Index

Page numbers in italics refer to illustrations and tables.

1-cyano-trans-1,2-bis-(4-methylbiphenyl) ethylene (CN-MBE) 343, 344
1-phenyl-3-(dimethylamino)-styryl)-5-((dimethylamino)phenyl)-2-pyrazoline (PDDP) 338, 339
1,2-bisthiényl ethene (BTE) 343, 344
1,2-dimethyl-3-propyl-imidazolium iodide (DMPII) 449
1,3-diphenyl-2-pyrazoline (DP) 354, 361, 362
1,3-diphenyl-5-(2-anthryl)-2-pyrazoline (DAP) 339, 340
1,3-diphenyl-5-pyrenyl-2-pyrazoline (DPP) 341, 342, 395
1,3,5-triphenyl-2-pyrazoline (TPP) 344, 345, 358, 360
1,4-dicyanobiphenyl (DCN) 358
1,4,5,8-Naphthalene tetracarboxylic dianhydride (NTCDA) 68
1,5-diaminoanthraquinone (DAAQ) 363, 364
2-(7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)methylene] malononitrile (K12) 68
2-mercaptopropanoamide 231
2-methoxy,5-(2'-ethylhexoxy)-4-phenylevinylene (MEH-PPV) 30, 32, 33, 34, 282, 287, 291, 292, 293, 408, 409, 427
2-tert-butylinyl-5-biphenyl-1,3,4-oxadiazole (PBD) 306, 307, 308, 309, 310, 311, 312–314, 315, 316
2,1,3-benzothiadiazole 453
2,2',7,7'-tetrakis-(N,N-di-p- methoxynaphthyl)amino)-9,9'-spirobifluorene (spiro-MeOTAD) 441, 442
2,2',7,7'-tetrakis-(N,N-dimethoxynaphthyl)-9,9'-spirobifluorene (spiro-O-MeTAD) 444, 446, 448
2,2"-bidithieno[2,3-b:2',3'-d]thiophene 79
2,4,5-triphenylidimazolizane (TPI) 340, 341, 352, 353, 356, 357, 366–368, 370
2,6-bis(phenylethynylene)benzo[1,2-b:4,5-b'] dithiophene (BPEBDT) 123, 124
2,6-diphenylbenzo[1,2-b:4,5-b'] dichalcogenophanes 60
2,7-carbazole 216, 217
2,7-silaflourene 415
3-(anthracen-10-yl)-1-phenylpro-2-en-1-one (AFO) 370
3-methoxypropionitril (MPN) 449
3,4-dihexylthiophene 411
3,4-ethylenedioxythiophene (EDOT) 446, 447, 449
3,7-distyrylbenz[a]dithiophene 80
3',4'-dibutyl-5,5''-bis(dicyanomethylene)-5,5''-dihydro-2,2',5',2''-terthiophene (DCMT) 67, 68
4-(5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl)-biphenyl-4'-yl sulfonic sodium (t-Bu-PBD-SO3Na) 320
4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)4H-pyran (DCM) 344, 345, 361, 362
4-tert-butylyridine (TBP) 440, 441, 444
4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b'] dithiophene 447
4,4-diphenylidinothiolenol (DTS) 450
4,7-bis(3-hexylthienyl)-2,1,3-benzothiadiazole 427
4,8-bis(2-thienyl)-benzo[1,2-b:4,5-b'] dithiophene 419
5,5''-diphenyloctaphenylene-2,2',5',2''-quaterthiophene 66
5,5''-diphenyloctaphenylene-2,2',5',2''-quaterthiophene 66

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
Index

5,12-bis(triisopropylsilylethynyl) tetraceno[2,3-b]thiophene 61
6-phenyl-C61-butyric acid methyl ester (PC61BM/PC71BM) 377, 407–409, 416, 417, 419, 421, 423
6,6-phenyl-C71-butyric acid methyl ester (PCBM) 409, 410
6,13-dihydro-6,13-diazapentacene (DHDAP) 63, 64
6,13-pentacenequinone (PQ) 146
9,10-bis(phenylethynyl)anthracene (BPEA) 362
9,10-diphenylanthracene (DPA) 48, 105
α-sexithiophene 384
π-π stacking 8, 30, 103, 132, 154
π-conjugated systems 10, 24

a
absorption spectra 12
acceptors 16
accumulation mode 97
acenes 48, 49, 77
acetonitrile 456
AFM-assisted mask patterning 243
aggregation-induced enhanced emission (AIEE) 342–344
air dielectrics 116, 117
aldol reaction 77
aliphatic chains 210
alkanediols 245
aluminium oxide 188
ambipolar transistor-based thin-film circuits 178–184
analog circuits 209, 210
anhydrides 68–70
anodes (see electrodes)
anodized aluminium oxide (AAO) 354
anthra[2,3-b]benzo[d]thiophene (ABT) 58
anthracene 2, 14, 48, 49
anthracenedicarboximides 69
anthradithiophene (ADT) 57, 58
arithmetic and logic units (ALUs) 199
aromatic hydrocarbons 6, 47
atomic force microscopy (AFM) 122–124, 243

b
ballistic devices 468
band gaps 22
bathochromic shifts 339
benzene 9
benzenedithiol 478, 479
benzo[1,2-b:4,5-b']dithiophene (BDT) 417–419
benzo[d][1,2,9]triazole 419
benzothiadiazole (BT) 387, 388, 416, 421
benzothiadiazole–cyclopentadithiophene (CDT-BTZ) 75
bilinear heterojunctions (BHJs) 377, 378
biomaterial insulators 116
bipolarons 26, 27, 284
bis(dimethylfluorenyl)anilines 448
bis(iminopyrrole) benzene 355
bis(thienylenevinylene)-substituted polythiophene (2TV-PT) 424
bisfluorenylaniline dyes 448–450
bithiophene 424
bottom-gate bottom-contact (BGBC) configuration 96
bottom-gate top-contact (BGTC) configuration 96
bound polaron pairs 30, 31
Bravais–Friedel–Donnay–Harker (BFDH) method 153
buckminsterfullerene (see C60) buffer layers 120
buffered inverters 208
bulk heterojunction (BHJ) solar cells 407

c
C60 (buckminsterfullerene)
– electronic processes 33, 34
– uses
-- photovoltaic cells 377
-- thin-film circuits 187, 191
-- transistors 70, 71, 116, 120, 132, 185, 235, 241
C70 384
C10-DNTT(dinaphtho[2,3-b:2',3'-f]
thieno[3,2-b]thiophene) 133
cadmium selenide nanocrystals 235
calcium (Ca) electrodes 292, 293
carbazole 416
carbon nanotubes (CNTs) 110, 112, 235, 236, 240, 241, 477, 482
carbonyl compounds 77
Carnot efficiency 474–476, 479
Carnot process 473
carriers (see charge carriers)
cathodes (see electrodes)
cyethyltrimethylammonium bromide (CTAB) 354, 361
chalcogen-containing semiconductors (see oligothiophene, tetrathiafulvalene, thienoacenes, thiophene)
charge carriers 6, 35–38, 101–108
– mobility 36–38, 46, 47, 107, 108
charge recombination (see electron back
transfer)
charge-transfer excitons 27, 28, 31, 32
charge-transfer (CT) states 17
chemical deposition 228, 229
chemical vapor deposition (CVD) 222
chenodeoxycholic acid (CDCA) 440, 441,
452
chicken albumin 116
Child’s law 288
chloroaluminum phthalocyanine (AlClPc)
379
chromophores 4, 12, 19, 342
CIE chromaticity coordinates 324, 361, 362
code generators 192, 194
coherent tunneling 245
color rendering index (CRI) 324
column chromatography 80
compact fluorescent lamps (CFLs) 324
complementary configuration 174–176
complementary thin-film circuits 187–192
complex thin-film circuits 192–199
compound-24 52
compound-25 53
conducting channels 44, 46, 97, 108, 109
conduction bands (CBs) 23
conjugated polymers (see metallic conjugated
polymers, polymer semiconductors)
conjugation systems 4
copper hexadecafluorophthalocyanine
(F16CuPc) 66, 111, 187–189, 191, 193,
204
copper phthalocyanine (CuPc) 65, 243
correlated color temperature (CCT) 324
cosensitization 459
coumarin dyes 442–444
critical micelle concentration (CMC) 354
cross-linked polymer blend (CPB) 187
crossed-wire tunnel junction 223, 224
cyano-containing semiconductors 67, 68
cyano-substituted PPVs (CN-PPVs) 427
cyanovinylene 427
cyclopenta[2,1-b:3,4-b’]dithiophene 424
cytop 115
d
DC–DC up-converters 209
density functional theory (DFT) 255, 256
deoxycholic acid (DCA) 440, 441, 443
Dexter energy transfer 21, 305, 306
diphenylamino perylene anhydride 452
direct coupling 480
dithiazoledibenzothiophiadiazole 66
dithieno[3,2-b:2’,3’-d]pyrrole (DTP) 421
dithienocyclopentadiene (DTC) 419
dithienosilole (DTS) 387, 420, 421
dithienosilole–thiophene copolymers 75
dithienothiophene 424
dithienylbenzo[d]imidazole 32, 414–417, 419,
421
dithienyl-dimethyl benzimidazole 417
dithiophene 421
donor–(π-spacer)–acceptor (D–π–A) systems
457, 458
donors 16
doping 23, 24, 45, 344–365, 378
double-angle evaporation 232
double-ended aryl dithiols 222
double-gate transistors 200–202
drain electrodes 97, 99–100, 110, 111
drain voltages 98–100
drain-source bias 97
drift 37
drop-casting 122, 135, 144, 146
dual-gate transistors 185
dye regeneration 438
dye-sensitized solar cells (DSSCs)
437–459
– electronic processes 437–442
– future prospects 457–459
– materials
 – p-type dyes 454–457
 – polymer dyes 453–457
 – small-molecule dyes 442–453
dyes (see also organic dyes, phosphorescent
dyes) 378–384
electrical breakdown method 236
electrochemical deposition 228–230
electrodes (see also nanogap electrodes) 45, 109–113, 117–121
– organic photovoltaic cells 378
– polymer light-emitting diodes 278, 279, 290, 291, 292, 293, 300–302, 308
– single-crystal circuits 218, 219
– single-crystal transistors 144, 146–148
– single-molecule transistors 222–225, 253, 255
– thin-film circuits 182, 183
– thin-film transistors 127–131, 132, 134, 135
electroluminescence quantum yields 285
– electrolytes 215, 230
electromigration 233, 237
electron back transfer 17
electron beam-induced decomposition (EBID) 236
electron quasiparticles 24
electron tunneling junctions 226
electron–phonon coupling 479, 480
electron-beam lithography 226, 227, 233, 234, 241, 243
electron-only devices 293
electron-transporting layers (ETLs) 302, 303
electron-withdrawing units 393
electronic absorption 11, 12
electronic heat conductance 475
electrophoretic displays 192
electrophosphorescent polymer light-emitting diodes
– electronic processes 303–306
– materials 306–308
– performance 309–323
electrostatic bonding 144
emission spectra 13, 19
emission switches 345, 346
end-capping 295, 296
energy bands 22, 23
energy levels 8, 10, 117–119
ethynylene 61, 62
excimers 14, 15, 31, 32
exciplexes 14, 15, 17
excitation energy transfer 18, 19
exciton confinement effect 339
excitons 27–30, 34

fac-tris(2-phenylpyridine) iridium (Ir(ppy)3) 365, 366
Fermi energy 478
field-effect transistors (FETs) (see organic field-effect transistors)

figure of merit, thermoelectric devices 473, 474, 476
flat-band condition 289
flexible circuits 190–193
floating-gate transistors 202, 204
fluorene copolymers 74, 75, 414
fluorene–dithienylbenzothiadiazole copolymer 414
fluorescence 13, 14, 18
fluorescence emission spectra 13
fluorescence excitation spectra 13
fluorescence lifetime 13, 14, 17, 31
fluorescence modulation 346
fluorescence quantum yields 13, 14, 30, 31
fluorescence resonance energy transfer (FRET) 19, 20, 344
fluorescence switching 346
fluorine-containing semiconductors 66, 67, 75
fluoroalkyl naphthalenetetracarboxylic diimide 200
flux (light) 280
focused ion beam (FIB) lithography 241, 242
Förster energy transfer 19–21, 305, 306
Förster radius 19, 20
forward bias 289
Fowler–Nordheim (F–N) plots 251–253
Fowler–Nordheim tunneling 290, 292–295
Frank–Condon principle 11, 13
Frenkel excitons 27–29, 31, 32
fullerenes (see also C60) 70, 71, 376, 377, 424
fused rings 413

gate dielectric capacitance 187
gate electrodes 97, 110
gate voltages 99, 100, 107
germafluorene 415
gold (Au) electrodes 182, 223, 230, 231, 250, 293
gold layer glue technique 148
graphene 110, 112
grazing incidence X-ray diffraction (GIXD) 125, 126
ground-state complexes 32

Hamiltonians 255–257
Heck reaction 79, 80
herringbone packing 102, 103
heteroaecenes 59, 77
heteroatoms 6
Index

hexadecafluorophthalocyanine (F16CuPc) 66, 393
high-aspect ratio configurations 239
high-performance transistors 126, 135
highest occupied molecular orbital (HOMO) 9, 10, 45, 110, 117, 118, 132
hole sources 172
hole-blocking layers 295
hole-injection layers (HILs) 302
hole-only devices 292, 293
hole-transport material (HTM) 437
hole-transporting layers (HTLs) 302, 303
holes 16, 45
hydrophilic/hydrophobic surfaces 120
hypsochromic shifts 340

i
illuminance 280
imides 63, 68–70
incandescent light bulbs 323
indium-tin oxide (ITO) 110, 278, 279, 293, 308, 378
indoline moiety 452
indolo[3,2-b]carbazole (ICZ) 64, 417
inelastic electron tunneling spectroscopy (IETS) 247–251
injection barriers 283
injection-limited currents (ILCs) 288
ink-jet printing 138, 213, 214
inorganic semiconductors 6, 7, 23, 28, 36, 101, 104
insulators 113–117, 119, 120
– printed circuits 215
– single-crystal transistors 146, 149–152
– thin-film circuits 185, 187
– thin-film transistors 127–131, 132, 134, 135
intensity (light) 280
interfaces 117–121
intermolecular fluorescence resonance energy transfer (IFRET) 367
internal conversion 12
intersystem crossing 14
intramolecular charge-transfer (CT) states 17
intrinsic mobility 108
inverters (see also single-crystal inverters) 173–176, 178–183, 187, 189, 191, 192, 206, 208
ionic liquid electrolytes 441
iridium phenylpyridine 304

j
Jablonski diagrams 9, 10
Joule heating 472

k
Keldysh NEGF method 258
Kondo effect 235

l
ladder-type conjugated polymers 6
Lambert–Beer law 11, 12
Lambertian light sources 280, 281, 285, 329
lamellar motif 103
Landauer–Buttiker formula 257, 478
Langevin recombination 284
Langmuir–Blodgett (LB) technique 122, 123, 136, 137, 222
ligand framework 312
linear regime
– thermoelectric devices 473
– transistors 97, 98
liquid redox electrolytes 441
liquid-crystalline molecules 210
liquid-holding structures 135, 136
lowest unoccupied molecular orbital (LUMO) 10, 45, 65, 110, 117, 118, 132
luminance 280
luminous intensity 280–283

m
malononitrile 456
Marcus model 18, 21
master-slave configurations 197
mechanical controllable break (MCB) junctions 226–228
mercaptoalkanoic acids 237, 238
mercury (Hg) electrodes 224, 225
merocyanine 382
metal oxide insulators 113
metal–insulator–metal (MIM) devices 247
metal-free organic dyes 439, 440
metallic conjugated polymers 421–423
methanofullerene 6-phenyl-C71-butyric acid methyl ester (PCBM) 181
methyl-substituted ladder-type poly-para-phenylene (MLPPP) 6, 32
micelles 354
microcontact printing 138
microcrystals (see nanocrystals) mobility, charge carriers 36–38, 46, 47, 50, 107, 108, 119
molecular junctions (see single-molecule thermoelectric devices, single-molecule transistors)
molecular lithography 238
molecular orbitals (MOs) 8, 9
Moore’s law 43, 373
multi-solvent recrystallization 80
multi-walled carbon nanotubes (MWNTs) 236, 237, 241
multiple trapping and release (MTR) model 107

n-channel transistors 45, 66, 97, 99, 100, 120
N-heterocyclic acenes 63–65
N-heterocyclic-thiophene copolymers 75
N-methylbenzimidazole (NMBI) 449
n-octadecyltrichlorosilane (ODTS) 119
n-type polymer semiconductors 75, 76, 407
n-type semiconductors 6, 7
– uses
 -- inverters 175
 -- printed circuits 215
 -- thin-film circuits 187
 -- transistors 45, 46, 99, 171
n-type small-molecule semiconductors (see also anhydrides, cyano-containing semiconductors, fluorine-containing semiconductors, fullerenes, imides) 74, 215
N,N'-bis(cyclohexyl)naphthalene-1,4,5,8-bis(dicarboximide) 68
N,N'-di[2,4-difluorophenyl]-3,4,9,10-perylenetetracarboxylic diimide (PTCDI) 217
N,N'-ditridecylperylenediy1ene-3,4,9,10-tetracarboxylicdiimide (PTCDI-C13) 187
nanocrystals 219–221
nanogap electrodes 225–244
nanostructures (see organic nanostructures) 105
naphthalene diimide (NDI) 68, 69, 393
naphtho[2,3-b:6,7-b’]dithiophene (NDT) 384
narrow-band-gap semiconductors 173, 178
near-edge X-ray absorption fine structure (NEXAFS) 125
nickel dithiolene 179
nitrogen-containing semiconductors 63, 65
non-equilibrium Green’s function (NEGF) method 256–258
non-polar organic solids 3

o
oblique angle shadow evaporation 231–233
oligo-p-phenylene 415
oligophenylenemine (OPI) 246–248
oligothiophenes 53, 54, 384, 395, 450
on/off current ratio 46, 101

on-wire lithography 239
one-dimensional (1-D) nanostructures 351, 352–358
operating frequencies 195
organic crystals 140–144
organic dyes 371, 372
organic electrodes 111–113
organic electroluminescence materials 285
organic electronics 2
organic field-effect transistors (OFETs)
 (see also single-crystal transistors, single-molecule transistors, thin-film transistors)
 -- classification 44–46
 -- configuration 96, 97
 -- electronic processes 97–109
 -- carrier transport 101–109
 -- future prospects 81, 155, 156
 -- history 43, 44, 95, 96, 133
 -- materials
 -- electrodes 109–113
 -- insulators 113–117
 -- interfaces 117–121
organic light-emitting diodes (OLEDs) (see also polymer light-emitting diodes) 2, 19, 26, 304, 358
organic nanoparticles 339–344, 346, 347
organic nanostructures (see also nanoparticles, nanowires)
 -- future prospects 347, 348
 -- history 337
 -- optical properties 338–347
organic nanowires 219, 220, 340, 341, 358–362, 368, 369, 477
organic photonics 351, 352
organic photovoltaic (OPV) cells
 -- benefits 375, 376
 -- configuration 377, 378
 -- future prospects 396, 397
 -- materials 376–391
 -- acceptors 391–394
 -- donor–acceptor dyads 395, 396
 -- donors 378–391
organic semiconductors/solids (see also organic nanostructures, polymer semiconductors, small-molecule semiconductors)
 -- advantages 1, 2, 44, 96
 -- aggregations 7, 8
 -- classification 3–7, 44–46
 -- future prospects 81
 -- history 2, 44, 95, 96
 -- molecular geometry 7
 -- optical properties 337
poly[3,4-ethylenedioxythiophene]:poly(styrenesulfonate) (PEDOT:PSS) 112, 278, 308, 327, 383, 482, 483
poly[4,4′-bis(2-ethylhexyl) dithieno[3,2-b:2′,3′-d]silole-2,6-diy-alt-(2,1,3-benzothiadiazole-4,7-diy)] (PDTSBTD) 424
poly(5-(pyridin-2-yl)vinylene) 32
poly(9,9-dihexylfluorene)-co-2,5-dicyanophenylene (PF3CNP1) 306, 307, 308, 319, 320, 321, 322
poly(9,9-dioctylfluorene-2,7-diy-alt-1,4-bis[2-(5-thienyl)-1-cyanovinyl]-2-methoxy-5-(3,7-dimethyloctyloxy)benzene]
poly(9,9-dioctylfluorene-co-bithiophene) 213
poly(aryleneethynylene)s (PAEs) 422, 423
poly(acenes) 6
poly(acetylene) 7, 95, 481
polyaniline (PANI) 25
polybenzodithiophene 417–419
poly(carbazole) 416, 417
poly(carbazole) sulfonic lithium (PVK-SO3Li) 330
poly(diacetylenes) 29
poly(dimethylsiloxane) (PDMS) 190
polyenes 4
polyethylene naphthalate 190
polyfluorenes (PFs) 297, 300, 325, 326, 413–415
polysiloxane methacrylate 185
polymer electrodes 112
polymer insulators 114–116, 120
polymer light-emitting diodes (PLEDs) (see also electrophosphorescent PLEDs, white-light PLEDs)
 – architecture 278
 – electronic processes 283–296
 -- carrier injection 283, 284, 295, 296
 -- carrier recombination 284
 -- carrier transport 284–286
 -- current–voltage characteristics 286, 287
 -- diffusion-controlled currents 288
 -- injection-limited currents 288
 -- photon emission 284, 285
 -- space–charge-limited conduction 286–288
 -- tunneling 289–294
 -- fabrication 278, 279
 -- history 277
 – materials
 -- electrodes 300–302
 -- electron-transporting layers 302, 303
 -- hole-injection layers 302
 -- hole-transporting layers 302
 -- semiconducting polymers 296–300
 -- measurement 279–283
polymer semiconductors (see also metallic conjugated polymers, n-type polymer semiconductors, p-type polymer semiconductors)
 – drawbacks 45
 – electronic processes 22–35
 -- doping 23, 24
 -- energy bands 22, 23
 -- excited states 24–30
 -- interchain interactions 30–32
 -- photoinduced charge transfer 32–35
 -- history 71, 72, 133
 -- performance 24, 133–135
 -- uses
 -- light-emitting diodes 278, 296–300, 306–308
 -- photovoltaic cells 377
 -- solar cells 408–428, 453, 454
 -- thermoelectric devices 480–482
 -- thin-film transistors 133–135
polymer solar cells (PSCs)
 – future prospects 428, 429
 – materials
 -- acceptors 423–428
 -- donors 408–423
 -- structure 407
polymer methacrylate (PMMA) 54
polymer solar cells (PSCs)
 – future prospects 428, 429
 – materials
 -- acceptors 423–428
 -- donors 408–423
 -- structure 407
polyselenophenes 178
polythiophene (PT) 25, 43, 71–73, 299–301, 410, 413, 481
polythiophene carboxylic acid 453
polyvinylphenol (PVP) 213, 214
porphyrin 65, 422
printed circuits 213–216, 259
printed thin-film transistors 133, 137–139
propylene carbonate 456
pyrene 14, 52
pyrene–polypyrrole (PPy) 346, 347
quantum confinement effect 337, 338
quantum dots (QDs) 338, 477
quasiparticles 24
quaterthiophene 413
quinoxaline 414
quinquethiophene 210
random-walk model 30
rattlers 475
recrystallization 80
refrigeration devices 471
remote energy relay (RER) 368
renewable energy 375
reorganization energy 108
resistive-drain configuration 174
resonance energy transfer (see fluorescence resonance energy transfer)
ring oscillators 174, 176, 177, 179, 183, 184, 189, 190, 205
roll-to-roll (R2R) process 138, 139, 213
rubrene 5, 51, 117, 120, 155, 219, 359, 360
ruthenium dyes 439
rylene 424
rylene diimides 391–393
sandwich-herringbone packing 103
saturation regime 100
scaling-down process 237
scanning electron microscopy (SEM) 124
scanning probe lithography (SPL) 243, 244
scanning transmission microscopy (STM) 222, 223, 478
Schottky barriers 286, 287
Seebeck coefficients 469–473, 476, 479, 481–483
Seebeck effect 469, 478
self-assembled circuits 210–213
self-assembled monolayers (SAMs) 116, 119–120, 188, 189, 207, 210
self-assembled nanostructures 352–355
self-assembled thin-film transistors 135–137
shadow masks 147, 240
shift registers 195, 196–198, 199
short-channel effect 133
signal delay 205, 206
silicon dioxide (SiO2) 113
silicon nanogaps 239
silicon wafers 110
silver (Ag) electrodes 117, 119
single-C60 transistors 235
single-crystal circuits 216–221
single-crystal field-effect transistors (SCFETs)
 – advantages 140
 – fabrication 48, 49, 144–148
 – future prospects 259
 – growth of organic crystals 140–144
 – performance 48, 49, 148–155
single-crystal inverters 217, 218, 220, 221
single-electron transistors 235
single-layer polymer light-emitting diodes 278
single-molecule thermoelectric devices 477–480
single-molecule transistors
 – advantages 221
 – electronic processes 244–253
 – fabrication 222–244
 – future prospects 259
 – theory 253–259
single-solvent recrystallization 80
single-walled carbon nanotubes (SWNTs) 237, 242
singlet energy transfer 21
singlet states 10, 11, 16, 19, 26
singlet–singlet energy transfer 19
skutterudites 475
small-molecule semiconductors (see also n-type small-molecule semiconductors,
p-type small-molecule semiconductors)
 – advantages 45
 – electronic processes 8–21
 – electron transfer 15–18
 – energy transfer 18–21
 – molecular orbitals 8, 9
 – photon absorption 9–12
 – photon emission 9, 10, 13–15
 – vibrational energy levels 10, 11
 – performance 45, 47, 126–131
– synthesis 45
– uses
 – printed circuits 215
 – solar cells 376–391, 442–453
 – thermoelectric devices 482
 – thin-film transistors 121, 126–133
solar cells (see also organic photovoltaic cells, polymer solar cells) 34, 35
solid-state lighting (SSL) 324
solitons 25
solution-processed techniques 142–144
solvent-atmosphere method 142
solvent-exchange method 142
Sonogashira reaction 79
source electrodes 97, 99, 100, 110, 111
source voltages 100
Soxhlet extraction 81
space–charge-limited conduction (SCLC) 286, 288, 290
spin coating 122, 135, 137
squaraine (SQ) 383
starburst configurations 458, 459
Stern–Volmer equation 14
Stern–Volmer quenching constant 14
Stille reaction 78
structure–property relationships 153–155
subnaphthalocyanine (SubNc) 382
substrates 110
super-linear regime 100
superlattice structures 477
surface-enhanced Raman scattering (SERS) 227
Suzuki reaction 78, 79
switching voltages 203, 205

* tandem structures 378
temperature effects
 – electronic processes in organic semiconductors 10, 11, 14, 104, 105, 106, 107, 108, 113
 – electronic processes in polymer light-emitting diodes, 286
 – electronic processes in single-molecule transistors 245, 246, 247, 251
 – fabrication of single-molecule transistors 235
 – fabrication of thin-film transistors 121, 135
 – growth of organic crystals 140, 141, 142
 – performance of thin-film transistors 123, 124, 125
template nanolithography 239
template-induced self-assembly 353–355
tert-butylpyridine 449
terthiophene 314, 424
tetracene 50, 51
tetracyanoquinodimethane (TCNQ) 67, 120	etrahydrofuran (THF) 450
tetrakis(4-carboxyphenyl)porphyrin 456	etramethylpentacene (TMPc) 217
tetrapyrrole macrocycles 6
tetrathiafulvalene (TTF) 62, 63, 69
tetrathiafulvalene:tetracyanoquinodimethane (TTF:TCNQ) 112	thermocouples 471
thermoelectric devices 467–484
 – advantages 467
 – efficiency 472–474
 – figure of merits 473–476
 – electronic processes 468–472
 – future prospects 483, 484
 – materials 476, 477
 – composite materials 482, 483
 – polymer devices 480–482
 – single-molecule devices 477–480
 – small-molecule devices 482
thermoelectric effect 467, 469
thermoelectric figure of merit 473–476
thermopiles 471
thiadiazolopyridine (TP) 387
thiazolothiazole 388
thieno(3,2-b)indole 452
thienoaacenes 57–62
thienopyrroledione 419, 421
thienothiophene 417, 450
thin-film ambipolar transistor-based circuits 178–184
thin-film complementary circuits 187–192
thin-film complex circuits 192–199
thin-film transistors (TFTs)
 – fabrication 121, 122
 – printing 137–139
 – self-assembly 135–137
 – performance 49, 50, 122–135
 – use in analog circuits 209, 210
thin-film unipolar transistor-based circuits 184–186
thiol–DNA–biotin template method 241
thiophene 45, 53, 55–57, 59, 72, 73, 421, 443, 444, 448
thiophene–heteroacene copolymers 73, 74
thiophene–phenylene–thiophene (TPT) 421
thiophene–thiazolothiazole copolymers 74
Index

Thomson effect 471, 472
three-bit row decoders 199, 200, 201
threshold voltages 46, 100, 200–203
time-of-flight (TOF) methods 37, 105, 140
titanium dioxide (TiO$_2$) 437–441
titanyl phthalocyanine (TiOPc) 65, 119, 124, 125
trans-polyacetylene (t-PA) 4, 23–25
transfer curves 100, 101
transfer integrals 108
transistors (see organic field-effect transistors)
transition voltage spectroscopy (TVS) 251–253
transmission electron microscopy (TEM) 125, 126, 235
transmission supernodes 479
traps 107
tribenzenedithiol 478
trifluoroacetyl (TFA) 387
trisopropylsilylethynyl (TIPS) 50
triphenylamine (TPA) 387–391, 444–447, 456
triplet energy transfer 21, 303, 304
triplet states 10, 14, 16, 26, 423
triplet–singlet energy transfer 19
tris-[2,5-bis-2’-(9,9’-dihexylfluorene) iridium] (Ir(HFP)$_3$) 306, 307, 308, 309, 310, 312, 313, 314, 316, 316–322, 328, 329
tris-[9,9-dihexyl-2-(phenyl-4’-(pyridin-2”-yl)) fluorene] iridium(III) (Ir(DPPF)$_3$) 306, 307, 308, 309, 310, 311, 312, 313, 316
tris-[9,9-dihexyl-2-(pyridinyl-2’)fluorene] iridium(III) (Ir(DPPF)$_3$) 306, 307, 308, 309, 310, 311, 312, 314, 315, 316
tris(8-hydroxyquinolinato)aluminium (Alq$_3$) 2, 6, 358
tris(thienylenevinylene) 424
twisted intramolecular charge-transfer (TICT) 17

u
Ullmann reaction 79
ultraviolet photoelectron spectroscopy (UPS) 379
unipolar transistor-based thin-film circuits 184–186
unipolar transistors 172, 174, 184–186

v
vacuum deposition 121, 135
vacuum dielectrics 116, 117
valence bands (VBs) 22, 23
vanadyl phthalocyanine (VOPc) 65
vapor-Bridgman growth process 140, 141, 142
vibrational energy levels 10–13
vinylene 444
vinylene–terthiophene–vinylene 412
voltage inverters (see inverters)

w
Wannier–Mott excitons 27, 28
waveguides 362–368, 371–373
weak donor–acceptor (D–A) crystals 6
wettability 120
white-light sources 324
white-light PLEDs
– electronic processes 326–330
– fabrication 325, 326, 328
– future prospects 330, 331
white-light-emitting diodes (WLEDs) 323, 324
Wiedemann–Franz law 475

x
X-ray diffraction (XRD) 124, 125

z
zero bias 289
zone-casting 122, 123, 136