Index

Note: Page numbers in italic refer to figures, those in bold refer to tables.

Active-RC integrators, 125–127, 137–138
 macromodeling ΣΔMs, 274–275
SIMSIDES, 512–513
ADCs see Analog-to-digital conversion
Amplifier finite DC gain, SIMSIDES, 218
Amplifiers, 308–317
 characterization of the amplifier gain nonlinearity, 316–317
 characterization of the amplifier in AC, 313, 314–315
 characterization of the amplifier in DC, 313–316
 common-mode feedback networks, 311–313
design considerations, 308–317
finite amplifier gain, CT-ΣΔMs, 126–128
finite amplifier gain, SC-ΣΔMs, 86–90
finite amplifier slew rate, SC-ΣΔMs, 98–99
folded cascode amplifiers, 309, 310, 312
folded cascode amplifiers with gain boosting, 309, 310
linear effect of finite amplifier gain–bandwidth product, SC-ΣΔMs, 95–98
nonlinear amplifier gain, SC-ΣΔMs, 107–109
nonlinear effect of finite amplifier slew rate, SC-ΣΔMs, 98–99
telescopic amplifiers, 309, 310
topologies, 309, 310–311
two-stage amplifiers with Miller compensation, 309, 310

Analog-to-digital conversion
antialiasing filter (AAF), 3, 4
 basics, 2–9
 block diagram, 2
coder, 2
dynamic range, 8
noise-shaping, 8–9
Nyquist-rate ADCs, 3, 4
quantization, 2, 4–5
quantization white noise model, 5–8
resolution vs speed, 2–3
sampling, 3, 4
signal processing, 2
Antialiasing filter (AAF), 19
 analog-to-digital conversion, 3, 4
 CT-ΣΔMs, 69–70
Aperture plot of ΣΔMs, 406–407
Architecture, CT-ΣΔMs, 64–70
Architecture exploration and selection, 236–245
 lifting method and hardware acceleration to optimize CT-ΣΔMs, 255–259
 multi-objective evolutionary algorithms, 259–269
 optimization-based high-level synthesis of ΣΔ modulators, 245–255
Schreier’s MATLAB Delta-Sigma toolbox, 236–245
architecture exploration and selection (continued)
synthesis of a fourth-order BP CT-ΣΔM with
tunable notch, 240–245
synthesis of a fourth-order CRFF LP/BP SC-ΣΔM
with tunable notch, 238–240
Auxiliary blocks, SIMSIDES, 519–521, 522
Auxiliary ΣΔM building blocks, 341–348
additional digital logic, 347–348
bandgap circuit, 345
bias currents, 345, 346
bonding diagram and package, 354
buses to distribute signals shared by different ΣΔM
parts, 349
case studies, 359–385
catastrophic failure, 350–354
chip package, 354
clock-phase generators, 342–344
common-mode voltage, 345, 346–347
design examples, 359–385
experimental test set-up, 355–359
I/O pad ring, 350, 352
layout floorplanning, 348–349, 351
layout symmetry, 349–350
layout verification, 350–354
programmable-gain ΣΔMs for high dynamic range
sensor interfaces, 360–364
reconfigurable SC-ΣΔMs for multi-standard direct
conversion receivers, 364–368
reference voltage, 345–346
shield sensitive ΣΔM analog subcircuits from
switching noise, 349
test PCB, 355
widely-programmable Gm-LC BP-ΣΔMs for RF
digitizers, 368–385

Bandgap circuit, auxiliary ΣΔM building blocks, 345
Band-pass ΣΔMs, 55–63
vs low-pass ΣΔMs, 413–415
optimized NTF, 58–61
polyphase band-pass ΣΔMs, 61–63
quadrature band-pass ΣΔMs, 56–58
time-interleaved band-pass ΣΔMs, 61–63
$Z \rightarrow -Z^2$ LP–BP transformation, 58, 59
ΣΔ ADCs, 393–408

Behavioral models
behavioral modeling platforms, programming
languages, 172
circuit analysis, 173–175
computational algorithms, 173–175
frequency-domain models, 175–178
MATLAB/SIMULINK, 172–188, 199–200
modeling of CT integrators using S-functions,
200–205
modeling of SC integrators using S-functions,
188–200
quantizers using S-functions, 205–209
SIMULINK C-MEX S-functions, 182–209
SIMULINK/MATLAB, 172–188, 199–200
time-domain models, 175–178
ΣΔMs, 173–188
Behavioral simulation, high-level evaluation of ΣΔMs,
169–171
Bias currents, auxiliary ΣΔM building blocks, 345, 346
Bonding diagram and package, auxiliary ΣΔM building
blocks, 354
Building-block model purpose and description,
SIMSIDES, 492–493
Building-blocks see Auxiliary ΣΔM building blocks;
Sigma-delta building blocks
Buses to distribute signals shared by different ΣΔM parts,
auxiliary ΣΔM building blocks, 349

Cadence Virtuoso schematic editor
comparators, 329, 330, 331
electrical design of ΣΔMs, 293, 296
macromodeling ΣΔMs, 279, 281, 285, 286
transconductors, 322
Calibration, embedded 4-bit quantizer with calibration,
378–382
Cancelation logic, 130, 480
see also Digital cancelation logic
Capacitor mismatch, SC-ΣΔMs, 90–91, 92
Capacitor mismatch and nonlinearity, SC-ΣΔMs,
190–195
Capacitors
decoupling capacitors, 355, 356, 369
programmable capacitors, 362, 364
Cascade 2-1 ΣΔM block diagram in SIMSIDES, 482, 483
Cascade ΣΔMs, 39–45
dual quantization, 54–55
enhanced cascade ΣΔMs, 418–423
mismatch, 46
noise-shaping, 41, 45
operating principle, 40–41
signal transfer function (STF), 40–42
vs single-loop ΣΔMs, 410–411
stability, 39–40
topologies, 42
Chip package, auxiliary ΣΔM building blocks, 354
Circuit-aided design (CAD)
see also Electrical design of ΣΔMs
CT-ΣΔMs, 256–259, 350–354
Circuit errors, SC-ΣΔMs, 83–119
Circuit noise
CT-ΣΔMs, 137–140
noise analysis considering NRZ feedback DACs,
137–139
noise analysis considering SC feedback DACs,
139–140
SC-ΣΔMs, 101–105, 115–116
Clock jitter
in-band noise power due to clock jitter, 466–467
CT-ΣΔMs, 140–149, 463–467
expectation value of $<\Delta q^2>$, 465–466
finite impulsive response (FIR), 147–149
INDEX

jitter in non-return-to-zero DACs, 142–143
jitter in return-to-zero DACs, 141–142
jitter in switched-capacitor DACs, 144
lingering effect of clock jitter error, 145–147
SC-ΣΔMs, 105–107
sine-shaped DACs, 147–149
state-space analysis of clock jitter in CT-ΣΔMs, 463–467
state-space representation of NTF(z), 463–465
Clock-phase generators
auxiliary ΣΔ building blocks, 342–344
phase buffering, 342, 344
phase distribution, 344
phase generation, 342, 343
CMOS switches, 302–307, 308
design considerations, 302–307, 308
harmonic distortion, 305–307, 308
nonlinear behavior of Ron, 302–304
technology downscaling influence, 304, 305
trade-off between Ron and the CMOS switch drain/source parasitic capacitances, 302
Coder, analog-to-digital conversion, 2
Common-mode voltage, auxiliary ΣΔ building blocks, 345, 346–347
Comparators, 324–332
Cadence Virtuoso schematic editor, 329, 330, 331
comparison time, 330–332
design considerations, 324–332
design guidelines, 327–328
offset and hysteresis based on the bisectional method, 328, 330, 331
offset and hysteresis based on the input-ramp method, 328, 329, 330
regenerative latch-based comparators, 325–327, 330, 332
Continuous-time sigma-delta modulators see CT-ΣΔMs
CT, either Gm-C or active-RC, or DT, mostly using SC circuit techniques, ΣΔ ADCs, 393–408
CT fifth-order cascade 3–2 multi-bit ΣΔMs
cumulative effect of all errors, 225
high-level synthesis and verification, 229–230, 231
nonideal effects, 227–229
notches, 227
SIMSIDES, 224–231
CT integrators, 124–128
CT integrator macromodel, macromodeling ΣΔMs, 274–275
modeling of CT integrators using S-functions, 200–205
modeling transconductors as S-functions, 203–205
real CT integrators, 492, 508–513
single-pole Gm-C model, 200–201
two-pole dynamics model, 201–203
CT resonators, 124–126
real CT resonators, SIMSIDES, 513–514
CT-ΣΔMs
alias rejection, 69–70
antialising filter (AAF), 69–70
architecture, 64–70
in-band noise power due to clock jitter, 466–467
basic concepts, 64–70
circuit noise, 137–140
clock jitter, 140–149, 463–467
clock jitter error, lingering effect, 145–147
clock jitter in non-return-to-zero DACs, 142–143
clock jitter in return-to-zero DACs, 141–142
clock jitter in switched-capacitor DACs, 144
continuous-time integrators, 124–126
continuous-time resonators, 124–126
direct synthesis, 74–76
distortion sources, 134–137
DT–CT transformation of ΣΔMs, 65, 70–74
vs DT-ΣΔMs, 19
excess loop delay (ELD), 149–155
expectation value of (∆aq)n, 465–466
finite amplifier gain, 126–128
finite gain–bandwidth product, 131–133
finite impulse response (FIR), 147–149
finite integrator dynamics, 130–134
finite slew rate, 133–134
intersymbol interference in the feedback DAC, 136–137
intuitive analysis, 66–68
kT/C noise, 60, 137
mismatch, 74
noise analysis considering NRZ feedback DACs, 137–139
noise analysis considering SC feedback DACs, 139–140
nonidealities, 123–124
nonlinearities in the front-end integrator, 134–136
quantizer metastability, 155–159
SC-second-order single-bit ΣΔMs, SIMSIDES, 216–224
vs SC-ΣΔMs, 408–410
sine-shaped DACs, 147–149
stability, 129–131
state-space analysis of clock jitter in CT-ΣΔMs, 463–467
state-space representation of NTF(z), 463–465
time-constant error, 128–130
Current cell circuits, mismatch, 336
Current-steering DACs, 332–338
basic concepts, 333, 334
CS 4-bit DAC example, 336–338
current cell circuits, 336
design considerations, 332–338
design criteria, 336
eroer limitations, 336
fundamentals, 333, 334
practical realization, 333–334, 335
Data weighted averaging (DWA), 51–53
Decimation filters, 19–22
Decoupling capacitors, 355, 356, 369
Design methodology
abstraction levels, 167
design parameter selection, 168
hierarchical synthesis methodology, 165–167
performance-evaluation strategies, 167–169
sizing process, 167–169
system partitioning, 167
ΣΔMs, 165–169
Digital cancelation logic (DCL), 40, 41, 54, 88
Digital-to-analog converters (DACs), 22–25
clock jitter in non-return-to-zero DACs, 142–143
clock jitter in return-to-zero DACs, 141–142
clock jitter in switched-capacitor DACs, 144
current-steering DACs, 332–338
DAC techniques for high-performance CT-ΣΔMs, 436, 437
digital ΣΔMs, 24–25
ideal D/A Converters, SIMSIDES, 496–497
impulse responses, 64, 65, 70–71, 151–152
intersymbol interference in the feedback DAC, 136–137
noise analysis considering NRZ feedback DACs, 137–139
noise analysis considering SC feedback DACs, 139–140
oversampling, 22–24
signal processing, 22–24
sine-shaped DACs, 147–149
system design trade-offs, 22–24
Discrete-time ΣΔMs see DT-ΣΔMs
Distortion sources
CMOS switches, 305–307, 308
CT-ΣΔMs, 134–137
harmonic distortion, 305–307, 308
intersymbol interference in the feedback DAC, 136–137
nonlinearities in the front-end integrator, 134–136
SC-ΣΔMs, 107–111
Distributed feedback, high-order single-loop ΣΔMs, 35–38
Dither
self-canceling dither techniques, 434
voltage-controlled ring oscillators (VCROs), 434
Downsampling hybrid CT/DT cascade MR-ΣΔMs, 422–423
DT-CT transformation of ΣΔMs, 65, 70–74
impulse-invariant transformation, 70–72
second-order ΣΔMs, 72–73, 74
DT-ΣΔMs, 24, 30, 32, 36, 64–70, 87–88
analysis of ELD based on impulse-invariant DT-CT transformation, 151–154
vs CT-ΣΔMs, 19
hybrid CT/DT ΣΔMs, 420–423
lifting method and hardware acceleration to optimize CT-ΣΔMs, 255–257
SIMSIDES, 209–210
state-space representation of NTF(ző), 463
synthesis of a fourth-order BP CT-ΣΔM with tunable notch, 240–245
Z-domain block diagram of a cascade 2–1 DT-ΣΔM, 482
Dual quantization, multi-bit ΣΔMs, 53–55
Dual quantization cascade ΣΔMs, 54–55
Dual quantization single-loop ΣΔMs, 53–54
stability, 53–54
Dynamic element matching (DEM), multi-bit ΣΔMs, 50–53
Dynamic range (DR)
digital-to-analog conversion, 8
ΣΔ modulation, 12
Effective number of bits (ENOB), ΣΔ modulation, 13
Electrical design of ΣΔMs, 271–298
see also Circuit-aided design (CAD)
Cadence Virtuoso schematic editor, 293, 296
electrical simulation output, 294–298
macromodeling ΣΔMs, 272–286
noise data sequences in HSPICE, 287–289
noise: flicker noise sources in electrical simulations, 289–293
noise in transient electrical simulations of ΣΔMs, 286–294
noise sources in SC integrators, 289
noise: test bench to include noise in the simulation of ΣΔMs, 293–294
ΣΔM output results of electrical simulations, 294–298
Electrical simulation
electrical design of ΣΔMs, 294–298
high-level evaluation of ΣΔMs, 169–171
Embedded flash ADC macromodel, macromodeling ΣΔMs, 276–277
Emerging ΣΔM techniques, 415
Energy plot of ΣΔMs, 407–408
Enhanced cascade ΣΔMs, 418–423
downsampling hybrid CT/DT cascade MR-ΣΔMs, 422–423
hybrid CT/DT ΣΔMs, 420–423
multi-rate (MR) ΣΔMs, 420–423
SMASH CT-ΣΔMs, 418, 419
stage-sharing cascade ΣΔMs, 420
two-stage 0-L MASH ΣΔ ADC, 419
upsampling cascade MR-ΣΔMs, 421–422
Event-driven behavioral simulation technique, high-level evaluation of ΣΔMs, 171–172
Excess loop delay (ELD)
alternative compensation techniques, 154–155
CT-ΣΔMs, 149–155
impulse-invariant DT-CT transformation, 151–154
intuitive analysis, 149–151
Fast Fourier transform (FFT)
output spectrum computation, 110, 169, 215, 257, 307, 473, 474
performance metrics of $\Sigma\Delta$Ms, 11
SIMSIDES, 473, 474
Feedback DAC macromodel, macromodeling $\Sigma\Delta$Ms, 277–279
Feedforward summation, high-order single-loop $\Sigma\Delta$Ms, 37–39
Figures of merit (FOM), 392–393, 410–414
Finite amplifier gain
CT-$\Sigma\Delta$Ms, 126–128
SC-$\Sigma\Delta$Ms, 86–90
Finite amplifier slew rate, SC-$\Sigma\Delta$Ms, 98–99
Finite gain–bandwidth product, CT-$\Sigma\Delta$Ms, 126–128
SC-$\Sigma\Delta$Ms, 86–90
Finite integrator dynamics, CT-$\Sigma\Delta$Ms, 130–134
Finite slew rate, CT-$\Sigma\Delta$Ms, 133–134
Finite switch on-resistance, SC-$\Sigma\Delta$Ms, 100–101
First-order sigma-delta modulation, 13–15, 16
Folded cascode amplifiers, 309, 310
Folded cascode amplifiers with gain boosting, 309, 310
Frequency-domain behavioral models, vs time-domain behavioral models, 175–178
Front-end transconductor, 227–230, 318–320
Gigahertz-range $\Sigma\Delta$Ms for RF-to-digital conversion, 415–418
Gm-C integrators, macromodeling $\Sigma\Delta$Ms, 274–275
Gm-C resonators, SIMSIDES, 514–515, 516
Gm-LC resonators, SIMSIDES, 517
Gm-MC integrators, SIMSIDES, 511–512
GPU-accelerated computing of CT-$\Sigma\Delta$Ms, 258–259, 260
GRO-based $\Sigma\Delta$Ms, 434, 435
Hardware emulation of CT-$\Sigma\Delta$Ms on an FPGA, 257–258
Harmonic distortion
CMOS switches, 305–307, 308
distortion sources, 305–307, 308
SIMSIDES, 475–477
Hierarchical synthesis methodology, hierarchical synthesis methodology, 165–167
High-level sizing and noise budget, SC-$\Sigma\Delta$Ms, 117–118
High-level sizing and verification of $\Sigma\Delta$Ms, SIMSIDES, 216–231
High-level sizing of $\Sigma\Delta$Ms, 111–118
High-level synthesis and verification continuous-time fifth-order cascade 3-2 multi-bit $\Sigma\Delta$Ms, 229–230, 231
SIMSIDES, 229–230, 231
Highly linear front-end transconductor, 318–319
High-order single-loop $\Sigma\Delta$Ms, 35–39
distributed feedback, 35–38
feedforward summation, 37–39
notches, 38–39
stability, 35–39
High-order $\Sigma\Delta$Ms, 17
High-OSR $\Sigma\Delta$Ms, 17, 18
Hybrid active/passive and amplifier-less $\Sigma\Delta$Ms, 424–426, 427
Hybrid CT/DT $\Sigma\Delta$Ms, 420–423
Hybrid $\Sigma\Delta$/Nyquist-rate ADCs, 428–431
incremental $\Sigma\Delta$ ADCs, 429–431
multi-bit $\Sigma\Delta$ quantizers based on Nyquist-rate ADCs, 428–429
Impulse-invariant transformation, DT–CT transformation of $\Sigma\Delta$Ms, 70–72
Impulse responses, digital-to-analog converters (DACs), 64, 65, 70–71, 151–152
Incomplete settling error
MATLAB/SIMULINK, 199–200
SC-$\Sigma\Delta$Ms, 197–200
SIMSIDES, 220
Incremental $\Sigma\Delta$ ADCs, 429–431
Input-referred thermal noise, SC-$\Sigma\Delta$Ms, 191–194
Integral and differential non-linearity, SIMSIDES, 477
Integral nonlinearity (INL), 205–208
SIMSIDES, 473, 517–518
Integrated power noise, SIMSIDES, 474–475
Integrators
CT integrator macromodel, 274–275
CT integrators, 124–128, 200–205
integrator settling error, SC-$\Sigma\Delta$Ms, 91–101
integrator transfer function (ITF), 85–90, 126–128, 131, 132, 135, 136, 492–493
modeling of CT integrators using S-function, 200–205
modeling of CT integrators using S-functions, 200–205
modeling of SC integrators using S-functions, 200–205
noise sources in SC integrators, 107, 289, 290
real CT integrators, 508–513
real SC integrators, SIMSIDES, 218, 497–501
SC integrator macromodel, 272–274, 283
Intersymbol interference in the feedback DAC
CT-$\Sigma\Delta$Ms, 136–137
distortion sources, 136–137
Intuitive analysis
CT-$\Sigma\Delta$Ms, 66–68
excess loop delay (ELD), 149–151
Inverter-based $\Sigma\Delta$Ms, 423–424
I/O pad ring, auxiliary $\Sigma\Delta$M building blocks, 350, 352
KT/C noise, 115–116, 118, 218–220
CT-$\Sigma\Delta$Ms, 66, 137
SC-$\Sigma\Delta$Ms, 103
Latch-based comparators, 325–327, 330, 332
Layout floorplanning, auxiliary $\Sigma\Delta$M building blocks, 348–349, 351
Layout symmetry, auxiliary $\Sigma\Delta$M building blocks, 349–350
Layout verification, auxiliary ΣΔM building blocks, 350–354
Lifting method and hardware acceleration to optimize CT-ΣΔMs, 255–259
GPU-accelerated computing of CT-ΣΔMs, 258–259, 260
hardware emulation of CT-ΣΔMs on an FPGA, 257–258
Linear effect of finite amplifier gain–bandwidth product, SC-ΣΔMs, 95–98
Loop-filter transconductors, 320–321, 322–323
Low-pass ΣΔMs
vs band-pass ΣΔMs, 413–415
ΣΔ ADCs, 393–408
Macromodeling ΣΔMs, 272–286
active-RC integrators, 274–275
Cadence Virtuoso schematic editor, 279, 281, 285–286
CT integrator macromodel, 274–275
electrical design of ΣΔMs, 272–286
embedded flash ADC macromodel, 276–277
examples of ΣΔM macromodels, 279–286
feedback DAC macromodel, 277–279
Gm-C integrators, 274–275
nonlinear OTA transconductor, 275–276
OTA macromodel, 274
SC integrator macromodel, 272–274
second-order active-RC ΣΔMs, 283–286
second-order SC-ΣΔMs, 279–283
switch macromodel, 272–274
MATLAB/SIMULINK
behavioral models, 172–188, 199–200
incomplete settling error, 199–200
time-domain behavioral models, 178–188
Mismatch
capacitor mismatch, SC-ΣΔMs, 90–91, 92, 190–191
cascade ΣΔMs, 46
CT-ΣΔMs, 74
current cell circuits, 336
DAC techniques for high-performance CT-ΣΔMs, 436
intersymbol interference in the feedback dac, 136–137
multi-bit ΣΔMs, 49–54
noise leakages, 112, 114
quadrature band-pass ΣΔMs, 58
SIMSIDES, 229, 499–503
SMASH ΣΔ architectures, 48
time-interleaved band-pass ΣΔMs, 62–63
Modeling and analysing ΣΔMs
see also Macromodeling ΣΔMs
SIMSIDES, 482–489
Model parameters used in transconductors and Gm-C integrator building blocks, SIMSIDES, 511
Models, behavioral see Behavioral models
MOSFET-C integrators, SIMSIDES, 513, 514
Multi-bit, single-bit, or time-encoding quantization (TEQ), ΣΔ ADCs, 393–408
Multi-bit ΣΔMs quantizers based on Nyquist-rate ADCs, 428–429
Multi-bit ΣΔMs, 17–18, 49–55
continuous-time fifth-order cascade 3-2 multi-bit ΣΔMs, 224–231
dual quantization, 53–55
dynamic element matching (DEM), 50–53
fully-differential SC implementation, 113
mismatch, 49–54
multi-bit DAC errors, 49–50
vs single-bit ΣΔMs, 411–413
stability, 49
Multilevel simulation, high-level evaluation of ΣΔMs, 169–171
Multiloop ΣΔMs, 39–45
Multi-objective evolutionary algorithms
applying MOEA and SIMSIDES to the synthesis of CT-ΣΔMs, 262–269
architecture exploration and selection, 259–269
combining MOEA with SIMSIDES, 261–269
optimization, 259–269
Multi-rate (MR) ΣΔMs, 420–423
Multi-stage noise-shaping (MASH), 39–45
Multi-tone power ratio, SIMSIDES, 477, 478
Node spectrum analysis, SIMSIDES, 474
Noise analysis considering NRZ feedback DACs, CT-ΣΔMs, 137–139
Noise analysis considering SC feedback DACs
circuit noise, 139–140
CT-ΣΔMs, 139–140
Noise budget and high-level sizing, SC-ΣΔMs, 117–118
Noise data sequences in HSPICE
electrical design of ΣΔMs, 287–289
notches, 289
Noise: flicker noise sources in electrical simulations,
electrical design of ΣΔMs, 289–293
Noise in transient electrical simulations of ΣΔMs,
electrical design of ΣΔMs, 286–294
Noise leakages
mismatch, 112, 114
SC-ΣΔMs, 112–115
Noise-shaping
analog-to-digital conversion, 8–9
cascade ΣΔMs, 41, 45
multi-stage noise-shaping (MASH), 39–45
second-order ΣΔMs, 31
ΣΔ modulation, 10–11
Noise sources in SC integrators, electrical design of ΣΔMs, 289
Noise: test bench to include noise in the simulation of ΣΔMs, electrical design of ΣΔMs, 293–294
Noise transfer function (NTF)
analog-to-digital conversion, 8–9
SC-ΣΔMs, 84–85
Nonidealities
CT-ΣΔMs, 123–124
SC-ΣΔMs, 84–85
Nonlinear amplifier gain, SC-ΣΔMs, 107–109
Nonlinear effect of finite amplifier slew rate, SC-ΣΔMs, 98–99
Nonlinearities in the front-end integrator
CT-ΣΔMs, 134–136
distortion sources, 134–136
Nonlinear OTA transconductor, macromodeling ΣΔMs, 275–276
Nonlinear switch on-resistance, SC-ΣΔMs, 109–111
Notches
CT fifth-order cascade 3–2 multi-bit ΣΔMs, 227
high-order single-loop ΣΔMs, 38–39
noise data sequences in HSPICE, 289
notch frequency, 56, 58, 125, 307, 368, 371, 406, 410, 414, 417
synthesis of a fourth-order BP CT-ΣΔM with tunable notch, 240–245
synthesis of a fourth-order CRFF LP/BP SC-ΣΔM with tunable notch, 238–240
Nyquist-rate ADCs
analog-to-digital conversion, 3, 4
vs ΣΔ converters, 390–393
Opamps see Amplifiers
Optimization
automated design and optimization of ΣΔMs, 235–269
combining behavioral simulation and optimization, 246–247
combining SIMSIDES with MATLAB optimizers, 253, 254, 255
Gm-LC BP-ΣΔM high-level sizing, 371–375
GPU-accelerated computing of CT-ΣΔMs, 258–259
hardware emulation of CT-ΣΔMs on an FPGA, 257–258
multi-objective evolutionary algorithms, 259–269
power-scaling circuit techniques, 367–368
simulated annealing as optimization engine, 247–253
sizing process, 168–169
Optimization-based high-level synthesis of ΣΔ modulators, 245–255
combining behavioral simulation and optimization, 246–247
simulated annealing as optimization engine, 247–253
Optimization interface, SIMSIDES, 229–230, 480–481
OTA macromodel, macromodeling ΣΔMs, 274
Output spectrum computation
fast Fourier transform (FFT), 169, 215, 257, 307, 473, 474
SIMSIDES, 484–486
Overload level (OL), ΣΔ modulation, 13
Oversampling, 3, 4, 7–9, 17–19, 87–88, 390, 475, 487
digital-to-analog converters (DACs), 22–24
incremental ΣΔ ADCs, 429–430
ΣΔ decimators, 20
Performance enhancement, ΣΔ modulation, 16–19
Performance-evaluation strategies
design methodology, 167–169
ΣΔMs, 167–169
Performance metrics of ΣΔMs, 11–13
fast Fourier transform (FFT), 11
Pipeline ADCs, 390–391, 428
Polyphase band-pass ΣΔMs, 61–63
Power-efficient amplifier techniques, 426–427
Power-efficient ΣΔM loop-filter techniques, 423–427
hybrid active/passive and amplifier-less ΣΔMs, 424–426
inverter-based ΣΔMs, 423–424
power-efficient amplifier techniques, 426–427
Programmable capacitors, 362, 364
Programmable-gain ΣΔMs for high dynamic range sensor interfaces, 360–364
chopper frequency, 362–363
design criteria, 361, 362
flicker noise, 362–363
performance limitations, 361
SC realization with programmable gain and double sampling, 362, 364
Programming languages, behavioral modeling platforms, 172
Quadrature band-pass ΣΔMs, 56–58
mismatch, 58
Quantization, analog-to-digital conversion, 2, 4–5
Quantization white noise model, analog-to-digital conversion, 5–8
Quantizer metastability, CT-ΣΔMs, 155–159
Quantizers using S-functions
behavioral models, 205–209
modeling multi-level ADCs as S-functions, 205–207
modeling multi-level DACs as S-functions, 207–209
Real CT integrators, SIMSIDES, 492
Real D/A converters, SIMSIDES, 518, 519
Real quantizers & comparators, SIMSIDES, 517, 518
Real SC building-block libraries, SIMSIDES, 497–502, 503
Real SC resonators, SIMSIDES, 501–503
Reconfigurable SC-ΣΔMs for multi-standard direct conversion receivers, 364–368
experimental results, 368, 369
power-scaling circuit techniques, 367–368
Reference voltage, auxiliary ΣΔM building blocks, 345–346
Regenerative latch-based comparators, 325–327, 330, 332
Resonators
CT resonators, 124–126
CT resonators, real CT resonators, SIMSIDES, 513–514
CT-ΣΔMs, continuous-time resonators, 124–126
Gm-C resonators, SIMSIDES, 514–515, 516
Gm-LC resonators, SIMSIDES, 517
real SC resonators, SIMSIDES, 501–503
SIMSIDES, Basic_SI_FE(LD)_Integrator and Basic_SI_FE(LD)_Resonator, 506–507
SIMSIDES, Gm-C resonators, 514–515, 516
SIMSIDES, Gm-LC resonators, 517
SIMSIDES, ideal resonators, 493–494
SIMSIDES, real CT resonators, 513–514
SIMSIDES, real SC resonators, 501–503
SIMSIDES, real SI resonators, 505–506
switched-capacitor resonators, real SC resonators, 501–503
switched-capacitor resonators, SIMSIDES, 501–503

Sampling, analog-to-digital conversion, 3, 4
SAR ADCs, 390–393, 403–404, 408, 428–429, 430
Scaling-friendly mostly-digital ΣΔMs, 433–434
Schreier’s MATLAB Delta-Sigma toolbox, 236–245
basic functions, 236–238
synthesis of a fourth-order BP CT-ΣΔM with tunable notch, 240–245
synthesis of a fourth-order CRFF LP/BP SC-ΣΔM with tunable notch, 238–240
SC integrator macromodel, macromodeling ΣΔMs, 272–274
SC-ΣΔMs, 83–119
behavioral model for the integrator settling, 91–95
capacitor mismatch, 90–91
capacitor mismatch and nonlinearity, 190–195
circuit errors, 83–119
circuit noise, 101–105, 115–116
clock jitter, 105–107
vs CT-ΣΔMs, 408–410
distortion sources, 107–111
finite amplifier gain, 86–90
finite amplifier slew rate, 98–99
finite switch on-resistance, 100–101
fully-differential SC implementation, 113
high-level sizing and noise budget, 117–118
high-level sizing of ΣΔMs, 111–118
ideal modulator performance, 111–112, 113
incomplete settling error, 197–200
input-referred thermal noise, 191–194
integrator settling error, 91–101
kT/C noise, 103
linear effect of finite amplifier gain–bandwidth product, 95–98
modeling of SC integrators using S-functions, 188–200
noise budget and high-level sizing, 117–118
noise leakage, 112–115
noise transfer function (NTF), 84–85
nonidealities, 84–85
nonlinear amplifier gain, 107–109
nonlinear effect of finite amplifier slew rate, 98–99
nonlinear switch on-resistance, 109–111
overall high-level sizing and noise budget, 117–118
switch on-resistance dynamics, 194–197
Second-order active-RC ΣΔMs, macromodeling ΣΔMs, 283–286
Second-order SC-ΣΔMs, macromodeling ΣΔMs, 279–283
Second-order ΣΔMs, 30–35
alternative representations, 30, 31–34
block diagram, 30
DT–CT transformation of ΣΔMs, 72–73, 74
fully-differential SC circuitry, 32–33
noise-shaping, 31
unity STF, 34–35
Settling error
incomplete settling error, 197–200, 220
Shield sensitive ΣΔM analog subcircuits from switching noise, auxiliary ΣΔM building blocks, 349
Sigma-delta ADCs, comparison of different categories, 393–408
Sigma-delta architectures, 29–76
second-order ΣΔMs, 30–35
taxonomy, 29–76
Sigma-delta building blocks, 188–207
behavioral modeling of quantizers using S-functions, 205–209
building-block errors, 123–124
C-MEX S-functions, 188–207
modeling of CT integrators using S-function, 200–205
modeling of SC integrators using S-functions, 188–200
Sigma-delta converters vs Nyquist-rate ADCs, 390–393
Sigma-delta decimators, 19–22
Sigma-delta modulation, 9–13
classification, 18–19
design parameters, 17–18
design strategies, 17–18
dynamic range (DR), 12
effective number of bits (ENOB), 13
high-order ΣΔMs, 17
high-OSR ΣΔMs, 17, 18
multi-bit ΣΔMs, 17–18
noise-shaping, 10–11
overload level (OL), 13
performance enhancement, 16–19
performance metrics, 11–13
signal-to-noise-plus-distortion ratio (SNDR), 12
signal-to-noise ratio (SNR), 12
taxonomy, 16–19
Signal processing
analog-to-digital conversion, 2
digital-to-analog converters (DACs), 22–24
Signal-to-noise-plus-distortion ratio (SNDR), $\Sigma\Delta$ modulation, 12
Signal-to-noise ratio (SNR), $\Sigma\Delta$ modulation, 12
Signal transfer function (STF), 10–11, 16, 18
BP-$\Sigma\Delta$s with optimized NTF, 58–61
cascade $\Sigma\Delta$s, 40–42
high-order single-loop $\Sigma\Delta$s, 35–38
SMASH $\Sigma\Delta$M architectures, 46–48
unity STF, 34–45, 47–48, 367–368

SIMSIDES
active-RC integrators, 512–513
amplifier finite DC gain, 218
analyzing $\Sigma\Delta$s in SIMSIDES, 473–480
auxiliary blocks, 519–521, 522
Basic_SI_FE(LD)_Integrator and Basic_SI_FE(LD)_Resonator, 506–507
block diagrams, 212–213, 215
building-block model parameters, 485
building-block model purpose and description, 492–493
cascade 2-1 $\Sigma\Delta$M block diagram in SIMSIDES, 482, 483
circuits and error mechanisms modeled, 210–211
combining behavioral simulation and optimization, 246–247
combining MOEA with SIMSIDES, 261–269
combining SIMSIDES with MATLAB optimizers, 253–255
computing histograms, 489, 490
continuous-time fifth-order cascade 3-2 multi-bit $\Sigma\Delta$s, 224–231
cumulative effect of all errors, 221–224, 225
DT-$\Sigma\Delta$s, 209–210
fast Fourier transform (FFT), 473, 474
Gm-C resonators, 514–515, 516
Gm-LC resonators, 517
Gm-MC integrators, 511–512
harmonic distortion, 475–477
help menu, 489–490
high-level sizing and verification of $\Sigma\Delta$s, 216–231
high-level synthesis and verification, 229–230, 231
histograms, 478, 489, 490
histograms, computing, 489, 490
ideal D/A Converters, 496–497
ideal integrators, 492–493
ideal libraries, 492
ideal quantizers, 494–496
ideal resonators, 493–494
incomplete settling error, 220
installing, 470, 471
integral and differential non-linearity, 477
integral nonlinearity (INL), 473, 517–518
integrated power noise, 474–475
mismatch, 229, 499–503
modeling and analysing $\Sigma\Delta$s, 482–489
model libraries, 210–211, 212
model parameters used in transconductors and Gm-C integrator building blocks, 511
Monte Carlo analysis, 479–480
MOSFET-C integrators, 513, 514
multi-tone power ratio, 477, 478
node spectrum analysis, 474
nonideal effects, 227–229
optimization, 253, 254, 255
optimization-based high-level synthesis of $\Sigma\Delta$s modulators, 245–255
optimization interface, 229–230, 480–481
output spectrum computation, 484–486
parametric analysis, 478–479
parametric analysis (one parameter), 487–488
parametric analysis (two parameters), 488–489
real CT building-block libraries, 508–517
real CT integrators, 492, 508–513
real CT resonators, 513–514
real D/A converters, 518, 519
real quantizers & comparators, 517, 518
real SC building-block libraries, 497–502, 503
real SC integrators, 497–501
real SC resonators, 501–503
real SI building-block libraries, 503–508
real SI integrators, 503–505
real SI resonators, 505–506
running, 470, 471
SC-second-order single-bit $\Sigma\Delta$s, 216–224
setting model parameters, 215, 482–484
SI_FE(LD)_Int_Finite_Conductance, 507
SI_FE(LD)_Int_Finite_Conductance&Settling &ChargeInjection, 508
SI errors and model parameters, 506–508
SIMSIDES libraries, 491–522
simulated annealing as optimization engine, 247–253
simulation analyses, 215–216
SIMULINK-based behavioral simulator, 209–216
SIMULINK/MATLAB, 253–255
SNR/SNDR, 475, 476
SNR versus input amplitude level, 486–487
structure, 211–216
switched-current, 210, 211
thermal noise, 218–220, 221
tutorial example, 482–489
user guide, 469–490
user interface, 211–216
$\Sigma\Delta$M architectures, 470–473
Simulation approaches
alternatives to transistor-level simulation, 169–171
behavioral simulation, 169–171
electrical simulation, 169–171
event-driven behavioral simulation technique, 171–172
high-level evaluation of $\Sigma\Delta$s, 169–172
multilevel simulation, 169–171
SIMulink-based Sigma-DELta Simulator see SIMSIDES
SIMULINK C-MEX S-functions
behavioral models, 188–209
time-domain behavioral models, 182–188

SIMULINK/MATLAB
behavioral models, 172–188, 199–200
incomplete settling error, 199–200
SIMSIDES, 253–255

Sine-shaped DACs, clock jitter, 147–149
Single-bit, multi-bit, or time-encoding quantization
(TEQ), ΣΔ ADCs, 393–408
Single-bit ΣΔMs vs multi-bit ΣΔMs, 411–413
Single-loop (single-quantizer)
cascade topologies, ΣΔ ADCs, 393–408
Single-loop ΣΔMs
vs cascade ΣΔMs, 410–411
dual quantization, 53–54
Single-quantizer ΣΔ ADCs, 393–408
dual quantization, 53–54
high-order single-loop ΣΔMs, 35–39
single-loop ΣΔMs vs cascade ΣΔMs, 410–411

SMASH CT-ΣΔMs, 418, 419
SMASH ΣΔ architectures, 46–48
mismatch, 48
signal transfer function (STF), 46–48
SNR/SNDR, SIMSIDES, 475, 476

SNR versus input amplitude level, SIMSIDES, 486–487

Stability
cascade ΣΔMs, 39–40
CT-ΣΔMs, 129–131
dual quantization single-loop ΣΔMs, 53–54
excess loop delay (ELD), intuitive analysis,
150–151
high-order single-loop ΣΔMs, 35–39
multi-bit ΣΔMs, 49
quantizer metastability in CT-ΣΔMs, 155–159
Stage-sharing cascade ΣΔMs, 420
State-of-the-art ADCs
aperture plot of ΣΔMs, 406–407
comparison of different categories of sigma-delta
ADCs, 393–408
energy plot of ΣΔMs, 407–408
State-of-the-art ADCs: Nyquist-rate ADCs vs ΣΔ
converters, 390–393
conversion error, 391, 392
figures of merit (FOM), 392–393
State-of-the-art ΣΔMs
band-pass ΣΔMs vs low-pass ΣΔMs, 413–415
cascade ΣΔMs vs single-loop ΣΔMs, 410–411
classification of state-of-the-art references, 437
emerging ΣΔM techniques, 415
empirical and statistical analysis, 408–415
low-pass ΣΔMs vs band-pass ΣΔMs, 413–415
SC-ΣΔMs vs CT-ΣΔMs, 408–410
single-loop ΣΔMs vs cascade ΣΔMs, 410–411
technology, 410

State-space analysis of clock jitter in CT-ΣΔMs, 463–467
Sturdy MASH (SMASH) architectures, 46–48
unity STF, 47–48
Switched-capacitor resonators
real SC resonators, 501–503
SIMSIDES, 501–503
Switched-capacitor sigma-delta modulators see SC-ΣΔMs
Switched-current
current-steering feedback DACs, 278
SIMSIDES, 210, 211
switched-current DACs, 334
Switch macromodel, macromodeling ΣΔMs, 272–274
Switch on-resistance dynamics, SC-ΣΔMs, 194–197

Taxonomy
sigma-delta architectures, 29–76
ΣΔ modulation, 16–19

Telescopic amplifiers, 309, 310
Test PCB, auxiliary ΣΔM building blocks, 355
Thermal noise, SIMSIDES, 218–220, 221
Time-based ΣΔ ADCs, 431–435
GRO-based ΣΔMs, 434, 435
scaling-friendly mostly-digital ΣΔMs, 433–434
ΣΔMs with VCO/PWM-based quantization,
432–433
Time-constant error, CT-ΣΔMs, 128–130
Time-domain behavioral models
vs frequency-domain behavioral models, 175–178
MATLAB/SIMULINK, 178–188
SIMULINK C-MEX S-functions, 182–188
Time-encoding quantization (TEQ), multi-bit, or
single-bit, ΣΔ ADCs, 393–408
Time-interleaved band-pass ΣΔMs, 61–63
mismatch, 62–63
Transconductors, 317–324
Cadence Virtuoso schematic editor, 322
design considerations, 317–324
highly linear front-end transconductor, 318–319
loop-filter transconductors, 320–321, 322–323
performance factors, 317–318
widely programmable transconductors, 323–324
Two-stage 0-L MASH ΣΔ ADC, 419
Two-stage amplifier with Miller compensation, 309, 310

Unity STF, 367–368, 418
second-order ΣΔMs, 34–35
sturdy MASH (SMASH) architectures, 47–48
Upsampling cascade MR-ΣΔMs, 421–422

Voltage-controlled ring oscillators (VCROs), dither, 434
White noise, 292–293
quantization white noise model, analog-to-digital
conversion, 5–8
Widely-programmable Gm-LC BP-ΣΔMs for RF digitizers, 368–385
application scenario, 371
biasing, 382–385
BP CT-ΣΔM loop-filter reconfiguration techniques, 375–378
digital control programmability, 382–385

embedded 4-bit quantizer with calibration, 378–382
Gm-LC BP-ΣΔM high-level sizing, 371–375
testability, 382–385
Widely programmable transconductors, 323–324

$Z \rightarrow -Z^2$ LP–BP transformation, band-pass ΣΔMs, 58, 59
Z-domain block diagram of a cascade 2–1 DT-ΣΔM, 482