Contents

Preface XIII

List of Contributors XV

Part I General Atomic Force Microscopy 1

1 AFM: Basic Concepts 3
Fernando Moreno-Herrero and Julio Gomez-Herrero
1.1 Atomic Force Microscope: Principles 3
1.2 Piezoelectric Scanners 5
1.2.1 Piezoelectric Scanners for Imaging in Liquids 8
1.3 Tips and Cantilevers 8
1.3.1 Cantilever Calibration 10
1.3.2 Tips and Cantilevers for Imaging in Liquids 11
1.3.3 Cantilever Dynamics in Liquids 13
1.4 Force Detection Methods for Imaging in Liquids 15
1.4.1 Piezoelectric Cantilevers and Tuning Forks 15
1.4.2 Laser Beam Deflection Method 17
1.4.2.1 Liquid Cells and Beam Deflection 18
1.5 AFM Operation Modes: Contact, Jumping/Pulsed, Dynamic 19
1.5.1 Contact Mode 19
1.5.2 Jumping and Pulsed Force Mode 20
1.5.3 Dynamic Modes 22
1.5.3.1 Liquid Cells and Dynamic Modes 23
1.6 The Feedback Loop 24
1.7 Image Representation 25
1.8 Artifacts and Resolution Limits 28
1.8.1 Artifacts Related to the Geometry of the Tip 28
1.8.2 Artifacts Related to the Feedback Loop 30
1.8.3 Resolution Limits 31
Acknowledgments 32
References 32
2 Carbon Nanotube Tips in Atomic Force Microscopy with Applications to Imaging in Liquid 35
Edward D. de Asis, Jr., Joseph Leung, and Cattien V. Nguyen

2.1 Introduction 35
2.2 Fabrication of CNT AFM Probes 37
2.2.1 Mechanical Attachment 38
2.2.2 CNT Attachment Techniques Employing Magnetic and Electric Fields 39
2.2.3 Direct Growth of CNT Tips 41
2.2.4 Emerging CNT Attachment Techniques 43
2.2.5 Postfabrication Modification of the CNT Tip 43
2.2.5.1 Shortening 43
2.2.5.2 Coating with Metal 44
2.3 Chemical Functionalization 44
2.3.1 Functionalization of the CNT Free End 45
2.3.2 Coating the CNT Sidewall 45
2.4 Mechanical Properties of CNTs in Relation to AFM Applications 46
2.4.1 CNT Atomic Structure 47
2.4.2 Mechanical Properties of CNT AFM Tips 49
2.5 Dynamics of CNT Tips in Liquid 50
2.5.1 Interaction of Microfabricated AFM Tips and Cantilevers in Liquid 50
2.5.2 CNT AFM Tips in Liquid 52
2.5.3 Interaction of CNT with Liquids 52
2.5.3.1 CNT Tips at the Air–Liquid Interface During Approach 54
2.5.3.2 CNT Tips at the Liquid–Solid Interface 56
2.5.3.3 CNT Tips at the Air–Liquid Interface during Withdrawal 58
2.6 Performance and Resolution of CNT Tips in Liquid 58
2.6.1 Performance of CNT AFM Tips When Imaging in Liquid 58
2.6.2 Biological Imaging in Liquid Medium with CNT AFM Tips 59
2.6.3 Cell Membrane Penetration and Applications of Intracellular CNT AFM Probes 60
References 61

3 Force Spectroscopy 65
Arturo M. Baró

3.1 Introduction 65
3.2 Measurement of Force Curves 67
3.2.1 Analysis of Force Curves Taken in Air 68
3.2.2 Analysis of Force Curves in a Liquid 70
3.3 Measuring Surface Forces by the Surface Force Apparatus 70
3.4 Forces between Macroscopic Bodies 71
3.5 Theory of DLVO Forces between Two Surfaces 71
3.6 Van der Waals Forces – the Hamaker Constant 72
3.7 Electrostatic Force between Surfaces in a Liquid 72
3.8 Spatially Resolved Force Spectroscopy 76
3.9 Force Spectroscopy Imaging of Single DNA Molecules 78
3.10 Solvation Forces 79
3.11 Hydrophobic Forces 81
3.12 Steric Forces 81
3.13 Conclusive Remarks 83
Acknowledgments 83
References 83

4 Dynamic-Mode AFM in Liquid 87
Takeshi Fukuma and Michael J. Higgins
4.1 Introduction 87
4.2 Operation Principles 88
4.2.1 Amplitude and Phase Modulation AFM (AM- and PM-AFM) 88
4.2.2 Frequency-Modulation AFM (FM-AFM) 89
4.3 Instrumentation 90
4.3.1 Cantilever Excitation 90
4.3.2 Cantilever Deflection Measurement 91
4.3.3 Operating Conditions 93
4.3.4 AM-AFM 93
4.3.4.1 FM-AFM 95
4.3.4.2 PM-AFM 96
4.4 Quantitative Force Measurements 97
4.4.1 Calibration of Spring Constant 98
4.4.2 Conservative and dissipative forces 101
4.4.3 Solvation Force Measurements 103
4.4.3.1 Inorganic Solids in Nonpolar Liquids 104
4.4.3.2 Measurements in Pure Water 106
4.4.4 Single-Molecule Force Spectroscopy 108
4.4.4.1 Unfolding and “Stretching” of Biomolecules 108
4.4.4.2 Ligand–Receptor Interactions 110
4.5 High-Resolution Imaging 110
4.5.1 Solid Crystals 112
4.5.2 Biomolecular Assemblies 113
4.5.3 Water Distribution 114
4.6 Summary and Future Prospects 116
References 117

5 Fundamentals of AFM Cantilever Dynamics in Liquid Environments 121
Daniel Kiracofe, John Melcher, and Arvind Raman
5.1 Introduction 121
5.2 Review of Fundamentals of Cantilever Oscillation 122
5.3 Hydrodynamics of Cantilevers in Liquids 123
Contents

5.4 Methods of Dynamic Excitation 126
5.4.1 Review of Cantilever Excitation Methods 128
5.4.2 Theory 130
5.4.2.1 Direct Forcing 130
5.4.2.2 Ideal Piezo/Acoustic 132
5.4.2.3 Thermal 132
5.4.2.4 Comparison of Excitation Methods 133
5.4.3 Practical Considerations for Acoustic Method 135
5.4.4 Photothermal Method 137
5.4.5 Frequency Modulation Considerations in Liquids 140
5.5 Dynamics of Cantilevers Interacting with Samples in Liquids 140
5.5.1 Experimental Observations of Oscillating Probes Interacting with Samples in Liquids 141
5.5.2 Modeling and Numerical Simulations of Oscillating Probes Interacting with Samples in Liquids 142
5.5.3 Compositional Mapping in Liquids 145
5.5.4 Implications for Force Spectroscopy in Liquids 148
5.6 Outlook 150
References 150

6 Single-Molecule Force Spectroscopy 157
Albert Galera-Prat, Rodolfo Hermans, Rubén Hervás, Ángel Gómez-Sicília, and Mariano Carrión-Vázquez
6.1 Introduction 157
6.1.2 SMFS in Biology 158
6.1.3 SMFS Techniques and Ranges 158
6.2 AFM-SMFS Principles 159
6.2.1 Length-Clamp Mode 160
6.2.2 Force-Clamp Mode 163
6.3 Dynamics of Adhesion Bonds 165
6.3.1 Bond Dissociation Dynamics in Length Clamp 165
6.3.2 General Considerations 167
6.3.3 Bond Dissociation Dynamics in Force Clamp 168
6.3.3.1 The Need for Robust Statistics 169
6.4 Specific versus Other Interactions 169
6.4.1 Intramolecular Single-Molecule Markers 170
6.4.1.1 The Wormlike Chain: an Elasticity Model 170
6.4.1.2 Proteins 171
6.4.1.3 DNA and Polysaccharides 174
6.4.2 Intermolecular Single-Molecule Markers 174
6.5 Steered Molecular Dynamics Simulations 176
6.6 Biological Findings Using AFM–SMFS 177
6.6.1 Titin as an Adjustable Molecular Spring in the Muscle Sarcomere 177
Contents

6.6.2 Monitoring the Folding Process by Force-Clamp Spectroscopy 180
6.6.3 Intermolecular Binding Forces and Energies in Pairs of Biomolecules 180
6.6.4 New Insights in Catalysis Revealed at the Single-Molecule Level 181
6.7 Concluding Remarks 182
Acknowledgments 182
Disclaimer 182
References 182

7 High-Speed AFM for Observing Dynamic Processes in Liquid 189
Toshio Ando, Takayuki Uchihashi, Noriyuki Kodera, Mikihiro Shibata,
Daisuke Yamamoto, and Hayato Yamashita
7.1 Introduction 189
7.2 Theoretical Derivation of Imaging Rate and Feedback Bandwidth 190
7.2.1 Imaging Time and Feedback Bandwidth 190
7.2.2 Time Delays 191
7.3 Techniques Realizing High-Speed Bio-AFM 192
7.3.1 Small Cantilevers 192
7.3.2 Fast Amplitude Detector 194
7.3.3 High-Speed Scanner 194
7.3.4 Active Damping Techniques 196
7.3.5 Suppression of Parachuting 198
7.3.6 Fast Phase Detector 199
7.4 Substrate Surfaces 200
7.4.1 Supported Planar Lipid Bilayers 200
7.4.1.1 Choice of Alkyl Chains 201
7.4.1.2 Choice of Head Groups 201
7.4.2 Streptavidin 2D Crystal Surface 201
7.5 Imaging of Dynamic Molecular Processes 203
7.5.1 Bacteriorhodopsin Crystal Edge 203
7.5.2 Photoactivation of Bacteriorhodopsin 204
7.6 Future Prospects of High-Speed AFM 206
7.6.1 Imaging Rate and Low Invasiveness 206
7.6.2 High-Speed AFM Combined with Fluorescence Microscope 206
7.7 Conclusion 207
References 207

8 Integration of AFM with Optical Microscopy Techniques 211
Zhe Sun, Andreea Trache, Kenith Meissner, and Gerald A. Meininger
8.1 Introduction 211
8.1.1 Combining AFM with Fluorescence Microscopy 214
8.1.1.1 Epifluorescence Microscopy 214
8.1.2 Examples of Applications 215
8.1.2.1 Ca^{2+} Fluorescence Microscopy 215
8.1.2.2 AFM – Epifluorescence Microscopy 217
12.11 Measuring Cell–Cell Adhesion 325
12.12 Conclusions and Outlook 326
References 327

13 Nanosurgical Manipulation of Living Cells with the AFM 331
Atsushi Ikai, Rehana Afrin, Takahiro Watanabe-Nakayama, and Shin-ichi Machida

13.1 Introduction: Mechanical Manipulation of Living Cells 331
13.2 Basic Mechanical Properties of Proteins and Cells 331
13.3 Hole Formation on the Cell Membrane 332
13.4 Extraction of mRNA from Living Cells 334
13.5 DNA Delivery and Gene Expression 335
13.6 Mechanical Manipulation of Intracellular Stress Fibers 338
13.6.1 AFM Used as a Lateral Force Microscope 338
13.6.2 Force Curves and Fluorescence Images under Lateral Force Application 340
13.6.2.1 Case 1 340
13.6.2.2 Case 2 340
13.7 Cellular Adaptation to Local Stresses 343
13.8 Application of Carbon Nanotube Needles 344
13.9 Use of Fabricated AFM Probes with a Hooking Function 346
13.9.1 Result for a Semi-Intact Cell 348
13.9.2 Result for a Living Cell 348
13.10 Membrane Protein Extraction 348
13.11 Future Prospects 350
Acknowledgments 350
References 350

Index 355