorophore separation,
 154–157
 uniform nanoparticle deposition, 145–148
Polymerase chain reaction (PCR), zinc oxide
 nanomaterials, 362
Polymeric biodetection supports, zinc oxide
 nanomaterials, 371–372
Poly(methyl methacrylate) (PMMA):
 adsorption physics, 216–217
 covalent bonding, 217–219
 electron beam lithography, 422–427
 localized surface plasmon coupled fluorescence
 fiber (LSPCF) biosensor, 234–238
 plastic optical fibers, 184–186
 surface plasmon enhanced photochemistry,
 isomerization, 269–272
 zinc-oxide nanoparticles, forward emission
 enhancement, 413–415
Polyol techniques, anisotropic synthesis:
 combined selective/non-selective growth
 modes, 331–334
 gold nanoctahedra, 328
 nanocubes, 321–324
 silver nanowires, 313–315
Polystyrene beads, dipole resonance peak tuning,
 optical biosensors, plasmonic
 enhancement, 143–145
Poynting vector, plasmonic engineering,
 molecule-plasmon coupling, 71–75
Protein detection assay, microwave-accelerated
 metal-enhanced fluorescence, schematic
 representation, 166–170
Protein-fluorophore system, microwave-
 accelerated metal-enhanced fluorescence, 165–168
Protein-protein detection, zinc oxide
 nanoparticles, 375–378
Pseudotubular nanoparticles, plasmonic
 engineering, surface-enhanced
 fluorescence experiments, 83–85
Purcell factor, surface plasmon polaritons,
 395–396
 plasmonic DOS and F_p, metal alloy/
 semiconductor, 407–409
 zinc-oxide emission mediation, 400–402
PVP reduction:
 anisotropic synthesis, aqueous surfactant
 methods, 341–348
 thermal anisotropic synthesis, nanoprisms,
 339–340
Quadrupolar resonance:
 anisotropic synthesis, photochemical methods,
 348–350
 surface plasmon enhanced photochemistry,
 aggregation processes, 272–273
Quadrupolar resonance (QRs), electron beam
 lithography, 424–427
Quality factor (Q):
 plasmon enhanced photoluminescence, organic
 electronics applications, 549–550
 waveguide evanescent waves, 211–214
Quantitative active surface plasmon grating
 coupled emission, pitch size effects,
 480–483
Quantum dots (QDs):
 electron beam lithography, 422–427
 gold nanoparticle layers, 303–304
 liposomal amplification of metal-enhanced
 fluorescence (MEF), 229–230
 metal-enhanced chemiluminescence, 424–427
 near-infrared metal-enhanced fluorescence,
 120–121
 silver nanopism, wavelength-dependent
 excitation enhancement, 107–112
Quantum efficiency, surface plasmon polaritons,
 393–396
Quantum rods, electron beam lithography,
 422–427
Quantum yields:
 particle-fluorophore interactions, gold nanoparticles, fluorescent quenching, 577
 singlet oxygen generation, Rose Bengal photosensitization, 282–286
 Quasi-static approximation, localized surface plasmon resonance, 193–196
Quenching:
 gold nanoparticles:
 biomedical applications, 580–595
 autofluorophore quenching, 586–588
 cancer and cellular imaging, 586–595
 collagen quenching, 590–592
 NADH quenching, 588–590
 in vitro DNA detection, 580–582
 in vitro immunosay, 582–584
 in vivo tumor imaging, 584–585
 whole cell quenching, 592–595
 enhanced optical properties, 574–576
 future research, 595–596
 particle-fluorophore interactions, 576–580
 donor-acceptor probes, 577–578
 donor-AuNP probes, 579
 fluorescence enhancement, 579
 molecular fluorescence mechanism, 576–577
 surface plasmon resonance, 573–574
 metal-enhanced fluorescence, metallic nanoparticles, 206–207
 metal nanoparticle characteristics, 207
 optical biosensors, plasmonic enhancement, 141–143
 plasmonic effects, molecular photophysics, 550–551
 plasmonic engineering, unified model, surface-enhanced fluorescence, 76–78
 surface plasmon polaritons, zinc-oxide emission mediation, 398–399
 tryptophan-silver colloid, multi-photon excitation, 537–540
Radiation patterns, nanoaperture-enhanced fluorescence, 507
Radiative decay rate:
 electron beam lithography, metal-enhanced fluorescence, 423–427
 grating-based fluorescence enhancement, metal-organic interface, 466–469
 light-emitting diodes, external quantum efficiency, 393
 local field enhancement, 307–308
 metal-enhanced fluorescence, spectral modification, 29–30
 emission-dominated substrates, 44–45
 enhancement mechanisms, 31–32
 extinction profile, 49
 local field enhancement, 33–34
 plasmon-enhanced, organic electronics applications:
 absorption and luminescence properties, 545–547
 distance dependence and coverage artifacts, 555–558
 electroluminescent devices, 560–564
 future research issues, 566–567
 metallic nanoparticles, photoluminescence enhancement, 547–550
 molecular photophysics, 550–551
 molecular spectroscopy, 558–559
 OLED phosphor enhancement, 551–555
 photoluminescence enhancement limitations, 559–560
 photovoltaics, 564–566
 research background, 543–544
 surface plasmon coupled chemiluminescence, 459–461
Radiative plasmon model, excited-state fluorophore coupling, 308–310
Radiative surface plasmon polaritons, in metal-insulator-metal structures, 409–412
Radiation absorption data, optical biosensors, plasmonic enhancement, nanoparticle size optimization, 150–154
Raman scattering:
 metal-enhanced fluorescence, 543
 plasmon-enhanced photoluminescence, organic electronics applications, 549–550
 Rayleigh scattering, multi-photon excitation, colloidal nanoparticles, 531–534
Reactive oxygen species (ROS), basic properties, 277–278
Red-shift phenomenon:
 optical biosensors, plasmonic enhancement, 142–143
 quantum dot emission control, 303–304
 silver nanoprisms, plasmon peak position, 104–105
Refractive indices:
 spherical metallic nanoparticles, evanescent wave scattering, 198–200
 surface plasmon resonance tuning, 304–306
 waveguide evanescent waves, 208–214
Relative enhancement, optical biosensors, plasmonic enhancement, distance dependence, fluorophore separation, 156–157
Relaxation pathways, grating-based fluorescence enhancement, 469
Resonance tuning, surface plasmon polaritons:
 metal alloys, 405–406
 plasmonic DOS and F_p, metal alloy/semiconductor, 407–408
Rhodamine red monolayer:
nanoaperture-enhanced fluorescence, single molecule studies, 497–501
silver nanoprisms, plasmon peak position, 99–105
Rose Bengal solution:
metal-enhanced phosphorescence, 15–19
singlet oxygen generation, photosensitization with, 281–286
Ru(TT)tris(4,7 diphenyl-1,10 phenanthroline dichloride), optical biosensors, plasmonic enhancement, nanoparticle size optimization, 148–154
Ruthenium-polyelectrolyte (Ru-PEL) layers, optical biosensors, plasmonic enhancement:
distance dependence, fluorophore separation, 155–157
uniform nanoparticle deposition, 146–148
Sandwich immunoassay:
fluorophore-metallic nanoparticles or adsorbed colloidal particles, 223–224
IgG/anti-IgG binding kinetics, 233–234
surface plasmon wave sensors, 191–192
Sapphire substrate, microwave-accelerated metal-enhanced fluorescence, protein assays, 167–168
Scanning electron microscopy (SEM):
controlled colloidal aggregation, near-infrared metal-enhanced fluorescence, 129–130
electron beam lithography, 426–427
device fabrication, 469–471
gold nanodecahedra, 329–330
grating-based fluorescence enhancement:
fabricated devices, 469–471
multilayer grating coupled emission, active plasmonic models, 473–480
microwave-accelerated metal enhanced fluorescence, planar metallic surfaces, 164–165
silver nanoprisms, fluorescence enhancement, 94–99
silver nanowires, 313–315
spontaneous galvanic displacement reactions, 432–433
zinc oxide nanoparticles, 369
Scattering spectra:
excited-state fluorophore coupling, 309
gold nanoparticles, optical enhancement, 574–576
metallic nanoparticles, local field enhancement, 201–203
multi-photon excitation, colloidal nanoparticles, 530–534
optical biosensors, plasmonic enhancement, 141–143
spherical metallic nanoparticles, evanescent wave scattering, 197–200
surface plasmon polaritons:
plasmonic DOS and F_p, metal alloy/semiconductor, 407–408
zinc-oxide emission mediation, 400–402
Second excited states (S_2), metal-enhanced fluorescence applications, 8–12
Selective binding model, anisotropic synthesis:
combined selective/non-selective growth modes, 330–334
gold nanodecahedra, 329–330
gold/silver nanoparticles, 311–312
nanooctahedra, 327–329
nanoparticle shapes, 326–335
nanoprisms, 336–338
Selective heating mechanism, microwave-accelerated metal-enhanced fluorescence, 165–168
Self-assembled monolayers (SAMs), nanoaperture-enhanced fluorescence, 493–496
Self-similarity analysis, plasmon-enhanced photoluminescence, organic electronics applications, 548–550
Sellmeir dispersion model, surface plasmon polaritons, zinc-oxide emission mediation, 400–402
Semiconductor hollow optical waveguides, omnidirectional reflector (SHOW-ODR), microarray applications, 240–242
Semiconductor nanocrystals (NCs):
electron beam lithography, 421–427
grating-based fluorescence enhancement:
active plasmonic models, 472–474
fabricated devices, 469–471
surface plasmon polaritons, plasmonic DOS and F_p, metal alloy/semiconductor, 406–408
Shape parameters:
gold nanoparticles, fluorescent quenching, 573–574
localized surface plasmon coupled fluorescence fiber biosensor, 205–207
Signal-amplified fluorescent probing:
motoric nanoparticles, 220–221
optical fiber biosensors, liposome amplification, 224–226
Signal-to-noise ratio (SNR):
IgG/anti-IgG binding kinetics, 233–234
near-infrared metal-enhanced fluorescence, 119–121
wavelength-dependent excitation enhancement, single nanoparticles, 106–112
Silica:
core-shell structures, confocal measurements, 298–301
INDEX

glass optical fibers, 184
liposomal amplification of metal-enhanced fluorescence (MEF), 229–230
metal-enhanced chemiluminescence, 428–433
waveguide evanescent waves, 210–214
microarray applications, 238–242
Silica nitride, optical fibers, covalent bonding, 220
Silicon dioxide:
metal-enhanced chemiluminescence, 434–437
optical fibers:
biosensors, plasmonic enhancement, 142–143
covalent bonding, 219–220
glass optical fibers, 184
microarray applications, 238–242
nanoparticle size optimization, 148–154
surface plasmon polaritons:
metal alloy resonance tuning, 405–406
metal-insulator-metal transmission enhancement, 412–413
Silicon nanorods, fluorescence enhancement, 370–372
Silicon nitride, glass optical fibers, 184
Silver halide growth model, anisotropic synthesis, nanoprisms, 337–338
Silver island films (SIFs):
metal-enhanced chemiluminescence, 13–14, 442–443
metal-enhanced chemiluminescence principles, 441–457
metal-enhanced fluorescence, 3–12
fluorophores, 302–304
spontaneous galvanic displacement reactions, 430–433
metal-enhanced phosphorescence, 15–19
microwave-accelerated metal-enhanced fluorescence:
immunosassays, 171–172
planar metallic surfaces, 164–165
near-infrared metal-enhanced fluorescence:
advantages, 122
colloidal coated surfaces, 125–126
experimental protocols, 123–125
singlet oxygen generation:
electric field enhancement, 286
Rose Bengal photosensitization, 281–286
surface plasmon enhanced photochemistry, photodissociation, 267–268
Silver nanobars/nanorice, anisotropic synthesis, polyl techniques, 322–323
Silver nanocubes, anisotropic synthesis, polyl techniques, 322
Silver nanocages, anisotropic synthesis, 328–329
combined selective/non-selective growth modes, 331–334
Silver nanoparticles:
core-shell structures, 298–301
fluorescence enhancement:
plasmon peak position, 99–105
synthesis and optical properties, 94–99
localized surface plasmon coupled fluorescence fiber biosensor, shape parameters, 205–206
metal-enhanced chemiluminescence principles, 441–443
microwave-accelerated metal-enhanced fluorescence, 175–176
plasmon-enhanced photoluminescence, organic electronics applications, 548–550
distance dependence and coverage artifacts, 556–558
phosphor-based OLED, 552–555
photovoltaic applications, 564–566
signal-amplified fluorescent probing, 220–221
singlet oxygen generation, Rose Bengal photosensitization, 285–286
surface plasmon enhanced photochemistry, 265
surface plasmon polaritons, zinc-oxide emission mediation, 403–404
wavelength-dependent excitation enhancement, 106–112
Silver nanoprisms, anisotropic synthesis, 338
dilute surfactant methods, 342–348
photochemical methods, 348–350
Silver nanorods, anisotropic synthesis, aqueous surfactant methods, 316–317
Silver nanowires, anisotropic synthesis, polyl techniques, 313–315
Single crystal gold nanorods/nanowires, anisotropic synthesis:
dilute surfactant methods, 317–318
combined selective/non-selective growth modes, 332–334
Single crystal silver nanowires, anisotropic synthesis, 314–315
Single metal nanoparticles:
core-shell nanoparticles, fluorescence quenching, 297–298
fluorescence enhancement, 301–304
microwave-accelerated metal-enhanced fluorescence:
DNA hybridization, 172–174
protein detection assay, 166–168
spectral overlap in fluorescence enhancement, 91–112
plasmon peak position, single silver nanoprisms enhancement, 99–105
silver nanoparticle synthesis and optical properties, 94–99
wavelength-dependent excitation, 106–112
surface plasmon polaritons, 394–396
surface plasmon waves, 190–192
Single mode fibers (SMFs), 183–189
waveguide evanescent waves, 210–214
Single molecule studies, nanoperture-enhanced fluorescence, 496–501
real-time DNA sequencing, 518–519
solution-enhanced analysis, 517–518
Single nanoparticles, metal-enhanced fluorescence, 490–507
Single oxygen, metal-enhanced phosphorescence, photodynamic therapy, 15–19
Single-photon absorption, colloidal nanoparticles, 53–54
Single-stranded DNA (ssDNA), bioassays, zinc oxide nanomaterials, 373–375
Singlet oxygen,
basic properties, 278
metal-enhanced fluorescence, 281–286
distance dependence, 286
electric field enhancement, 286
Rose Bengal photosensitizer, 281–286
Size optimization,
gold nanoparticles, fluorescent quenching, 573–574
localized surface plasmon coupled fluorescence fiber biosensor, 206–207
optical biosensors, plasmonic enhancement, 148–154
Slow-dynamics metal-enhanced fluorescence (SDMEF), metal-enhanced fluorescence:
basic properties, 35
decay rate modification, 36–37
fluorescence intensity, 37–38, 43–45
spectral profile modification, 37
ultra-fast-dynamics metal-enhanced fluorescence regime comparison, 39–40
Solution-enhanced single-molecule analysis, nanoperture fluorescence, 517–518
Solvent dispersion, liposome preparation, optical fiber biosensors, 226–227
Spacer effects, surface plasmon polaritons, zinc-oxide emission mediation, 398–399
Spectral overlap, single metal nanoparticle enhancement, 91–114
plasmon peak position, single silver nanopism enhancement, 99–105
silver nanopism synthesis and optical properties, 94–99
wavelength-dependent excitation, 106–112
Spectral profile modification (SPM):
metal-enhanced fluorescence, 25–62
absorption process, 27–28
averaging effect, 43
background subtraction, 49–52
decay process, 28–29
electromagnetic predictions, 45–47
evidence-based approach, 52–54
fast-dynamics regime evidence, 54–55
fast-dynamics regime signal intensity, 47–48
fluorescence enhancement factor, 32–33
fluorescence process, 27–29
fluorophore comparisons, 55–56
free-space case study, 26–27
free-space fluorescence spectrum, 48–49
future research issues, 60–61
intermediate regime, 40–43
local field enhancement, 31
local-radiative field enhancement factor linkage, 33–34
model, 29–30
notations and assumptions, 26
plasmonic effects, 30–31
polarization effects, 38–60
qualitative analysis, 43–44
radiation enhancement and extinction profile, 49
radiative/non-radiative enhancements, 31–32
radiative/non-radiative substrate, 44–45
regime characteristics, 34–35
relaxation process, 28
SERS continuum, 57–58
slow-dynamics regime, 35–38
fluorescence intensity, 37–38
free-space spectral profile, 37
modified decay rates, 36–37
ultra-fast-dynamics regime, 38–40
slow-dynamics regime vs, 39–40
plasmonic engineering, 69–71
Spherical metallic nanoparticles:
computation studies, one-dimensional growth, 319–321
evanescent wave scattering, 197–200
fluorescence enhancement, 300–301
gold nanoctahedra, anisotropic synthesis, 327–328
singlet oxygen generation, Rose Bengal photosensitization, 282–286
surface plasmon enhanced photochemistry, 262–265
Spontaneous galvanic displacement reactions
(SGDR), metal-enhanced fluorescence, 427–433
Squamous cell cancer (SCC), gold nanoparticles, fluorescent quenching, in vivo tumor imaging, 586–586
Stacking faults, anisotropic synthesis, aqueous surfactant methods, 344–348
Stockman nanokens, plasmon-enhanced photoluminescence, organic electronics applications, 547–550
Stokes shift parameters, near-infrared metal-enhanced fluorescence, 120–122
Structured apertures, fluorescence enhancement, 515–517
Structured emissions, metal-enhanced fluorescence applications, 9–12
INDEX 623

Sub-diffraction diffusion analysis, nanoperture-enhanced fluorescence, 519-520
Sub-wavelength metallic apertures, metal-enhanced fluorescence:
aperture arrays, 507-517
applications, 517-521
basic principles, 489-490
biosensing applications, 520-521
emission enhancement, 505-507
excitation enhancement, 503-505
extraordinary optical transmission, 508-509
nanopapertures, 493
radiation pattern, 507
real-time single molecule DNA sequencing, 518-519
self-assembled monolayers, 493-496
simulation results, 502-507, 513-515
single apertures, 490-507
single molecule studies, 496-501, 517-520
structured apertures, 515-517
sub-diffraction diffusion analysis, lipid membranes, 519-520
surface plasmon chemiluminescence, 509-513
Sulforhodamine B (SRB), silver island films, metal-enhanced fluorescence, 302-304
Sulfuric acid, decladded fibers, 215
Superoxide radicals:
 basic properties, 278-279
 metal-enhanced fluorescence, 287-290
dihydroethidium photosensitizer, 287-288
distance dependence, 289-290
metal-enhanced phosphorescence, 17-19
Surface-enhanced fluorescence (SEF), plasmonic engineering:
 basic principles, 67-71
 experimental techniques, 79-85
 future research issues, 85-86
 molecule-plasmon coupling, 71-75
 unified model, 75-79
Surface-enhanced Raman spectroscopy (SERS):
 metal-enhanced fluorescence, spontaneous galvanic displacement reactions, 428-433
 surface plasmon enhanced photochemistry, 262 comparisons, 273
Surface-enhanced resonance Raman scattering (SERRS):
 metal-enhanced fluorescence, spectral modification, 53-54
 continuum of, 57-58
 near-infrared metal-enhanced fluorescence, nanoparticle interaction-based enhancement, 126-130
plasmonic engineering, 70-71
 unified model, surface-enhanced fluorescence, 75-79
signal-amplified fluorescent probing, metallic nanoparticles, 220-221
Surface modification, optical fibers, 216
Surface plasmon coupled chemiluminescence (SPCC), basic principles, 457-461
Surface plasmon coupled emission (SPCE):
aperture arrays, 509-513
 grating-based fluorescence enhancement, metal-organic interface, 467-469
Surface plasmon coupled fluorescence (SPCF), oxygen-rich species, 279-280
Surface plasmon enhanced photochemistry:
 aggregation processes, 272-273
 basic principles, 261-262
 isomerization case study, 268-272
 photodissociation case study, 266-268
 theoretical background, 262-265
Surface plasmon grating coupled emission (SPGCE):
 active models, 472-474
 grating-based fluorescence enhancement, metal-organic interface, 470-471
Surface plasmon polaritons (SPPs):
 evolution of, 393-396
 extraordinary optical transmission, aperture arrays, 507-517
grating-based fluorescence:
 active plasmonic models, 472-474
 basic principles, 465
 fabricated devices, 469-472
 multilayer emissions, active plasmonic models, 474-480
 multilayer grating-coupled emission, active plasmonic enhancement and tunability, 474-480
 pitch size effect, 480-483
 radiative decay, metal-organic interface, 465-469
 SPGCE-based active plasmonic model, 472-474
nanoaperture enhanced fluorescence, self-assembled monolayers, 493-496
zinc-oxide platforms, 397-404
 emission mediation, 397-404
 energy optimization, 405-409
 forward emission enhancement, 413-415
 metal alloy tuning, 405-406
 metal-insulator-metal radiative SPPs, 409-412
 metal-insulator-metal transmission enhancement, 412-413
 morphological effects, 402-404
 plasmonic DOS and Fp, metal alloy/semiconductor interface, 406-408
 Purcell factor variation, 409
 spacer effects, 398-399
 temperature effects, 399-402
Surface plasmon resonance (SPR):
anisotropic synthesis, photochemical methods, 348-350
Surface plasmon resonance (SPR) (cont'd)
excited-state fluorophore coupling, 308–309
gold nanoparticles, 573–574
optical enhancement, 574–576
local field enhancement, 306–308
metal-enhanced fluorescence, 4–12
core-shell nanoparticles, fluorescence quenching, 297–298
metallic nanoparticles, 296–304
spectral modification, 41–43
metallic nanoparticles, fluorescence enhancement, 300–301
microwave-accelerated metal-enhanced fluorescence, planar metallic surfaces, 164–165
tuning, 304–306
Surface plasmon waves (SPW), fiber optic biosensors, 189–192
Surfactant properties:
anisotropic synthesis, gold nanowires/nanorods, aqueous surfactant methods, 315–319
computational studies, one-dimensional growth, 319–321
TAMRA-Oligo emission spectra, microwave-accelerated metal-enhanced fluorescence, 175–176
Telomerase assay, zinc oxide nanomaterials, 380–382
Telomeric repeat amplification protocol (TRAP), zinc oxide nanomaterials, telomerase assay, 381–382
Telomeric repeat elongation (TRE) assay, zinc oxide nanomaterials, 382
Temperature effects, surface plasmon polaritons, zinc oxide emission mediation, 399–402
Temperature gradient, microwave-accelerated metal-enhanced fluorescence, protein detection assay, 166–168
Templated nanostructures, anisotropic synthesis, 351
Thermal methods, anisotropic synthesis, nanorims, 339–348
aqueous surfactant preps, 340–348
DMF reduction, 339
PVP reduction, 339–340
Tollens reaction, plasmon-enhanced photoluminescence, organic electronics applications, 549–550
Total internal reflection (TIR):
evanescent wave scattering, spherical metallic nanoparticles, 198–200
fiber optic biosensing, 183–189
localized surface plasmon of metallic nanoparticles, 192–193
Transferable triangle structures, microwave-triggered metal-enhanced chemiluminescence, 453–454
Transmission electron microscopy (TEM):
anisotropic synthesis:
aqueous surfactant methods, 343–348
nanoprisms, 336–338
nanostars, 334–335
dendritic nanostructures, 334–335
gold nanodendrimer, 329–330
gold/silver nanoparticles, anisotropic synthesis:
aqueous surfactant methods, 317–319
selective binding, 312
optical biosensors, plasmonic enhancement, nanoparticle size optimization, 150–154
silver nanowires, 313–315
surface plasmon polaritons, zinc-oxide emission mediation, 403–404
zinc oxide nanoparticles, film formation, 396–397
Transmission enhancement, metal-insulator-metal structure, 412–413
Transverse electric (TE) mode, waveguide evanescent waves, 208–214
Transverse magnetic (TM) mode, waveguide evanescent waves, 208–214
Triplet states, plasmon-enhanced radiative rates, phosphor-based organic light-emitting diodes, 551–555
Tryptophan-silver colloid, multi-photon excitation, 534–540
Tumor imaging, gold nanoparticles, fluorescence quenching, 584–586
autofluorophores, 586–588
collagen quenching, 590–592
NADH quenching, 588–590
whole cell quenching, 592–595
Twinning defects, anisotropic synthesis, nanoprisms, 337–338
Ultra-fast-dynamics metal-enhanced fluorescence (UFDMEF), spectral profile modification:
basic properties, 35
model regime, 38–39
slow-dynamics metal-enhanced fluorescence comparison, 39–40
Ultra-fast/ultra-sensitive clinical assays, metal-enhanced chemiluminescence, 445–448
Ultraviolet (UV) regions:
glass optical fibers, 184
metal-enhanced fluorescence, singlet oxygen generation, Rose Bengal photosensitization, 281–286
Unified plasmon/fluorophore description, 1–2
Uniform nanoparticle deposition, optical biosensors, plasmonic enhancement, 145–146
Unipolarized angular emission profile, aperture arrays, surface plasmon coupled emission, 512–513
Unstructured emissions, metal-enhanced fluorescence applications, 9–12
Vector polarizability, plasmonic engineering, molecule-plasmon coupling, 73–75
Vibronic states, metal-enhanced fluorescence, spectral modification, 30
Visible regions, glass optical fibers, 184
Water surfaces, microwave-accelerated metal-enhanced fluorescence, protein detection assay, 166–168
Waveguide properties:
 fiber optic evanescent, 208–214
 microarray applications, 238–242
 nanoperture-enhanced fluorescence, single molecule studies, 497–501
Wavelength dependence. See also Sub-wavelength metallic apertures
 excitation enhancement, single nanoparticles, 106–112
 metallic nanoparticle fluorescence, absorption efficiency, 204–205
 microwave-accelerated MEF, planar metallic surfaces, 103–165
 nanoperture enhancement, 503–505
 surface plasmon grating coupled emission, quantitative active surfaces, 481–483
Western blot techniques, microwave-triggered metal-enhanced chemiluminescence applications, 455–457
Whole cell quenching, gold nanoparticles, 592–595
Wigner-Seitz radius, surface plasmon polaritons, metal alloy resonance tuning, 405–406
X-ray diffraction (XRD), zinc oxide nanoparticles, 368–369
film formation, 396–397
Y error bars:
 silver nanoprisms, plasmon peak position, 103–105
 single metal nanoparticle enhancement, silver nanoprisms, 98–99
Zinc-oxide nanoparticles:
 biodetection, synthesis and characterization, 366–369
cytokine assay, 382–383
DNA hybridization reaction, 372–375
fluorescence enhancement effect, 370–372
fluorescence enhancement pathways, 379–380
future research and applications, 383–384
properties and applications, 365–366
protein-protein reaction, 375–378
radio-frequency magnetron sputtering system, 396–397
surface plasmon polaritons, 397–404
emission mediation, 397–404
energy optimization, 405–409
evolution of, 393–396
forward emission enhancement, 413–415
metal alloy tuning, 405–406
metal-insulator-metal radiative SPPs, 409–412
metal-insulator-metal transmission enhancement, 412–413
morphological effects, 402–404
plasmonic DOS and F, metal alloy/semiconductor interface, 406–408
Parcell factor variation, 409
spacerr effects, 398–399
temperature effects, 399–402
telomerase assay, 380–382
Z-polarized incident light, surface plasmon enhanced photochemistry, 262–265