Index

ABAQUS, 6, 16, 23
abs-enrichment function, 462–3, 470, 477
accumulated plastic strain, 366–7
adaptive crack growth algorithm, 320
adaptive FEM strategy, 449
adaptive finite element method, 161, 352
adaptive mesh refinements, 302
adaptive remeshing technique, 268
additive decomposition, 390
adhesion law, 218
adiabatic discontinuity, 527
advancing crack front, 268
Airy stress function, 271
ALE see arbitrary Lagrangian–Eulerian (ALE)
anisotropic behavior, 364–5
anisotropic material, 108, 111
aperture-dependent permeability, 457
arbitrary Lagrangian–Eulerian (ALE), 18, 23, 162, 192
constitutive equation, 199
coordinate, 193
formulation, 192, 195–6
splitting operator, 193, 198
arbitrary Lagrangian–Eulerian X-FEM method, 99
area J-integral, 289
Armstrong–Frederick kinematic hardening, 365, 366
artificial damping method, 395
artificial stiffness method, 395
assumed enhanced strain, 2
assumed strain method, 129, 130
assumed strain shape functions, 134
asymptotic, 2, 7
asymptotic enrichment functions, 516
asymptotic functions, 39, 94, 100, 103, 105, 134–5, 137–8, 278, 357
augmentation iterative solution, 243
augmentation loop, 243, 259
augmented-Lagrange functional, 241
augmented-Lagrange multipliers method, 216, 241
augmented-Lagrange rebounding force, 243, 245
augmented Lagrangian–XFEM model, 17, 99, 252
auxiliary state, 275, 313
backward Euler technique, 369
Barenblatt plastic crack-tip model, 319
basis functions, 35, 88, 100, 463
Bassi–Rebay numerical flux, 144, 146
Bauschinger effect, 365
BEM see boundary element method (BEM)
bimaterial, 15, 102–6, 163
interface, 42, 47, 73, 88
interfacial cracks, 15, 103, 105, 309
Biot theory, 409, 429, 511
blending elements, 8, 37, 46–9, 119, 175, 358, 463, 471
blending weight function, 358
boundary element method (BEM), 319
branch functions, 38, 94, 134, 169, 328, 329
bridging domain method, 18, 29
brittle crack, 93–7
B-spline function, 92
bubble mode, 137
bubbling pressure, 479
Bubnov–Galerkin technique, 418, 474, 489, 518
Burgers vector, 112

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
CAD see computer aided design (CAD)
capillary pressure, 463, 473, 510
cap plasticity, 18
Carter leak-off model, 427–8
Cartesian shape functions, 165, 174
Cauchy–Green tensor, 390
Cauchy stress tensor, 353
cell-based method, 79
characteristic length scale, 115
characteristic method, 79
Cholesky decomposition, 124, 128, 155, 156
CMOD see crack mouth opening displacement (CMOD)
cohesive, 2
constitutive law, 325–6, 334–6
constitutive relation, 317
crack, 11, 20, 97–8
crack growth, 319, 325–8, 333, 334
crack model, 317, 464
crack propagation, 500
fracture, 11–14, 318
fracture energy, 336, 500
fracture mechanics, 333, 461
fracture propagation, 510
fracture zone, 352
interface element, 335–6, 410
segment method, 320, 334–41, 510
zone length, 501
cohesive-zone model, 12, 325, 351, 510
collapsed quarter-point singular element, 268, 276
composite material, 14–16, 102
compressible fluid, 19
computer aided design (CAD), 11
condition number, 72, 119, 124, 125, 154, 371
confined plasticity, 99
confined plasticity model, 370
conjugate gradient method, 126
constant pressure algorithm, 442, 444–5, 449
constraint functional, 235, 241
contact constraint formulation, 227
contact friction, 215–65
algorithm, 387
model, 391–2
contact interface, 243
contact node algorithm, 215
contact problem, 26–8
contact search algorithm, 246
contact tangent matrix, 221
continuity equation, 483
continuous crack propagation, 336–9
continuum damage mechanics (CDM), 17, 351, 364, 367
contour integrals, 273, 290
contour J-integral, 274, 289–90
control-volume approach, 443
convective phase, 193, 198, 201
convective term, 192, 194, 197, 200
convective velocity, 193, 196, 197, 202
convergence rate, 119, 123, 128
corrected X-FEM, 8, 120, 352, 462–3, 471, 477
Cossar et continuum, 114
Cossar et plasticity theory, 99
Coulomb frictional theory, 392
Coulomb friction law, 219
coupled ALE approach, 192
coupled ALE solution, 198
coupled hydro-mechanical X-FEM analysis, 458
coupled THM model, 510
coupling X-FEM method, 451
crack branching, 335
crack closure effects, 353, 368, 400
crack closure integral, 273
crack growth criterion, 332–3, 339–41, 396
crack growth direction, 332–4, 372–5
crack growth segment, 376
crack initiation, 372–5
crack initiation criteria, 372
crack interface, 66–8, 91–3, 163
crack junction, 94
crack kinking, 445
crack kinking criteria, 283, 446
crack length, 449
crack length control scheme, 333
crack mouth opening displacement (CMOD), 343, 449
crack mouth pressure, 444–5, 449
crack opening, 462
crack opening displacement, 322, 465, 500
crack propagation, 3, 5
crack propagation criteria, 283
crack sliding, 322
crack sliding displacement, 465
crack-tip asymptotic functions, 278–9, 281, 286, 311–12, 434, 515–16
crack-tip enrichment element, 286
crack-tip enrichment functions, 361
crack-tip singularity, 39
crack toughness, 271
critical plastic strain, 367
CST element, 257
<table>
<thead>
<tr>
<th>Index</th>
<th>559</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic law, 429, 433</td>
<td>dummy interface stiffness, 333</td>
</tr>
<tr>
<td>curved crack interface, 75–6, 304</td>
<td>Dynaflow, 7</td>
</tr>
<tr>
<td>curved interface, 70</td>
<td>dynamic crack propagation, 9</td>
</tr>
<tr>
<td>cut-off function method, 9, 126, 138–43, 139, 143, 179, 358</td>
<td>dynamic large deformation X-FEM, 353</td>
</tr>
<tr>
<td>cyclic plasticity, 365</td>
<td>dynamic large X-FEM deformation, 387–2</td>
</tr>
<tr>
<td>damage, 16–18</td>
<td>dynamic seepage forcing term, 421, 440</td>
</tr>
<tr>
<td>crack closure, 400</td>
<td>dynamic sliding friction, 216, 218</td>
</tr>
<tr>
<td>growth, 368</td>
<td>dynamic X-FEM, 388–90</td>
</tr>
<tr>
<td>low cycle, 400</td>
<td>dynamic X-FEM damage-plasticity model, 396–407</td>
</tr>
<tr>
<td>process zone, 99</td>
<td>edge dislocation, 111</td>
</tr>
<tr>
<td>damage calculation point (DCP), 373, 396</td>
<td>effective stress, 412</td>
</tr>
<tr>
<td>damaged porous media, 410</td>
<td>effective water saturation, 479, 500</td>
</tr>
<tr>
<td>damaged porous zone, 484</td>
<td>Eikonal equation, 86</td>
</tr>
<tr>
<td>damage energy release rate, 365–6</td>
<td>elastic-predictor/plastic-corrector scheme, 222</td>
</tr>
<tr>
<td>damage–plasticity model, 17, 99, 351, 364–8</td>
<td>element-based DG-XFEM, 146</td>
</tr>
<tr>
<td>Darcy law, 20, 428, 465, 483, 512</td>
<td>element-free Galerkin method (EFGM), 3, 6, 84, 100, 103, 319</td>
</tr>
<tr>
<td>Darcy relation, 412–13, 466, 484</td>
<td>embedded element, 91</td>
</tr>
<tr>
<td>Darcy seepage law, 413</td>
<td>energy balance, 192</td>
</tr>
<tr>
<td>data transfer process, 376, 396</td>
<td>energy balance equation, 512</td>
</tr>
<tr>
<td>decohesion, 336</td>
<td>energy conserving equation, 511, 512</td>
</tr>
<tr>
<td>deformable porous media, 409, 411–13, 455–6, 521</td>
<td>energy conserving scheme, 9</td>
</tr>
<tr>
<td>deformation gradient, 164</td>
<td>energy dissipation potential, 365</td>
</tr>
<tr>
<td>degree of saturation, 412, 463</td>
<td>energy error norm, 147–8</td>
</tr>
<tr>
<td>delete-and-fill remeshing method, 268</td>
<td>energy release rate, 270–271, 310</td>
</tr>
<tr>
<td>DG-XFEM method, 120, 143</td>
<td>enhanced stiffness matrix, 55</td>
</tr>
<tr>
<td>Dirac delta function, 44, 56, 322</td>
<td>enhanced strain blending element, 132–5</td>
</tr>
<tr>
<td>Dirichlet interface condition, 89</td>
<td>enhanced strain field, 56</td>
</tr>
<tr>
<td>discontinuous crack propagation, 339–41</td>
<td>enhanced strain method, 8, 120, 130–135, 358</td>
</tr>
<tr>
<td>discontinuous function, 488</td>
<td>enhanced strain space, 133</td>
</tr>
<tr>
<td>discontinuous-Galerkin formulation, 8</td>
<td>enriched finite element method, 3–5, 84</td>
</tr>
<tr>
<td>discontinuous-Galerkin method, 20, 49, 143, 358</td>
<td>enrichment of displacement field, 38</td>
</tr>
<tr>
<td>discontinuous junction function, 102</td>
<td>enthalpy balance, 512</td>
</tr>
<tr>
<td>discrete crack propagation, 268</td>
<td>error estimation, 9</td>
</tr>
<tr>
<td>discrete damage-type constitutive law, 325</td>
<td>Euclidean norm, 40, 472</td>
</tr>
<tr>
<td>discrete damage-type constitutive model, 325–6</td>
<td>Eulerian description, 20, 162</td>
</tr>
<tr>
<td>dislocation, 18, 29, 111–13, 140</td>
<td>Euler-Lagrangian method, 7, 84</td>
</tr>
<tr>
<td>displacement correlation method, 273</td>
<td>Eulerian phase, 192, 198, 200</td>
</tr>
<tr>
<td>distance function, 489</td>
<td>Euler method, 9</td>
</tr>
<tr>
<td>Divergence theorem, 50, 280, 323, 388, 414, 430, 483, 514</td>
<td>explicit central difference method, 353, 393–6</td>
</tr>
<tr>
<td>DOF gathering method, 154</td>
<td>explicit X-FEM method, 393</td>
</tr>
<tr>
<td>ductile fracture mechanics, 351, 353, 379</td>
<td>extended finite element method (X-FEM), 4, 5, 268</td>
</tr>
<tr>
<td>ductile fracture model, 351</td>
<td>extended support domain, 203</td>
</tr>
<tr>
<td>ductile fracture propagation, 375</td>
<td>extrinsic enrichment, 32, 36–7</td>
</tr>
<tr>
<td>ductile material behavior, 351</td>
<td>fast marching level set method, 85</td>
</tr>
<tr>
<td>Dugdale-Barenblatt fracture model, 442</td>
<td>fast marching method, 7, 16, 39, 79, 85–7</td>
</tr>
<tr>
<td>Dugdale plastic crack-tip model, 319</td>
<td>fatigue, 16–18</td>
</tr>
</tbody>
</table>
fatigue crack, 7, 99
fatigue crack propagation, 16
FEM see finite element method (FEM)
fictitious crack model, 319
fictitious crack-tip, 317, 332
finite element method (FEM), 1
finite strain plasticity, 193
first Piola–Kirchhoff stress, 163, 164
flow continuity equation, 473–5
fluid-driven fracture, 410, 427
fluid flow continuity, 415
fluid injection, 457
fluid leakage flux, 429
fluid leakage flux, 427–8, 434, 442, 444, 449, 482
fluid–structure interaction, 7, 19–20
fluid viscosity, 450
FPZ see fracture process zone (FPZ)
FRAC3D, 11
fracture closing mode, 455, 457
fractured porous medium, 20–22, 428–433, 510
fracture opening, 482
fracture permeability, 430, 433
fracture process zone (FPZ), 24, 97, 317, 321, 325, 352, 364, 396, 462, 464, 482
fracture toughness, 283, 372, 446
fracturing fluid front, 427–8
frictional contact, 26, 99, 215, 246, 251–65
frictional damping, 216
frictional slip behavior, 251, 255–6
Fries strategy, 175, 179
fully saturated porous media, 412, 524
functionally graded material, 15, 24, 89
Galerkin discretization, 165, 280, 323, 355
gaseous phase flow, 507
Gauss averaging technique, 337
Gauss–Green theorem, 50, 223–4
Gaussian distribution, 374
Gaussian theorem, 354
Gaussian weight function, 327, 497–8
Gauss integration rule, 57, 172, 328, 441, 497
Gauss–Lobatto polynomial, 73
Gauss quadrature rule, 10, 251
generalized finite element method (G-FEM), 4, 35
generalized Newmark scheme, 419, 473, 493, 520
geometric softening, 380–381
geometric enrichment, 78, 129, 154, 358
geometric nonlinearity, 161, 246
geometric stiffness matrix, 166, 175
generic transformation, 288
G-FEM see generalized finite element method (G-FEM)
Gibbs oscillation, 394
Glide plane, 111, 112
global error criterion, 243, 255
Godunov method, 192
Godunov stress update procedure, 204
gradient theory, 114
green strain, 164, 173, 354, 380
Griffith theory, 284
Hamilton–Jacobi equation, 80–84, 86, 92
heat conduction, 512
heat transfer analysis, 511
Heaviside function, 43–6, 88, 169, 322, 357, 367
Heaviside jump function, 38, 75, 226, 278, 325, 434
Heaviside sign function, 44, 66, 92
Heaviside step function, 44, 62, 82, 93, 286, 323, 335, 434, 516
Helmholtz equation, 34, 88, 100, 352
Helmholtz free energy, 365
Helmholtz type PDE equation, 368
Hencky stored energy function, 390
Hencky strain, 390
$H^1$-error norm, 372
Hertz–Signorini–Moreau condition, 218
heterogeneous material, 15, 29, 89, 102, 335
hierarchical blending element, 135, 137–8
hierarchical method, 135–8
hierarchical shape functions, 8, 49, 73, 137
higher gradient theory, 114
higher-order X-FEM, 70–73, 304
Hilbert space, 145, 354, 357
Hillerborg crack-tip model, 319
Hillerborg’s characteristic length, 498
holes and inclusions, 6, 84
hourglassing control, 353
hourglassing issue, 396
hourglassing stiffness, 398
hourglass mode, 100, 395
hp-cloud method, 73
HRR material, 17, 99, 370
Hu–Washizu variational principle, 120, 130
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hybrid formulation</td>
<td>379</td>
</tr>
<tr>
<td>hybrid X-FEM</td>
<td>6, 15–16</td>
</tr>
<tr>
<td>hybrid X-FEM contact element</td>
<td>216</td>
</tr>
<tr>
<td>hydraulically-driven fracture</td>
<td>410, 461</td>
</tr>
<tr>
<td>hydraulically-driven fracture propagation</td>
<td>442, 449, 510</td>
</tr>
<tr>
<td>hydraulic cohesive crack growth</td>
<td>410, 510</td>
</tr>
<tr>
<td>hydraulic fracture propagation</td>
<td>320, 427–33, 445–55, 482</td>
</tr>
<tr>
<td>hydraulic fracturing</td>
<td>20, 410, 427, 462, 482–7</td>
</tr>
<tr>
<td>hydraulic gradient</td>
<td>524</td>
</tr>
<tr>
<td>hydro-mechanical formulation</td>
<td>410</td>
</tr>
<tr>
<td>hyperbolic conservation law</td>
<td>39, 77</td>
</tr>
<tr>
<td>hyperbolicity</td>
<td>12, 19, 114</td>
</tr>
<tr>
<td>hyper-elastic law</td>
<td>390</td>
</tr>
<tr>
<td>hyperelastic plasticity</td>
<td>193</td>
</tr>
<tr>
<td>hypo-elastic constitutive rule</td>
<td>175</td>
</tr>
<tr>
<td>hypoelastic stress-strain rule</td>
<td>390</td>
</tr>
<tr>
<td>hypoelassto-plastic constitutive model</td>
<td>356, 364</td>
</tr>
<tr>
<td>ill-conditioning</td>
<td>59, 88, 124–8, 154, 216, 230, 241, 253</td>
</tr>
<tr>
<td>ill-posedness issue</td>
<td>352</td>
</tr>
<tr>
<td>immiscible flow</td>
<td>22</td>
</tr>
<tr>
<td>impenetrability condition</td>
<td>219, 391</td>
</tr>
<tr>
<td>impermeable-adiabatic behavior</td>
<td>532</td>
</tr>
<tr>
<td>impermeable discontinuity</td>
<td>511, 514, 521</td>
</tr>
<tr>
<td>impermeable porous media</td>
<td>442</td>
</tr>
<tr>
<td>inclusion</td>
<td>88</td>
</tr>
<tr>
<td>incompressible fluid</td>
<td>19, 22</td>
</tr>
<tr>
<td>incompressible fluid flow</td>
<td>510</td>
</tr>
<tr>
<td>incompressible hyper-elasticity</td>
<td>192</td>
</tr>
<tr>
<td>incompressible limit</td>
<td>182</td>
</tr>
<tr>
<td>inelastic material behavior</td>
<td>325</td>
</tr>
<tr>
<td>Inf–sup condition</td>
<td>26</td>
</tr>
<tr>
<td>inhomogeneity</td>
<td>14–16, 89, 215</td>
</tr>
<tr>
<td>initial configuration</td>
<td>163</td>
</tr>
<tr>
<td>interaction energy integrals</td>
<td>273</td>
</tr>
<tr>
<td>interaction integral</td>
<td>274, 313, 315</td>
</tr>
<tr>
<td>inter-element algorithm</td>
<td>319</td>
</tr>
<tr>
<td>interface element method</td>
<td>215, 236</td>
</tr>
<tr>
<td>interfacial fracture mechanics</td>
<td>310–311</td>
</tr>
<tr>
<td>internal characteristic length</td>
<td>368, 373–4</td>
</tr>
<tr>
<td>internal length parameter</td>
<td>114</td>
</tr>
<tr>
<td>intra-element algorithm</td>
<td>320</td>
</tr>
<tr>
<td>intrinsic enrichment</td>
<td>32, 35</td>
</tr>
<tr>
<td>intrinsic permeability</td>
<td>429, 430</td>
</tr>
<tr>
<td>intrinsic X-FEM</td>
<td>22</td>
</tr>
<tr>
<td>irreversible plastic strain</td>
<td>366–7</td>
</tr>
<tr>
<td>isoparametric element</td>
<td>55</td>
</tr>
<tr>
<td>isotropic damage variable</td>
<td>365</td>
</tr>
<tr>
<td>isotropic frictional contact</td>
<td>220</td>
</tr>
<tr>
<td>isotropic-kinematic hardening rule</td>
<td>353, 387</td>
</tr>
<tr>
<td>Jacobian matrix</td>
<td>56–7, 179, 360, 420, 439, 476</td>
</tr>
<tr>
<td>J-integral</td>
<td>18, 273, 289, 313</td>
</tr>
<tr>
<td>J2 plasticity</td>
<td>114, 379</td>
</tr>
<tr>
<td>junction enrichment function</td>
<td>101, 102</td>
</tr>
<tr>
<td>junction ramp function</td>
<td>109–10, 416</td>
</tr>
<tr>
<td>Kapitza thermal resistance</td>
<td>24</td>
</tr>
<tr>
<td>Kernel function</td>
<td>33</td>
</tr>
<tr>
<td>kinetic energy</td>
<td>9</td>
</tr>
<tr>
<td>Kirchhoff–Love theory</td>
<td>25</td>
</tr>
<tr>
<td>Kirchhoff material</td>
<td>166</td>
</tr>
<tr>
<td>Kirchhoff stress</td>
<td>390</td>
</tr>
<tr>
<td>Kronecker property</td>
<td>516</td>
</tr>
<tr>
<td>Kuhn–Tucker condition</td>
<td>28, 217–18, 366, 391, 456</td>
</tr>
<tr>
<td>Lagrange functional</td>
<td>235</td>
</tr>
<tr>
<td>Lagrange multipliers method</td>
<td>19, 26, 219, 235</td>
</tr>
<tr>
<td>Lagrangian description</td>
<td>20, 162</td>
</tr>
<tr>
<td>Lagrangian mesh</td>
<td>192</td>
</tr>
<tr>
<td>Lagrangian multipliers method</td>
<td>215</td>
</tr>
<tr>
<td>Lagrangian phase</td>
<td>192, 198, 199</td>
</tr>
<tr>
<td>Lagrangian–X-FEM</td>
<td>193</td>
</tr>
<tr>
<td>Lamé constant</td>
<td>166</td>
</tr>
<tr>
<td>Laplace equation</td>
<td>34, 84, 132</td>
</tr>
<tr>
<td>Laplacian approach</td>
<td>199</td>
</tr>
<tr>
<td>Laplacian operator</td>
<td>368</td>
</tr>
<tr>
<td>large deformation</td>
<td>161, 163</td>
</tr>
<tr>
<td>large deformation crack propagation</td>
<td>352</td>
</tr>
<tr>
<td>large deformation fracture</td>
<td>357</td>
</tr>
<tr>
<td>large FE deformation</td>
<td>353–6</td>
</tr>
<tr>
<td>large plastic deformation</td>
<td>182, 351</td>
</tr>
<tr>
<td>large sliding</td>
<td>26, 216, 246–51</td>
</tr>
<tr>
<td>large sliding contact stiffness matrix</td>
<td>249</td>
</tr>
<tr>
<td>large strain ductile fracture</td>
<td>387</td>
</tr>
<tr>
<td>large strain model</td>
<td>390–391</td>
</tr>
<tr>
<td>LArge Time Increment (LATIN) method</td>
<td>252, 253, 269, 458</td>
</tr>
<tr>
<td>large X-FEM deformation</td>
<td>167–73, 170, 192, 359–64</td>
</tr>
<tr>
<td>leakage flux</td>
<td>483, 488</td>
</tr>
<tr>
<td>least square technique</td>
<td>35</td>
</tr>
<tr>
<td>LEFM see linear elastic fracture mechanics (LEFM)</td>
<td></td>
</tr>
<tr>
<td>LEFM analytical solution</td>
<td>357</td>
</tr>
<tr>
<td>Legendre polynomial</td>
<td>73</td>
</tr>
<tr>
<td>Lemaitre damage plasticity model (LSDP)</td>
<td>100, 352, 365, 387</td>
</tr>
</tbody>
</table>

**Index**
Lemaitre simplified damage plasticity model, 368  
$L_2$-error norms, 182, 371  
level set function, 38, 63–4, 89, 147, 169, 203, 471  
level set method (LSM), 6–7, 23, 39, 77, 79, 81–4  
level set update, 203–4  
linear elastic fracture mechanics (LEFM), 7–11, 94, 269–76  
local error criterion, 243, 255  
localization, 1, 12, 19  
localized failure, 319  
local mesh replacement method, 268  
local orthogonal coordinate system, 321  
low cycle fatigue, 390, 400–401  
low frequency range, 465  
LQ decomposition, 128, 155, 159  
LSDP see Lemaitre damage plasticity model (LSDP)  
LS-DYNA, 6  
LSM see Level set method (LSM)  
lubrication theory, 444  
marker/string method, 79  
mass balance, 192  
mass balance equation, 195, 487, 511  
mass lumping, 387  
mass transfer coupling, 462, 482  
mass transfer coupling terms, 431, 433, 484, 487  
material configuration, 192, 193, 198  
material constitutive behavior, 377  
material degradation, 352  
material description, 162  
material interfaces, 68–70, 73–5, 126–8, 149–51, 173, 177–81, 249–51, 414, 421, 467  
material motion, 193  
material nonlinearity, 161  
material phase, 193, 199  
material softening behavior, 368  
material stiffness matrix, 166  
material stress rate, 195  
material time derivative, 194  
material velocity, 194, 196  
maximum circumferential stress criterion, 283–4, 290, 446  
maximum energy release rate, 284–5, 372, 446  
maximum hoop stress criterion, 333, 372  
maximum principal tensile stress, 326, 339  
maximum strain energy release rate criterion, 283  
maximum tensile principal stress, 336  
 McCauley bracket, 339  
 mechanical coupling term, 431, 483  
 mesh distortion, 161  
 meshfree method, 33  
 meshless method, 268  
 mesh motion, 192, 193  
 mesh motion strategy, 192  
 mesh velocity, 193, 194, 196  
 micro-crack closure, 368  
 micro-structure, 88  
 mid-area averaging technique, 199  
 Mindlin–Reissner plate theory, 25, 94  
 minimum strain energy density criterion, 283, 284, 372, 446  
 mixed formulation, 379  
 mixed-mode crack propagation, 283–5  
 mixture theory, 409, 411–12, 511  
 MLS see moving least square (MLS)  
 MLS function, 33  
 mode I decohesion, 336  
 mode II stress intensity factor, 275  
 mode I stress intensity factor, 275, 333  
 modified abs-enrichment function, 462–3, 477  
 modified effective stress, 498  
 modified enrichment function, 147  
 modified level set function, 89, 169, 416, 434  
 modified X-FEM, 49, 138, 358  
 momentum balance, 192  
 momentum equation, 195  
 momentum equilibrium equation, 511  
 Monte Carlo approach, 15  
 moving least square (MLS) method, 10, 36  
 multiphase flow, 466  
 multiphase media, 409  
 multiphase porous media, 320, 463–5  
 multiple cohesive cracks, 320, 334  
 multiple cohesive segments, 338  
 multiple cracks, 8, 24, 84, 87, 101–2, 300, 334  
 multiple interfaces, 109  
 multiple material interfaces, 111, 181, 190, 415  
 multi-scale modeling, 29  
 multi-scale technique, 11  
 narrow banding, 82  
 narrow band level set method, 85  
 near tip singular solution, 513  
 Newmark scheme, 419, 434, 462, 475, 492, 520  
 Newtonian viscous fluid, 429  
 Newton–Raphson iteration, 243  
 Newton–Raphson iterative algorithm, 420, 439, 476  
 Newton–Raphson procedure, 175, 228, 237, 324, 356, 367, 521  
 Nitsche X-FEM, 26
Index

node-to-segment contact algorithm, 216
node-to-surface algorithm, 246
nominal stress, 165
non-associated slip rule, 222
non-local damage model, 352
non-local damage-plasticity model, 385
non-local damage variable, 369
non-local equivalent plastic strain, 368
non-local gradient damage plasticity, 368–9
non-local maximum principal stress criterion, 325
non-local stress tensor, 327
non-local theory, 114
non-Newtonian viscous flow, 23
non-penetration condition, 217
non-planar crack, 7, 10, 84
non-smooth contact, 263
non-wetting fluid flow continuity equation, 487
non-wetting pore fluid, 463
normal gap function, 217, 243
normal level set function, 92
null step, 397
null step analysis, 375–7
numerical instability, 197
numerical integration, 287–9, 421, 441
algorithm, 57, 341, 396–7
rule, 328
NURBS function, 11, 92
oblique crack, 105
operator-split technique, 100, 192, 202, 369
optimal accuracy, 1
optimal convergence rates, 119, 130, 135, 142,
151, 181, 254, 306, 352, 370, 477
optimal rate, 8
orthogonality assumption, 131
orthogonality condition, 133, 135
orthotropic crack, 8, 95
orthotropic enrichment function, 9, 15
orthotropic material, 95

$p$–adaptivity, 5
parasitic terms, 49, 120, 122, 131–2, 139, 358, 463
Paris law, 87
partially enriched element, 46, 121, 132
partially saturated porous medium, 409, 461, 464
partitioned solution algorithm, 442–4, 449
partitioning procedure, 182
partition of unity (PU), 2, 33–5, 72, 88, 121, 128,
168, 357
partition of unity method (PUM), 38, 77, 269, 352
passive gas phase assumption, 463, 499, 500
patch-based DG-XFEM, 146
patch recovery procedure, 268
pathological terms, 122, 136
Peach–Koehler force, 18, 111
penalty method, 8, 19, 26, 120, 145, 215, 219,
227–35, 252, 458
penalty parameter, 230, 241
penalty X-FEM method, 264
permeable porous medium, 427, 429, 442
Petrov–Galerkin formulation, 197
Phantom-node method, 98
phase transition, 23–4, 410
physical crack-tip, 332
physical motion, 193
piezoelectric material, 28–9
Piola–Kirchhoff stress, 163, 353
PK2 stress, 165, 354
planar crack, 87
plastic energy dissipation, 351
plastic flow, 182
plastic fracture mechanics, 99–100, 369
plasticity, 16–18
plasticity theory of friction, 216, 218–21
Poiseuille law, 429
polar integration algorithm, 306
polar integration approach, 288
discrystaline, 14, 106
dagonal mesh, 8
dagonal sub-elements, 58
dolygon routine, 421
polynomial, 1
approximation, 31, 57, 88
enrichment function, 135
pre-conditioning, 124, 154–9, 155
method, 124
strategy, 155, 156
predictor–corrector algorithm, 222
predictor–corrector contact algorithm, 256
pressure-sensitive material, 193
pressure shape functions, 517
progressive damage process, 351
projection tensor, 217
PU see partition of unity (PU)
PUM see partition of unity method (PUM)
quadraature subcell, 8
quadlaral partitioning method, 57, 172
quarter-point singular element, 276
Ramberg–Osgood plasticity theory, 99
Ramberg–Osgood power-law hardening rule, 370
ramp function, 41, 63, 68, 88, 89, 132, 135–6, 139
randomly generated faults, 530
rate dependent viscose models, 368
Rayleigh quotient, 125
Ray-trace technique, 79
real crack-tip, 317, 332
rectangular subdivision strategy, 376, 397
rectangular sub-girds method, 57, 172, 441
reduced integration method, 353, 379, 387, 394–5
reference configuration, 164, 192, 387
referential time derivative, 194
referential velocity, 194
regularization methods, 352, 368
regularized step function, 115
regularized X-FEM, 12
reinitialization procedure, 85
relaxation phase analysis, 377–9, 397
relocated mesh, 192, 198
remeshing, 2, 7
remeshing procedure, 161
reproducing element, 120, 140
residual force, 243
return mapping process, 368
ridged junction ramp function, 417
saturated porous medium, 21, 530
screw dislocation, 113
second Piola–Kirchhoff stress, 165, 354
selective integration, 379
self-equilibrium condition, 378, 397
shear band localization, 19, 91, 99, 113–18, 386
shear cohesive traction, 336
shell structure, 24–6
shifted enrichment function, 55, 470, 488
shifted Heaviside function, 45–6
shifted ramp function, 42
shifted X-FEM, 358
signed distance function, 38–40, 70, 115, 132, 142, 169, 226, 278, 331, 434, 470
Signorini problem, 225
singed distance function, 39–43, 82
singular core enrichment, 113
singular element shape functions, 268
slave–master contact, 247
slave–master point, 243
slip criterion, 218, 219, 391, 456
slip rule, 218, 391, 456
smearred cohesive zone model, 335
smearred crack, 101, 267
smoothed Dirac delta function, 44
smoothed Heaviside function, 44
smooth function, 140
smoothing phase, 198–200, 203
smoothing procedure, 200
Sobolev space, 468, 483
softening cohesive law, 321, 345, 464, 500
softening law, 12
softening plasticity model, 352
softening process zone, 11
solid-fluid mixture, 412
solidification, 6, 23–4
spatial configuration, 192, 193
spatial description, 162
spectral finite elements, 8, 129
spectral stochastic method, 15
splitting operator, 198
spurious term, 47
staggered procedure, 449
standard X-FEM, 462–3, 477
stationary level set, 85
stick law, 218, 391, 456
stick–slip law, 218, 391, 456
stick–slip motion, 216, 219, 238
stiffness hourglass control method, 396
Stokes flow, 22
strain energy density, 274, 283, 446
strain energy release rate, 283, 446
strain-softening type behavior, 317
stress intensity factors (SIF), 268, 273–6, 289
stress singularity, 271
stress update procedure, 192
strong discontinuity technique, 43, 52, 56, 61–3, 91–3, 163, 268, 430, 487–93
St. Venant, 164
sub-quadrilateral numerical integration, 205–8
sub-triangular numerical integration, 204–5
superconvergent patch recovery (SPR) technique, 268
Swallowtail solution, 79, 83
tangential gap function, 217
tangential jump function, 112
tangential level set function, 92
temperature shape functions, 517
tensorial logarithm function, 390
thermal conductivity model, 510
thermal discontinuity, 513
thermal flux, 513
thermal softening phenomenon, 510
thermal strain, 515
thermo-elasticity law, 365
thermo-hydro-mechanical modeling, 21, 509, 511, 521
thermo-hydro-mechanical porous medium, 511, 514
thermo-mechanical problem, 24
thin-walled structure, 24
THM-damage model, 510
THM integral equations, 515
time domain discretization, 419–21, 438–41, 520–521
time integration procedure, 420
time-stepping procedure, 428, 462
topological enrichment, 78, 129
topology optimization, 28
total Lagrangian, 162
tracking moving interface, 77, 78, 169
traction boundary condition, 215
traction–displacement relationship, 319
traction-separation law, 321, 325, 326, 336, 464, 500
transcendental equation, 105
transverse hydraulic permeability, 430
trapezoidal rule, 9
triangular partitioning method, 57, 172, 441
triangular sub-elements, 59
tribology, 215
two-phase fluid flow, 461
unbalanced tractions, 378
unconditionally stable implicit method, 393
unconditional stability, 420, 439, 475, 520
uncoupled ALE solution, 192, 198–202
uncoupled technique, 192
undeformed configuration, 374
undrained boundary condition, 500
unilateral contact condition, 219
unilateral contact constraint, 243, 251–5
updated Lagrangian, 162, 192, 194, 246, 359
updated Lagrangian X-FEM, 352
upwind operator, 86
Uzawa algorithm, 241
van Genuchten-Mualem model, 500
virtual crack extension, 274
virtual crack extension method, 273
viscose damping method, 395
viscous drag force, 413
viscous Newtonian fluid flow, 433
void, 88
volume fraction, 79, 409
volumetric locking, 182, 379, 387
von-Mises yield criterion, 182
Voronoi cell finite element model, 320
Wachspress interpolant, 15–16
water flow continuity equation, 486
water saturation, 463, 479, 500
wavy contact interface, 262
weak discontinuity, 41, 52, 56, 63–6, 89, 163, 173–7, 467–77
wear-tear rule, 218, 456
weigh function blending method, 140–142
weighted abs-enrichment function, 462–3, 471–2, 477
weighted damage area, 385
weighted enrichment function, 489
weighted X-FEM, 140
weight function, 142
wetting phase pressure, 463
wetting pore fluid, 463
X-ALE-FEM method, 192, 202, 208
X-FEM see extended finite element method (X-FEM)
X-FEM contact model, 223–7
X-FEM damage-plasticity model, 380, 385
X-FEM enrichment function, 88–118
X-FEM non-local damage-plasticity model, 372–80
X-FEM plasticity model, 182, 369–72, 370
zero energy mode, 395
zero-thickness element, 458
zero-thickness interface element, 410, 510