Contents

Series Preface

- xv

Preface

- xvii

1 Introduction

1.1 Introduction

1.2 An Enriched Finite Element Method

1.3 A Review on X-FEM: Development and Applications

- 1.3.1 Coupling X-FEM with the Level-Set Method
- 1.3.2 Linear Elastic Fracture Mechanics (LEFM)
- 1.3.3 Cohesive Fracture Mechanics
- 1.3.4 Composite Materials and Material Inhomogeneities
- 1.3.5 Plasticity, Damage, and Fatigue Problems
- 1.3.6 Shear Band Localization
- 1.3.7 Fluid–Structure Interaction
- 1.3.8 Fluid Flow in Fractured Porous Media
- 1.3.9 Fluid Flow and Fluid Mechanics Problems
- 1.3.10 Phase Transition and Solidification
- 1.3.11 Thermal and Thermo-Mechanical Problems
- 1.3.12 Plates and Shells
- 1.3.13 Contact Problems
- 1.3.14 Topology Optimization
- 1.3.15 Piezoelectric and Magneto-Electroelastic Problems
- 1.3.16 Multi-Scale Modeling

2 Extended Finite Element Formulation

2.1 Introduction

2.2 The Partition of Unity Finite Element Method

2.3 The Enrichment of Approximation Space

- 2.3.1 Intrinsic Enrichment
- 2.3.2 Extrinsic Enrichment

2.4 The Basis of X-FEM Approximation

- 2.4.1 The Signed Distance Function
- 2.4.2 The Heaviside Function

2.5 Blending Elements

2.6 Governing Equation of a Body with Discontinuity

- 2.6.1 The Divergence Theorem for Discontinuous Problems
- 2.6.2 The Weak form of Governing Equation

Copyrighted Material
Table of Contents

Chapter 2

2.7 The X-FEM Discretization of Governing Equation 53
2.7.1 Numerical Implementation of X-FEM Formulation 55
2.7.2 Numerical Integration Algorithm 57
2.8 Application of X-FEM in Weak and Strong Discontinuities 60
2.8.1 Modeling an Elastic Bar with a Strong Discontinuity 61
2.8.2 Modeling an Elastic Bar with a Weak Discontinuity 63
2.8.3 Modeling an Elastic Plate with a Crack Interface at its Center 66
2.8.4 Modeling an Elastic Plate with a Material Interface at its Center 68
2.9 Higher Order X-FEM 70
2.10 Implementation of X-FEM with Higher Order Elements 73
2.10.1 Higher Order X-FEM Modeling of a Plate with a Material Interface 73
2.10.2 Higher Order X-FEM Modeling of a Plate with a Curved Crack Interface 75

Chapter 3

3 Enrichment Elements 77
3.1 Introduction 77
3.2 Tracking Moving Boundaries 78
3.3 Level Set Method 81
3.3.1 Numerical Implementation of LSM 82
3.3.2 Coupling the LSM with X-FEM 83
3.4 Fast Marching Method 85
3.4.1 Coupling the FMM with X-FEM 87
3.5 X-FEM Enrichment Functions 88
3.5.1 Bimaterials, Voids, and Inclusions 88
3.5.2 Strong Discontinuities and Crack Interfaces 91
3.5.3 Brittle Cracks 93
3.5.4 Cohesive Cracks 97
3.5.5 Plastic Fracture Mechanics 99
3.5.6 Multiple Cracks 101
3.5.7 Fracture in Bimaterial Problems 102
3.5.8 Polycrystalline Microstructure 106
3.5.9 Dislocations 111
3.5.10 Shear Band Localization 113

Chapter 4

4 Blending Elements 119
4.1 Introduction 119
4.2 Convergence Analysis in the X-FEM 120
4.3 Ill-Conditioning in the X-FEM Method 124
4.3.1 One-Dimensional Problem with Material Interface 126
4.4 Blending Strategies in X-FEM 128
4.5 Enhanced Strain Method 130
4.5.1 An Enhanced Strain Blending Element for the Ramp Enrichment Function 132
4.5.2 An Enhanced Strain Blending Element for Asymptotic Enrichment Functions 134
4.6 The Hierarchical Method 135
4.6.1 A Hierarchical Blending Element for Discontinuous Gradient Enrichment 135
4.6.2 A Hierarchical Blending Element for Crack Tip Asymptotic Enrichments 137
4.7 The Cutoff Function Method 138
4.7.1 The Weighted Function Blending Method 140
4.7.2 A Variant of the Cutoff Function Method 142
4.8 A DG X-FEM Method 143
5 Large X-FEM Deformation

5.1 Introduction 161
5.2 Large FE Deformation 163
5.3 The Lagrangian Large X-FEM Deformation Method 167
 5.3.1 The Enrichment of Displacement Field 167
 5.3.2 The Large X-FEM Deformation Formulation 170
 5.3.3 Numerical Integration Scheme 172
5.4 Numerical Modeling of Large X-FEM Deformations 173
 5.4.1 Modeling an Axial Bar with a Weak Discontinuity 173
 5.4.2 Modeling a Plate with the Material Interface 177
5.5 Application of X-FEM in Large Deformation Problems 181
 5.5.1 Die-Pressing with a Horizontal Material Interface 182
 5.5.2 Die-Pressing with a Rigid Central Core 186
 5.5.3 Closed-Die Pressing of a Shaped-Tablet Component 188
5.6 The Extended Arbitrary Lagrangian–Eulerian FEM 192
 5.6.1 ALE Formulation 192
 5.6.1.1 Kinematics 193
 5.6.1.2 ALE Governing Equations 194
 5.6.2 The Weak Form of ALE Formulation 195
 5.6.3 The ALE FE Discretization 196
 5.6.4 The Uncoupled ALE Solution 198
 5.6.4.1 Material (Lagrangian) Phase 199
 5.6.4.2 Smoothing Phase 199
 5.6.4.3 Convection (Eulerian) Phase 200
 5.6.5 The X-ALE-FEM Computational Algorithm 202
 5.6.5.1 Level Set Update 203
 5.6.5.2 Stress Update with Sub-Triangular Numerical Integration 204
 5.6.5.3 Stress Update with Sub-Quadrilateral Numerical Integration 205
5.7 Application of the X-ALE-FEM Model 208
 5.7.1 The Coining Test 208
 5.7.2 A Plate in Tension 209

6 Contact Friction Modeling with X-FEM 215

6.1 Introduction 215
6.2 Continuum Model of Contact Friction 216
 6.2.1 Contact Conditions: The Kuhn–Tucker Rule 217
 6.2.2 Plasticity Theory of Friction 218
 6.2.3 Continuum Tangent Matrix of Contact Problem 221
6.3 X-FEM Modeling of the Contact Problem 223
 6.3.1 The Gauss–Green Theorem for Discontinuous Problems 223
 6.3.2 The Weak Form of Governing Equation for a Contact Problem 224
 6.3.3 The Enrichment of Displacement Field 226
6.4 Modeling of Contact Constraints via the Penalty Method
 6.4.1 Modeling of an Elastic Bar with a Discontinuity at Its Center
 6.4.2 Modeling of an Elastic Plate with a Discontinuity at Its Center
6.5 Modeling of Contact Constraints via the Lagrange Multipliers Method
 6.5.1 Modeling the Discontinuity in an Elastic Bar
 6.5.2 Modeling the Discontinuity in an Elastic Plate
6.6 Modeling of Contact Constraints via the Augmented-Lagrange Multipliers Method
 6.6.1 Modeling an Elastic Bar with a Discontinuity
 6.6.2 Modeling an Elastic Plate with a Discontinuity
6.7 X-FEM Modeling of Large Sliding Contact Problems
 6.7.1 Large Sliding with Horizontal Material Interfaces
6.8 Application of X-FEM Method in Frictional Contact Problems
 6.8.1 An Elastic Square Plate with Horizontal Interface
 - Imposing the Unilateral Contact Constraint
 - Modeling the Frictional Stick-Slip Behavior
 6.8.2 A Square Plate with an Inclined Crack
 6.8.3 A Double-Clamped Beam with a Central Crack
 6.8.4 A Rectangular Block with an S-Shaped Frictional Contact Interface
7 Linear Fracture Mechanics with the X-FEM Technique
 7.1 Introduction
 7.2 The Basis of LEFM
 7.2.1 Energy Balance in Crack Propagation
 7.2.2 Displacement and Stress Fields at the Crack Tip Area
 7.2.3 The SIFs
 7.3 Governing Equations of a Cracked Body
 7.3.1 The Enrichment of Displacement Field
 7.3.2 Discretization of Governing Equations
 7.4 Mixed-Mode Crack Propagation Criteria
 7.4.1 The Maximum Circumferential Tensile Stress Criterion
 7.4.2 The Minimum Strain Energy Density Criterion
 7.4.3 The Maximum Energy Release Rate
 7.5 Crack Growth Simulation with X-FEM
 7.5.1 Numerical Integration Scheme
 7.5.2 Numerical Integration of Contour J-Integral
 7.6 Application of X-FEM in Linear Fracture Mechanics
 7.6.1 X-FEM Modeling of a DCB
 7.6.2 An Infinite Plate with a Finite Crack in Tension
 7.6.3 An Infinite Plate with an Inclined Crack
 7.6.4 A Plate with Two Holes and Multiple Cracks
 7.7 Curved Crack Modeling with X-FEM
 7.7.1 Modeling a Curved Center Crack in an Infinite Plate
 7.8 X-FEM Modeling of a Bimaterial Interface Crack
 7.8.1 The Interfacial Fracture Mechanics
 7.8.2 The Enrichment of the Displacement Field
 7.8.3 Modeling of a Center Crack in an Infinite Bimaterial Plate
8 Cohesive Crack Growth with the X-FEM Technique
 8.1 Introduction
 8.2 Governing Equations of a Cracked Body
 8.2.1 The Enrichment of Displacement Field
 8.2.2 Discretization of Governing Equations
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Cohesive Crack Growth Based on the Stress Criterion</td>
<td>325</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Cohesive Constitutive Law</td>
<td>325</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Crack Growth Criterion and Crack Growth Direction</td>
<td>326</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Numerical Integration Scheme</td>
<td>328</td>
</tr>
<tr>
<td>8.4</td>
<td>Cohesive Crack Growth Based on the SIF Criterion</td>
<td>328</td>
</tr>
<tr>
<td>8.4.1</td>
<td>The Enrichment of Displacement Field</td>
<td>329</td>
</tr>
<tr>
<td>8.4.2</td>
<td>The Condition for Smooth Crack Closing</td>
<td>332</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Crack Growth Criterion and Crack Growth Direction</td>
<td>332</td>
</tr>
<tr>
<td>8.5</td>
<td>Cohesive Crack Growth Based on the Cohesive Segments Method</td>
<td>334</td>
</tr>
<tr>
<td>8.5.1</td>
<td>The Enrichment of Displacement Field</td>
<td>334</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Cohesive Constitutive Law</td>
<td>335</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Crack Growth Criterion and Its Direction for Continuous Crack Propagation</td>
<td>336</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Crack Growth Criterion and Its Direction for Discontinuous Crack Propagation</td>
<td>339</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Numerical Integration Scheme</td>
<td>341</td>
</tr>
<tr>
<td>8.6</td>
<td>Application of X-FEM Method in Cohesive Crack Growth</td>
<td>341</td>
</tr>
<tr>
<td>8.6.1</td>
<td>A Three-Point Bending Beam with Symmetric Edge Crack</td>
<td>341</td>
</tr>
<tr>
<td>8.6.2</td>
<td>A Plate with an Edge Crack under Impact Velocity</td>
<td>343</td>
</tr>
<tr>
<td>8.6.3</td>
<td>A Three-Point Bending Beam with an Eccentric Crack</td>
<td>346</td>
</tr>
<tr>
<td>9</td>
<td>Ductile Fracture Mechanics with a Damage-Plasticity Model in X-FEM</td>
<td>351</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>351</td>
</tr>
<tr>
<td>9.2</td>
<td>Large FE Deformation Formulation</td>
<td>353</td>
</tr>
<tr>
<td>9.3</td>
<td>Modified X-FEM Formulation</td>
<td>356</td>
</tr>
<tr>
<td>9.4</td>
<td>Large X-FEM Deformation Formulation</td>
<td>359</td>
</tr>
<tr>
<td>9.5</td>
<td>The Damage–Plasticity Model</td>
<td>364</td>
</tr>
<tr>
<td>9.6</td>
<td>The Nonlocal Gradient Damage Plasticity</td>
<td>368</td>
</tr>
<tr>
<td>9.7</td>
<td>Ductile Fracture with X-FEM Plasticity Model</td>
<td>369</td>
</tr>
<tr>
<td>9.8</td>
<td>Ductile Fracture with X-FEM Non-Local Damage-Plasticity Model</td>
<td>372</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Crack Initiation and Crack Growth Direction</td>
<td>372</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Crack Growth with a Null Step Analysis</td>
<td>375</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Crack Growth with a Relaxation Phase Analysis</td>
<td>377</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Locking Issues in Crack Growth Modeling</td>
<td>379</td>
</tr>
<tr>
<td>9.9</td>
<td>Application of X-FEM Damage-Plasticity Model</td>
<td>380</td>
</tr>
<tr>
<td>9.9.1</td>
<td>The Necking Problem</td>
<td>380</td>
</tr>
<tr>
<td>9.9.2</td>
<td>The CT Test</td>
<td>383</td>
</tr>
<tr>
<td>9.9.3</td>
<td>The Double-Notched Specimen</td>
<td>385</td>
</tr>
<tr>
<td>9.10</td>
<td>Dynamic Large X-FEM Deformation Formulation</td>
<td>387</td>
</tr>
<tr>
<td>9.10.1</td>
<td>The Dynamic X-FEM Discretization</td>
<td>388</td>
</tr>
<tr>
<td>9.10.2</td>
<td>The Large Strain Model</td>
<td>390</td>
</tr>
<tr>
<td>9.10.3</td>
<td>The Contact Friction Model</td>
<td>391</td>
</tr>
<tr>
<td>9.11</td>
<td>The Time Domain Discretization: The Dynamic Explicit Central Difference Method</td>
<td>393</td>
</tr>
<tr>
<td>9.12</td>
<td>Implementation of Dynamic X-FEM Damage-Plasticity Model</td>
<td>396</td>
</tr>
<tr>
<td>9.12.1</td>
<td>A Plate with an Inclined Crack</td>
<td>398</td>
</tr>
<tr>
<td>9.12.2</td>
<td>The Low Cycle Fatigue Test</td>
<td>400</td>
</tr>
<tr>
<td>9.12.3</td>
<td>The Cyclic CT Test</td>
<td>401</td>
</tr>
<tr>
<td>9.12.4</td>
<td>The Double Notched Specimen in Cyclic Loading</td>
<td>405</td>
</tr>
<tr>
<td>10</td>
<td>X-FEM Modeling of Saturated/Semi-Saturated Porous Media</td>
<td>409</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>409</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Governing Equations of Deformable Porous Media</td>
<td>411</td>
</tr>
</tbody>
</table>
10.2 The X-FEM Formulation of Deformable Porous Media with Weak Discontinuities 414
 10.2.1 Approximation of Displacement and Pressure Fields 415
 10.2.2 The X-FEM Spatial Discretization 418
 10.2.3 The Time Domain Discretization and Solution Procedure 419
 10.2.4 Numerical Integration Scheme 421
10.3 Application of the X-FEM Method in Deformable Porous Media with Arbitrary Interfaces 422
 10.3.1 An Elastic Soil Column 422
 10.3.2 An Elastic Foundation 424
10.4 Modeling Hydraulic Fracture Propagation in Deformable Porous Media 427
 10.4.1 Governing Equations of a Fractured Porous Medium 428
 10.4.2 The Weak Formulation of a Fractured Porous Medium 430
10.5 The X-FEM Formulation of Deformable Porous Media with Strong Discontinuities 434
 10.5.1 Approximation of the Displacement and Pressure Fields 434
 10.5.2 The X-FEM Spatial Discretization 437
 10.5.3 The Time Domain Discretization and Solution Procedure 438
10.6 Alternative Approaches to Fluid Flow Simulation within the Fracture 442
 10.6.1 A Partitioned Solution Algorithm for Interfacial Pressure 442
 10.6.2 A Time-Dependent Constant Pressure Algorithm 444
10.7 Application of the X-FEM Method in Hydraulic Fracture Propagation of Saturated Porous Media 445
 10.7.1 An Infinite Saturated Porous Medium with an Inclined Crack 446
 10.7.2 Hydraulic Fracture Propagation in an Infinite Poroelastic Medium 449
 10.7.3 Hydraulic Fracturing in a Concrete Gravity Dam 452
10.8 X-FEM Modeling of Contact Behavior in Fractured Porous Media 455
 10.8.1 Contact Behavior in a Fractured Medium 455
 10.8.2 X-FEM Formulation of Contact along the Fracture 456
 10.8.3 Consolidation of a Porous Block with a Vertical Discontinuity 457
11 Hydraulic Fracturing in Multi-Phase Porous Media with X-FEM 461
 11.1 Introduction 461
 11.2 The Physical Model of Multi-Phase Porous Media 463
 11.3 Governing Equations of Multi-Phase Porous Medium 465
 11.4 The X-FEM Formulation of Multi-Phase Porous Media with Weak Discontinuities 467
 11.4.1 Approximation of the Primary Variables 469
 11.4.2 Discretization of Equilibrium and Flow Continuity Equations 473
 11.4.3 Solution Procedure of Discretized Equilibrium Equations 476
 11.5 Application of X-FEM Method in Multi-Phase Porous Media with Arbitrary Interfaces 477
 11.6 The X-FEM Formulation for Hydraulic Fracturing in Multi-Phase Porous Media 482
 11.7 Discretization of Multi-Phase Governing Equations with Strong Discontinuities 487
 11.8 Solution Procedure for Fully Coupled Nonlinear Equations 493
 11.9 Computational Notes in Hydraulic Fracture Modeling 497
 11.10 Application of the X-FEM Method to Hydraulic Fracture Propagation of Multi-Phase Porous Media 499
12 Thermo-Hydro-Mechanical Modeling of Porous Media with X-FEM 509
 12.1 Introduction 509
 12.2 THM Governing Equations of Saturated Porous Media 511
 12.3 Discontinuities in a THM Medium 513
 12.4 The X-FEM Formulation of THM Governing Equations 514
 12.4.1 Approximation of Displacement, Pressure, and Temperature Fields 515
Contents

12.4.2 The X-FEM Spatial Discretization 517
12.4.3 The Time Domain Discretization 520
12.5 Application of the X-FEM Method to THM Behavior of Porous Media 521
 12.5.1 A Plate with an Inclined Crack in Thermal Loading 521
 12.5.2 A Plate with an Edge Crack in Thermal Loading 522
 12.5.3 An Impermeable Discontinuity in Saturated Porous Media 524
 12.5.4 An Inclined Fault in Porous Media 527

References 533

Index 557