Contents in Brief

PART I Analyzing DNA, RNA, and Protein Sequences

1 Introduction, 3
2 Access to Sequence Data and Related Information, 19
3 Pairwise Sequence Alignment, 69
4 Basic Local Alignment Search Tool (BLAST), 121
5 Advanced Database Searching, 167
6 Multiple Sequence Alignment, 205
7 Molecular Phylogeny and Evolution, 245

PART II Genomewide Analysis of DNA, RNA, and Protein

8 DNA: The Eukaryotic Chromosome, 307
9 Analysis of Next-Generation Sequence Data, 377
10 Bioinformatic Approaches to Ribonucleic Acid (RNA), 433
11 Gene Expression: Microarray and RNA-seq Data Analysis, 479
12 Protein Analysis and Proteomics, 539
13 Protein Structure, 589
14 Functional Genomics, 635

PART III Genome Analysis

15 Genomes Across the Tree of Life, 699
16 Completed Genomes: Viruses, 755
17 Completed Genomes: Bacteria and Archaea, 797
18 Eukaryotic Genomes: Fungi, 847
19 Eukaryotic Genomes: From Parasites to Primates, 887
20 Human Genome, 957
21 Human Disease, 1011

GLOSSARY, 1075

SELF-TEST QUIZ: SOLUTIONS, 1103

AUTHOR INDEX, 1105

SUBJECT INDEX, 1109
Contents

Preface to the Third Edition, xxxi
About the Companion Website, xxxiii

PART I ANALYZING DNA, RNA, AND PROTEIN SEQUENCES

1 Introduction, 3
 Organization of the Book, 4
 Bioinformatics: The Big Picture, 5
 A Consistent Example: Globins, 6
 Organization of the Chapters, 8
 Suggestions For Students and Teachers: Web Exercises, Find-a-Gene, and
 Characterize-a-Genome, 9
 Bioinformatics Software: Two Cultures, 10
 Web-Based Software, 11
 Command-Line Software, 11
 Bridging the Two Cultures, 12
 New Paradigms for Learning Programming for Bioinformatics, 13
 Reproducible Research in Bioinformatics, 14
 Bioinformatics and Other Informatics Disciplines, 15
 Advice for Students, 15
 Suggested Reading, 15
 References, 16

2 Access to Sequence Data and Related Information, 19
 Introduction to Biological Databases, 19
 Centralized Databases Store DNA Sequences, 20
 Contents of DNA, RNA, and Protein Databases, 24
 Organisms in GenBank/EMBL-Bank/DDBJ, 24
 Types of Data in GenBank/EMBL-Bank/DDBJ, 26
 Genomic DNA Databases, 27
 DNA-Level Data: Sequence-Tagged Sites (STSs), 27
 DNA-Level Data: Genome Survey Sequences (GSSs), 27
 DNA-Level Data: High-Throughput Genomic Sequence (HTGS), 27
 RNA data, 27
 RNA-Level Data: cDNA Databases Corresponding to Expressed Genes, 27
 RNA-Level Data: Expressed Sequence Tags (ESTs), 28
 RNA-Level Data: UniGene, 28
Access to Information: Protein Databases, 29
 UniProt, 31
Central Bioinformatics Resources: NCBI and EBI, 31
 Introduction to NCBI, 31
 The European Bioinformatics Institute (EBI), 32
Ensembl, 34
Access to Information: Accession Numbers to Label and Identify Sequences, 34
 The Reference Sequence (RefSeq) Project, 36
 RefSeqGene and the Locus Reference Genomic Project, 37
 The Consensus Coding Sequence CCDS Project, 37
 The Vertebrate Genome Annotation (VEGA) Project, 37
Access to Information via Gene Resource at NCBI, 38
 Relationship Between NCBI Gene, Nucleotide, and Protein Resources, 41
 Comparison of NCBI's Gene and UniGene, 41
 NCBI's Gene and HomoloGene, 42
Command-Line Access to Data at NCBI, 42
 Using Command-Line Software, 42
Accessing NCBI Databases with EDirect, 45
 EDirect Example 1, 46
 EDirect Example 2, 46
 EDirect Example 3, 46
 EDirect Example 4, 47
 EDirect Example 5, 48
 EDirect Example 6, 48
 EDirect Example 7, 48
Access to Information: Genome Browsers, 49
 Genome Builds, 49
 The University of California, Santa Cruz (UCSC) Genome Browser, 50
 The Ensembl Genome Browser, 50
 The Map Viewer at NCBI, 52
Examples of How to Access Sequence Data: Individual Genes/Proteins, 52
 Histones, 52
 HIV-1 pol, 53
How to Access Sets of Data: Large-Scale Queries of Regions and Features, 54
 Thinking About One Gene (or Element) Versus Many Genes (Elements), 54
 The BioMart Project, 54
 Using the UCSC Table Browser, 54
 Custom Tracks: Versatility of the BED File, 56
 Galaxy: Reproducible, Web-Based, High-Throughput Research, 57
Access to Biomedical Literature, 58
 Example of PubMed Search, 59
Perspective, 59
Pitfalls, 60
Advice for Students, 60
3 Pairwise Sequence Alignment, 69

Introduction, 69

Protein Alignment: Often More Informative than DNA Alignment, 70
Definitions: Homology, Similarity, Identity, 70
Gaps, 78
Pairwise Alignment, Homology, and Evolution of Life, 78

Scoring Matrices, 79

Dayhoff Model Step 1 (of 7): Accepted Point Mutations, 79
Dayhoff Model Step 2 (of 7): Frequency of Amino Acids, 79
Dayhoff Model Step 3 (of 7): Relative Mutability of Amino Acids, 80
Dayhoff Model Step 4 (of 7): Mutation Probability Matrix for the
 Evolutionary Distance of 1 PAM, 82
Dayhoff Model Step 5 (of 7): PAM250 and Other PAM Matrices, 84
Dayhoff Model Step 6 (of 7): From a Mutation Probability Matrix to a
 Relatedness Odds Matrix, 88
Dayhoff Model Step 7 (of 7): Log-Odds Scoring Matrix, 89
Practical Usefulness of PAM Matrices in Pairwise Alignment, 91
Important Alternative to PAM: BLOSUM Scoring Matrices, 91
Pairwise Alignment and Limits of Detection: The “Twilight Zone”, 94

Alignment Algorithms: Global and Local, 96

Global Sequence Alignment: Algorithm of Needleman and Wunsch, 96
 Step 1: Setting Up a Matrix, 96
 Step 2: Scoring the Matrix, 97
 Step 3: Identifying the Optimal Alignment, 99
Local Sequence Alignment: Smith and Waterman Algorithm, 101
Rapid, Heuristic Versions of Smith–Waterman: FASTA and BLAST, 103
Basic Local Alignment Search Tool (BLAST), 104
Pairwise Alignment with Dotplots, 104

The Statistical Significance of Pairwise Alignments, 106
Statistical Significance of Global Alignments, 106
Statistical Significance of Local Alignments, 108
Percent Identity and Relative Entropy, 108

Perspective, 110
Pitfalls, 112
Advice for Students, 112

Web Resources, 112
 Discussion Questions, 113
 Problems/Computer Lab, 113
Self-Test Quiz, 114
Suggested Reading, 115
References, 116

4 Basic Local Alignment Search Tool (BLAST), 121
Introduction, 121
BLAST Search Steps, 124
 Step 1: Specifying Sequence of Interest, 124
 Step 2: Selecting BLAST Program, 124
 Step 3: Selecting a Database, 126
 Step 4a: Selecting Optional Search Parameters, 127
 Step 4b: Selecting Formatting Parameters, 132
Stand-Alone BLAST, 135
BLAST Algorithm Uses Local Alignment Search Strategy, 138
 BLAST Algorithm Parts: List, Scan, Extend, 138
 BLAST Algorithm: Local Alignment Search Statistics and E Value, 141
Making Sense of Raw Scores with Bit Scores, 143
 BLAST Algorithm: Relation Between E and p Values, 143
BLAST Search Strategies, 145
 General Concepts, 145
 Principles of BLAST Searching, 146
 How to Evaluate the Significance of Results, 146
 How to Handle Too Many Results, 150
 How to Handle Too Few Results, 150
 BLAST Searching with Multidomain Protein: HIV-1 Pol, 151
Using Blast For Gene Discovery: Find-a-Gene, 155
Perspective, 159
Pitfalls, 160
Advice for Students, 160
Web Resources, 160
 Discussion Questions, 160
 Problems/Computer Lab, 160
 Self-Test Quiz, 161
 Suggested Reading, 162
 References, 163

5 Advanced Database Searching, 167
Introduction, 167
Specialized BLAST Sites, 168
 Organism-Specific BLAST Sites, 168
 Ensembl BLAST, 168
 Wellcome Trust Sanger Institute, 170
 Specialized BLAST-Related Algorithms, 170
 WU BLAST 2.0, 170
 European Bioinformatics Institute (EBI), 170
Specialized NCBI BLAST Sites, 170
BLAST of Next-Generation Sequence Data, 170
Finding Distantly Related Proteins: Position-Specific Iterated BLAST (PSI-BLAST) and DELTA-BLAST, 171
PSI-BLAST Errors: Problem of Corruption, 177
Reverse Position-Specific BLAST, 177
Domain Enhanced Lookup Time Accelerated BLAST (DELTA-BLAST), 177
Assessing Performance of PSI-BLAST and DELTA-BLAST, 179
Pattern-Hit Initiated BLAST (PHI-BLAST), 179
Profile Searches: Hidden Markov Models, 181
HMMER Software: Command-Line and Web-Based, 184
BLAST-Like Alignment Tools to Search Genomic DNA Rapidly, 186
Benchmarking to Assess Genomic Alignment Performance, 187
PatternHunter: Nonconsecutive Seeds Boost Sensitivity, 188
BLASTZ, 188
Enredo and Pecan, 191
MegABLAST and Discontinuous MegaBLAST, 191
BLAST-Like Tool (BLAT), 192
LAGAN, 192
SSAH2, 194
Aligning Next-Generation Sequence (NGS) Reads to a Reference Genome, 194
Alignment Based on Hash Tables, 194
Alignment Based on the Burrows–Wheeler Transform, 196
Perspective, 197
Pitfalls, 197
Advice For Students, 198
Web Resources, 198
Discussion Questions, 198
Problems/Computer Lab, 198
Self-Test Quiz, 199
Suggested Reading, 200
References, 201

6 Multiple Sequence Alignment, 205
Introduction, 205
Definition of Multiple Sequence Alignment, 206
Typical Uses and Practical Strategies of Multiple Sequence Alignment, 207
Benchmarking: Assessment of Multiple Sequence Alignment Algorithms, 207
Five Main Approaches to Multiple Sequence Alignment, 208
Exact Approaches to Multiple Sequence Alignment, 208
Progressive Sequence Alignment, 208
Iterative Approaches, 214
Consistency-Based approaches, 218
Structure-Based Methods, 220
Benchmarking Studies: Approaches, Findings, Challenges, 221
Databases of Multiple Sequence Alignments, 222
 Pfam: Protein Family Database of Profile HMMs, 223
 SMART, 224
 Conserved Domain Database, 226
 Integrated Multiple Sequence Alignment Resources: InterPro and iProClass, 226
 Multiple Sequence Alignment Database Curation: Manual Versus Automated, 227
 Multiple Sequence Alignments of Genomic Regions, 227
 Analyzing Genomic DNA Alignments via UCSC, 229
 Analyzing Genomic DNA Alignments via Galaxy, 229
 Analyzing Genomic DNA Alignments via Ensembl, 231
 Alignathon Competition to Assess Whole-Genome Alignment Methods, 231
 Perspective, 234
 Pitfalls, 234
 Advice for Students, 235
 Discussion Questions, 235
 Problems/Computer Lab, 235
 Self-Test Quiz, 237
 Suggested Reading, 238
 References, 239

7 Molecular Phylogeny and Evolution, 245
 Introduction to Molecular Evolution, 245
 Principles of Molecular Phylogeny and Evolution, 246
 Goals of Molecular Phylogeny, 246
 Historical Background, 247
 Molecular Clock Hypothesis, 250
 Positive and Negative Selection, 254
 Neutral Theory of Molecular Evolution, 258
 Molecular Phylogeny: Properties of Trees, 259
 Topologies and Branch Lengths of Trees, 259
 Tree Roots, 262
 Enumerating Trees and Selecting Search Strategies, 263
 Type of Trees, 266
 Species Trees versus Gene/Protein Trees, 266
 DNA, RNA, or Protein-Based Trees, 268
 Five Stages of Phylogenetic Analysis, 270
 Stage 1: Sequence Acquisition, 270
 Stage 2: Multiple Sequence Alignment, 271
 Stage 3: Models of DNA and Amino Acid Substitution, 272
 Stage 4: Tree-Building Methods, 281
 Distance-Based, 282
 Phylogenetic Inference: Maximum Parsimony, 287
Model-Based Phylogenetic Inference: Maximum Likelihood, 289
Tree Inference: Bayesian Methods, 290
Stage 5: Evaluating Trees, 293
Perspective, 295
Pitfalls, 295
Advice for Students, 296
Web Resources, 297
Discussion Questions, 297
Problems/Computer Lab, 297
Self-Test Quiz, 298
Suggested Reading, 298
References, 299

PART II GENOMEWIDE ANALYSIS OF DNA, RNA, AND PROTEIN

8 DNA: The Eukaryotic Chromosome, 307
Introduction, 308
Major Differences between Eukaryotes and Bacteria and Archaea, 308
General Features of Eukaryotic Genomes and Chromosomes, 310
C Value Paradox: Why Eukaryotic Genome Sizes Vary So Greatly, 312
Organization of Eukaryotic Genomes into Chromosomes, 310
Analysis of Chromosomes Using Genome Browsers, 314
Analysis of Chromosomes Using BioMart and biomaRt, 314
Example 1, 317
Example 2, 319
Example 3, 319
Example 4, 319
Example 5, 320
Analysis of Chromosomes by the ENCODE Project, 320
Critiques of ENCODE: the C Value Paradox Revisited and the Definition of Function, 322
Repetitive DNA Content of Eukaryotic Chromosomes, 323
Eukaryotic Genomes Include Noncoding and Repetitive DNA Sequences, 323
Interspersed Repeats (Transposon-Derived Repeats), 325
Processed Pseudogenes, 326
Simple Sequence Repeats, 331
Segmental Duplications, 331
Blocks of Tandemly Repeated Sequences, 333
Gene Content of Eukaryotic Chromosomes, 334
Definition of Gene, 334
Finding Genes in Eukaryotic Genomes, 336
Finding Genes in Eukaryotic Genomes: EGASP Competition, 339
Three Resources for Studying Protein-Coding Genes: RefSeq, UCSC Genes, GENCODE, 340
Protein-Coding Genes in Eukaryotes: New Paradox, 342
Regulatory Regions of Eukaryotic Chromosomes, 342
 Databases of Genomic Regulatory Factors, 342
 Ultraconserved Elements, 345
 Nonconserved Elements, 345
Comparison of Eukaryotic DNA, 346
Variation in Chromosomal DNA, 347
 Dynamic Nature of Chromosomes: Whole-Genome Duplication, 347
 Chromosomal Variation in Individual Genomes, 349
 Structural Variation: Six Types, 351
 Inversions, 351
 Mechanisms of Creating Duplications, Deletions, and Inversions, 351
 Models for Creating Gene Families, 353
 Chromosomal Variation in Individual Genomes: SNPs, 354
Techniques to Measure Chromosomal Change, 355
 Array Comparative Genomic Hybridization, 356
 SNP Microarrays, 356
 Next-Generation Sequencing, 359
Perspective, 359
Pitfalls, 359
Advice to Students, 360
Web Resources, 360
 Discussion Questions, 361
 Problems/Computer Lab, 361
 Self-Test Quiz, 364
 Suggested Reading, 365
 References, 366

9 Analysis of Next-Generation Sequence Data, 377
Introduction, 378
DNA Sequencing Technologies, 377
 Sanger Sequencing, 379
 Next-Generation Sequencing, 379
 Cyclic Reversible Termination: Illumina, 382
 Pyrosequencing, 384
 Sequencing by Ligation: Color Space with ABI SOLiD, 385
 Ion Torrent: Genome Sequencing by Measuring pH, 387
 Pacific Biosciences: Single-Molecule Sequencing with Long Read Lengths, 387
 Complete Genomics: Self-Assembling DNA Nanoarrays, 387
Analysis of Next-Generation Sequencing of Genomic DNA, 387
 Overview of Next-Generation Sequencing Data Analysis, 387
 Topic 1: Experimental Design and Sample Preparation, 389
 Topic 2: From Generating Sequence Data to FASTQ, 390
 Finding and Viewing FASTQ files, 392
 Quality Assessment of FASTQ data, 393
 FASTG: A Richer Format than FASTQ, 394
Topic 3: Genome Assembly, 394
 Competitions and Critical Evaluations of the Performance of Genome
 Assemblers, 396
 The End of Assembly: Standards for Completion, 398
Topic 4: Sequence Alignment, 399
 Alignment of Repetitive DNA, 400
 Genome Analysis Toolkit (GATK) Workflow: Alignment with BWA, 401
Topic 5: The SAM/BAM Format and SAMtools, 402
 Calculating Read Depth, 405
 Finding and Viewing BAM/SAM files, 405
 Compressed Alignments: CRAM File Format, 406
Topic 6: Variant Calling: Single-Nucleotide Variants and Indels, 408
Topic 7: Variant Calling: Structural Variants, 409
Topic 8: Summarizing Variation: The VCF Format and VCFtools, 410
 Finding and Viewing VCF files, 413
Topic 9: Visualizing and Tabulating Next-Generation Sequence Data, 413
Topic 10: Interpreting the Biological Significance of Variants, 417
Topic 11: Storing Data in Repositories, 421
Specialized Applications of Next-Generation Sequencing, 421
Perspective, 422
Pitfalls, 423
Advice for Students, 423
Web Resources, 424
 Discussion Questions, 424
 Problems/Computer Lab, 424
 Self-Test Quiz, 425
 Suggested Reading, 425
 References, 425

10 Bioinformatic Approaches to Ribonucleic Acid (RNA), 433
Introduction to RNA, 433
Noncoding RNA, 436
 Noncoding RNAs in the Rfam Database, 436
 Transfer RNA, 438
 Ribosomal RNA, 441
 Small Nuclear RNA, 445
 Small Nucleolar RNA, 445
 MicroRNA, 445
 Short Interfering RNA, 447
 Long Noncoding RNA (IncRNA), 447
 Other Noncoding RNA, 448
 Noncoding RNAs in the UCSC Genome and Table Browser, 448
Introduction to Messenger RNA, 450
 mRNA: Subject of Gene Expression Studies, 450
 Low- and High-Throughput Technologies to Study mRNAs, 452
11 Gene Expression: Microarray and RNA-seq Data Analysis, 479

Introduction, 479

Microarray Analysis Method 1: GEO2R at NCBI, 482

GEO2R Executes a Series of R Scripts, 482
GEO2R Identifies the Chromosomal Origin of Regulated Transcripts, 485
GEO2R Normalizes Data, 486
GEO2R uses RMA Normalization for Accuracy and Precision, 488
Fold Change (Expression Ratios), 490
GEO2R Performs >22,000 Statistical Tests, 490
GEO2R Offers Corrections for Multiple Comparisons, 494

Microarray Analysis Method 2: Partek, 495
Importing Data, 496
Quality Control, 496
Adding Sample Information, 497
Sample Histogram, 498
Scatter Plots and MA Plots, 498
Working with Log$_2$ Transformed Microarray Data, 498
Exploratory Data Analysis with Principal Components Analysis (PCA), 498
Performing ANOVA in Partek, 501
From t-test to ANOVA, 503
Microarray Analysis Method 3: Analyzing a GEO Dataset with R, 504
 Setting up the Analyses, 504
 Reading CEL Files and Normalizing with RMA, 506
 Identifying Differentially Expressed Genes (Limma), 508
Microarray Analysis and Reproducibility, 510
Microarray Data Analysis: Descriptive Statistics, 511
 Hierarchical Cluster Analysis of Microarray Data, 511
 Partitioning Methods for Clustering: k-Means Clustering, 516
 Multidimensional Scaling Compared to Principal Components Analysis, 517
 Clustering Strategies: Self-Organizing Maps, 517
 Classification of Genes or Samples, 517
RNA-Seq, 519
 Setting up a TopHat and CuffLinks Sample Protocol, 523
 TopHat to Map Reads to a Reference Genome, 524
 Cufflinks to Assemble Transcripts, 525
 Cuffdiff to Determine Differential Expression, 525
 CummeRbund to Visualize RNA-seq Results, 526
 RNA-seq Genome Annotation Assessment Project (RGASP), 527
Functional Annotation of Microarray Data, 528
Perspective, 529
Pitfalls, 530
Advice for Students, 531
Suggested Reading, 531
Problems/Computer lab, 532
Self-test quiz, 532
Suggested Reading, 533
References, 534

12 Protein Analysis and Proteomics, 539
Introduction, 539
 Protein Databases, 540
 Community Standards for Proteomics Research, 542
 Evaluating the State-of-the-Art: ABRF analytic challenges, 542
Techniques for Identifying Proteins, 543
 Direct Protein Sequencing, 543
 Gel Electrophoresis, 543
 Mass Spectrometry, 547
Four Perspectives on Proteins, 551
 Perspective 1: Protein Domains and Motifs: Modular Nature of Proteins, 552
 Added Complexity of Multidomain Proteins, 557
 Protein Patterns: Motifs or Fingerprints Characteristic of Proteins, 557
 Perspective 2: Physical Properties of Proteins, 559
 Accuracy of Prediction Programs, 561
 Proteomic Approaches to Phosphorylation, 563
 Proteomic Approaches to Transmembrane Regions, 565
 Introduction to Perspectives 3 and 4: Gene Ontology Consortium, 567
 Perspective 3: Protein Localization, 568
 Perspective 4: Protein Function, 570
Perspective, 575
Pitfalls, 575
Advice for Students, 575
Web Resources, 576
 Discussion Questions, 578
 Problems/Computer Lab, 578
 Self-Test Quiz, 579
 Suggested Reading, 580
 References, 580

13 Protein Structure, 589
Overview of Protein Structure, 589
 Protein Sequence and Structure, 590
 Biological Questions Addressed by Structural Biology: Globins, 591
Principles of Protein Structure, 591
 Primary Structure, 591
 Secondary Structure, 594
 Tertiary Protein Structure: Protein-Folding Problem, 598
 Structural Genomics, the Protein Structure Initiative, and Target Selection, 600
Protein Data Bank, 602
 Accessing PDB Entries at NCBI Website, 606
 Integrated Views of Universe of Protein Folds, 609
 Taxonomic System for Protein Structures: SCOP Database, 610
 CATH Database, 613
 Dali Domain Dictionary, 615
 Comparison of Resources, 617
Protein Structure Prediction, 617
 Homology Modeling (Comparative Modeling), 618
 Fold Recognition (Threading), 619
 Ab Initio Prediction (Template-Free Modeling), 621
 A Competition to Assess Progress in Structure Prediction, 621
Intrinsically Disordered Proteins, 622
Protein Structure and Disease, 622
Perspective, 625
14 Functional Genomics, 635

Introduction to Functional Genomics, 635

The Relationship Between Genotype and Phenotype, 637

Eight-Model Organisms For Functional Genomics, 638

1. The Bacterium *Escherichia coli*, 639
2. The Yeast *Saccharomyces cerevisiae*, 640
3. The Plant *Arabidopsis thaliana*, 643
4. The Nematode *Caenorhabditis elegans*, 643
5. The Fruit Fly *Drosophila melanogaster*, 645
6. The Zebrafish *Danio rerio*, 645
7. The Mouse *Mus musculus*, 646
8. *Homo sapiens*: Variation in Humans, 647

Functional Genomics Using Reverse and Forward Genetics, 648

Reverse Genetics: Mouse Knockouts and the β-Globin Gene, 650
Reverse Genetics: Knocking Out Genes in Yeast Using Molecular Barcodes, 653
Reverse Genetics: Random Insertional Mutagenesis (Gene Trapping), 657
Reverse Genetics: Insertional Mutagenesis in Yeast, 660
Reverse Genetics: Gene Silencing by Disrupting RNA, 662
Forward Genetics: Chemical Mutagenesis, 665
Comparison of Reverse and Forward Genetics, 665

Functional Genomics and the Central Dogma, 666

Approaches to Function and Definitions of Function, 646
Functional Genomics and DNA: Integrating Information, 668
Functional Genomics and RNA, 668
Functional Genomics and Protein, 670

Proteomics Approaches to Functional Genomics, 670

Functional Genomics and Protein: Critical Assessment of Protein Function Annotation, 672
Protein–Protein Interactions, 672
Yeast Two-Hybrid System, 673
Protein Complexes: Affinity Chromatography and Mass Spectrometry, 675
Protein–Protein Interaction Databases, 676

From Pairwise Interactions to Protein Networks, 678
Assessment of Accuracy, 680
Choice of Data, 680
Experimental Organism, 680
Variation in Pathways, 681
Categories of Maps, 681
Pathways, Networks, and Integration: Bioinformatics Resources, 682
Perspective, 685
Pitfalls, 686
Advice for Students, 686
Web Resources, 686
Discussion Questions, 686
Problems/Computer Lab, 686
Self-Test Quiz, 687
Suggested Reading, 688
References, 688

PART III GENOME ANALYSIS

15 Genomes Across the Tree of Life, 699
Introduction, 700
Five Perspectives on Genomics, 701
Brief History of Systematics, 701
History of Life on Earth, 705
Molecular Sequences as the Basis of the Tree of Life, 705
Role of Bioinformatics in Taxonomy, 709
Prominent Web Resources, 710
Ensembl Genomes, 710
NCBI Genome, 710
Genome Portal of DOE JGI and the Integrated Microbial Genomes, 710
Genomes On Line Database (GOLD), 710
UCSC, 710
Genome-Sequencing Projects: Chronology, 711
Brief Chronology, 711
1976–1978: First Bacteriophage and Viral Genomes, 711
1981: First Eukaryotic Organellar Genome, 712
1986: First Chloroplast Genomes, 714
1992: First Eukaryotic Chromosome, 715
1995: Complete Genome of Free-Living Organism, 715
1996: First Eukaryotic Genome, 715
1997: *Escherichia coli*, 715
1998: First Genome of Multicellular Organism, 716
1999: Human Chromosome, 716
2000: Fly, Plant, and Human Chromosome 21, 716
2001: Draft Sequences of Human Genome, 716
2002: Continuing Rise in Completed Genomes, 717
2003: HapMap, 717
2004: Chicken, Rat, and Finished Human Sequences, 717
2005: Chimpanzee, Dog, Phase I HapMap, 718
2006: Sea Urchin, Honeybee, dbGaP, 718
2007: Rhesus Macaque, First Individual Human Genome, ENCODE Pilot, 718
2008: Platypus, First Cancer Genome, First Personal Genome Using NGS, 718
2009: Bovine, First Human Methlyome Map, 718
2010: 1000 Genomes Pilot, Neandertal, Exome Sequencing to Find Disease Genes, 719
2012: Denisovan Genome, Bonobo, and 1000 Genomes Project, 719
2013: The Simplest Animal and a 700,000-Year-Old Horse, 719
2014: Mouse ENCODE, Primates, Plants, and Ancient Hominids, 719
2015: Diversity in Africa, 720

Genome Analysis Projects: Introduction, 720
Large-Scale Genomics Projects, 721
Criteria for Selection of Genomes for Sequencing, 722
 Genome Size, 722
 Cost, 722
 Relevance to Human Disease, 723
 Relevance to Basic Biological Questions, 724
 Relevance to Agriculture, 724
 Sequencing of One Versus Many Individuals from a Species, 724
Role of Comparative Genomics, 724
Resequeencing Projects, 725
Ancient DNA Projects, 725
Metagenomics Projects, 725

Genome Analysis Projects: Sequencing, 728
Genome-Sequencing Centers, 728
Trace Archive: Repository for Genome Sequence Data, 728
HTGS Archive: Repository for Unfinished Genome Sequence Data, 730

Genome Analysis Projects: Assembly, 730
Four Approaches to Genome Assembly, 730
Genome Assembly: From FASTQ to Contigs with Velvet, 733
Comparative Genome Assembly: Mapping Contigs to Known Genomes, 734
Finishing: When Has a Genome Been Fully Sequenced?, 735
Genome Assembly: Measures of Success, 735
Genome Assembly: Challenges, 735

Genome Analysis Projects: Annotation, 737
Annotation of Genes in Eukaryotes: Ensembl Pipeline, 738
Annotation of Genes in Eukaryotes: NCBI Pipeline, 739
Core Eukaryotic Genes Mapping Approach (CEGMA), 739
Assemblies from the Genome Reference Consortium, 741
Assembly Hubs and Transfers at UCSC, Ensembl, and NCBI, 741
Annotation of Genes in Bacteria and Archaea, 741
Genome Annotation Standards, 741

Perspective, 742
16 Completed Genomes: Viruses, 755

Introduction, 755

International Committee on Taxonomy of Viruses (ICTV) and Virus Species, 756

Classification of Viruses, 758

Classification of Viruses Based on Morphology, 758
Classification of Viruses Based on Nucleic Acid Composition, 758
Classification of Viruses Based on Genome Size, 758
Classification of Viruses Based on Disease Relevance, 760
Diversity and Evolution of Viruses, 762
Metagenomics and Virus Diversity, 764

Bioinformatics Approaches to Problems in Virology, 765
Human Immunodeficiency Virus (HIV), 766
NCBI and LANL resources for HIV-1, 766
Influenza Virus, 771
Measles Virus, 774
Ebola Virus, 775
Herpesvirus: From Phylogeny to Gene Expression, 776
The Pairwise Sequence Comparison (PASC) tool, 780

Giant Viruses, 782
Comparing genomes with MUMmer, 783
Perspectives, 785
Pitfalls, 786
Advice for Students, 786

Web Resources, 786

Discussion Questions, 787
Problems/Computer Lab, 787
Self-Test Quiz, 788
Suggested Reading, 789
References, 789

17 Completed Genomes: Bacteria and Archaea, 797

Introduction, 797

Classification of Bacteria and Archaea, 798

Classification of Bacteria by Morphological Criteria, 800
Classification of Bacteria and Archaea Based on Genome Size and Geometry, 801
Classification of Bacteria and Archaea Based on Lifestyle, 805
Classification of Bacteria Based on Human Disease Relevance, 808
Classification of Bacteria and Archaea Based on Ribosomal RNA
Sequences, 809
Classification of Bacteria and Archaea Based on Other Molecular
Sequences, 810
The Human Microbiome, 811
Analysis of Bacterial and Archaeal Genomes, 814
Nucleotide Composition, 817
Finding Genes, 819
Interpolated Context Model (ICM), 822
GLIMMER3, 824
Challenges of Bacterial and Archaeal Gene Prediction, 825
Gene Annotation, 825
Lateral Gene Transfer, 827
Comparison of Bacterial Genomes, 830
TaxPlot, 830
MUMmer, 833
Perspective, 834
Pitfalls, 835
Advice for Students, 835
Web Resources, 835
Discussion Questions, 836
Problems/Computer Lab, 836
Self-Test Quiz, 836
Suggested Reading, 837
References, 837

18 Eukaryotic Genomes: Fungi, 847
Introduction, 847
Description and Classification of Fungi, 848
Introduction to Budding Yeast *Saccharomyces Cerevisiae*, 849
Sequencing Yeast Genome, 851
Features of Budding Yeast Genome, 851
Exploring Typical Yeast Chromosome, 854
Web Resources for Analyzing a Chromosome, 854
Exploring Variation in a Chromosome with Command-Line Tools, 857
Finding Genes in a Chromosome with Command-Line Tools, 858
Properties of Yeast Chromosome XII, 860
Gene Duplication and Genome Duplication of *S. cerevisiae*, 860
Comparative Analyses of Hemiascomycetes, 865
Comparative Analyses of Whole-Genome Duplication, 866
Identification of Functional Elements, 868
Analysis of Fungal Genomes, 869
Fungi in the Human Microbiome, 870
Aspergillus, 871
Candida albicans, 871
Cryptococcus neoformans: model fungal pathogen, 872
Atypical Fungus: Microsporidial Parasite Encephalitozoon cuniculi, 873
Neurospora crassa, 873
First Basidiomycete: Phanerochaete chrysosporium, 875
Fission Yeast Schizosaccharomyces pombe, 875
Other Fungal Genomes, 876
Ten Leading Fungal Plant Pathogens, 876
Perspective, 876
Pitfalls, 877
Advice for Students, 877
Web Resources, 877
Discussion Questions, 877
Problems/Computer Lab, 878
Self-Test Quiz, 879
Suggested Quiz, 880
References, 880

19 Eukaryotic Genomes: From Parasites to Primates, 887
Introduction, 887
Protozoans at Base of Tree Lacking Mitochondria, 890
Trichomonas, 890
Giardia lamblia: A Human Intestinal Parasite, 891
Genomes of Unicellular Pathogens: Trypanosomes and Leishmania, 890
Trypanosomes, 892
Leishmania, 894
The Chromalveolates, 895
Malaria Parasite Plasmodium falciparum, 895
More Apicomplexans, 898
Astonishing Ciliophora: Paramecium and Tetrahymena, 899
Nucleomorphs, 902
Kingdom Stramenopila, 904
Plant Genomes, 906
Overview, 906
Green Algae (Chlorophyta), 908
Arabidopsis thaliana Genome, 910
The Second Plant Genome: Rice, 913
Third Plant: Poplar, 914
Fourth Plant: Grapevine, 915
Giant and Tiny Plant Genomes, 915
Hundreds More Land Plant Genomes, 915
Moss, 916
Slime and Fruiting Bodies at the Feet of Metazoans, 916
Social Slime Mold Dictyostelium discoideum, 916
Metazoans, 917
 Introduction to Metazoans, 917
 900 MYA: the Simple Animal Caenorhabditis elegans, 918
 900 MYA: Drosophila melanogaster (First Insect Genome), 919
 900 MYA: Anopheles gambiae (Second Insect Genome), 921
 900 MYA: Silkworm and Butterflies, 922
 900 MYA: Honeybee, 923
 900 MYA: A Swarm of Insect Genomes, 923
 840 MYA: A Sea Urchin on the Path to Chordates, 924
 800 MYA: Ciona intestinalis and the Path to Vertebrates, 925
 450 MYA: Vertebrate Genomes of Fish, 926
 350 MYA: Frogs, 929
 320 MYA: Reptiles (Birds, Snakes, Turtles, Crocodiles), 929
 180 MYA: The Platypus and Opposum Genomes, 931
 100 MYA: Mammalian Radiation from Dog to Cow, 933
 80 MYA: The Mouse and Rat, 934
 5–50 MYA: Primate Genomes, 937

Perspective, 940
Pitfalls, 941
Advice for Students, 941
Web Resources, 942
 Discussion Questions, 942
 Problems/Computer Lab, 942
 Self-Test Quiz, 943
 Suggested Reading, 944
 References, 944

20 Human Genome, 957

Introduction, 957
Main Conclusions of Human Genome Project, 958
Gateways to Access the Human Genome, 959
 NCBI, 959
 Ensembl, 959
 University of California at Santa Cruz Human Genome Browser, 961
 NHGRI, 961
 Wellcome Trust Sanger Institute, 964

Human Genome Project, 964
 Background of Human Genome Project, 964
 Strategic Issues: Hierarchical Shotgun Sequencing to Generate Draft Sequence, 966
 Human Genome Assemblies, 966
 Broad Genomic Landscape, 968
 Long-Range Variation in GC Content, 969
 CpG Islands, 969
 Comparison of Genetic and Physical Distance, 970
Repeat Content of Human Genome, 971
 Transposon-Derived Repeats, 972
 Simple Sequence Repeats, 973
 Segmental Duplications, 973
Gene Content of Human Genome, 974
 Noncoding RNAs, 975
 Protein-Coding Genes, 975
 Comparative Proteome Analysis, 975
 Complexity of Human Proteome, 978
25 Human Chromosomes, 979
 Group A (Chromosomes 1–3), 981
 Group B (Chromosomes 4, 5), 982
 Group C (Chromosomes 6–12, X), 983
 Group D (Chromosomes 13–15), 983
 Group E (Chromosomes 16–18), 984
 Group F (Chromosomes 19, 20), 984
 Group G (Chromosomes 21, 22, Y), 984
Mitochondrial Genome, 985
Human Genome Variation, 986
 SNPs, Haplotypes, and HapMap, 986
 Viewing and Analyzing SNPs and Haplotypes, 988
 HaploView, 988
 HapMap Browser, 988
 Integrative Genomics Browser (IGV), 988
 NCBI dbSNP, 988
 PLINK, 992
 SNPduo, 990
 Major Conclusions of HapMap Project, 994
The 1000 Genomes Project, 995
Variation: Sequencing Individual Genomes, 998
Perspective, 999
Pitfalls, 1000
Advice for Students, 1001
 Discussion Questions, 1001
 Problems/Computer Lab, 1001
 Self-Test Quiz, 1003
 Suggested Quiz, 1004
 References, 1004

21 Human Disease, 1011
Human Genetic Disease: A Consequence of DNA Variation, 1011
 A Bioinformatics Perspective on Human Disease, 1012
 Garrod's View of Disease, 1014
 Classification of Disease, 1015
 NIH Disease Classification: MeSH Terms, 1017
Categories of Disease, 1020
 Allele Frequencies and Effect Sizes, 1020
 Monogenic Disorders, 1021
 Complex Disorders, 1024
 Genomic Disorders, 1025
 Environmentally Caused Disease, 1029
 Disease and Genetic Background, 1030
 Mitochondrial Disease, 1030
 Somatic Mosaic Disease, 1032
 Cancer: A Somatic Mosaic Disease, 1033

Disease Databases, 1036
 OMIM: Central Bioinformatics Resource for Human Disease, 1036
 Human Gene Mutation Database (HGMD), 1039
 ClinVar and Databases of Clinically Relevant Variants, 1040
 GeneCards, 1041
 Integration of Disease Database Information at the UCSC Genome Browser, 1041
 Locus-Specific Mutation Databases and LOVD, 1041
 The PhenCode Project, 1044
 Limitations of Disease Databases: The Growing Interpretive Gap, 1045
 Human Disease Genes and Amino Acid Substitutions, 1045

Approaches to Identifying Disease-Associated Genes and Loci, 1046
 Linkage Analysis, 1047
 Genome-Wide Association Studies, 1047
 Identification of Chromosomal Abnormalities, 1050
 Human Genome Sequencing, 1051
 Genome Sequencing to Identify Monogenic Disorders, 1051
 Genome Sequencing to Solve Complex Disorders, 1051
 Research Versus Clinical Sequencing and Incidental Findings, 1052
 Disease-causing Variants in Apparently Normal Individuals, 1054

Human Disease Genes in Model Organisms, 1055
 Human Disease Orthologs in Nonvertebrate Species, 1056
 Human Disease Orthologs in Rodents, 1058
 Human Disease Orthologs in Primates, 1059

Functional Classification of Disease Genes, 1060
 Perspective, 1063
 Pitfalls, 1063
 Advice for Students, 1063
 Discussion Questions, 1064
 Problems/Computer Lab, 1062
Self-Test Quiz, 1065
Suggested Reading, 1066
References, 1066

GLOSSARY, 1075

SELF-TEST QUIZ: SOLUTIONS, 1103

AUTHOR INDEX, 1105

SUBJECT INDEX, 1109