Index

Active filter networks
- Bessel–Butterworth highpass, 64–67
- Bessel–Butterworth lowpass, 64–67, 100, 102, 171
- Butterworth bandreject, 82
- biquad bandpass, 60, 77
- gyrator, 60
- multiple feedback bandpass, 60, 77
- stagger-tuned bandpass, 79–81
- switched capacitor, 63
- unity gain, 60, 61–62, 64–67

Aliasing
- attenuation by filtering, 144–150, 176, 182, 215
- due to noise, 145–147, 176, 182, 215
- due to signal, 144–145
- error, 146–149, 176, 182, 215

Amplifiers
- differential, 31–35, 41
- differential output, 44
- error summary, 47–49, 99, 175
- frequency response, 38–39
- guarding, 93
- internal noise, 87–90
- instrumentation, 38–47, 93, 97–102, 171
- isolation, 45, 99–100, 171
- low input current, 42, 48
- low input voltage, 42, 48
- operational, 35–39, 50, 96
- parameter values, 42, 97, 180
- slew rate, 47
- subtractor, 40, 96, 107, 210
- types, 38
- wideband, 42, 46–48, 165

Analog signal conditioning
- complex harmonic, 98, 100
- dc and sinusoidal, 95–96
- error summary, 98–99
- input termination, 93, 210
- interference attenuation, 91–92, 94–95
- redundant, 102, 105

Analog signal processing
- averaging, 101–102
- logarithmic, 103–104
- precision ac-dc, 104–105
- sensor diagnostics, 105–106

Analog-to-digital converters
- applications, 23, 156, 165, 171, 200, 210
- binary codes, 118
- charge balancing, 133
- comparator oriented, 126
- device errors, 127
- flash, 134
Analog-to-digital converters (cont.)
 functions, 122
 integral nonlinearity, 126
 integrating dual-slope, 127–129
 interrupt interface, 135, 198
 long wordlength, 132
 LSB decimal equivalents, 125
 pipelined subranging, 135
 quantization, 123–125
 sigma-delta, 132, 134
 successive approximation, 130
 synchro-to-digital, 131
Aperture
 binary accuracy, 157
 error, 150, 155
 time, 113
Automation case studies
 Ashby map guided forging, 246–247
 chemical vapor deposition processing 219, 228
 chromate application empirical control, 230–232
 instrumented process roadmap, 207–208
 nanocomposites spectral control 247–250
 fuzzy logic tribology production, 237–239
 model reference scrubber regulation, 220–223
 neural network directed steel annealing, 259–263
 PID controller variability and tuning, 210–218
 rule based autoclave planner, 233–235
 superconductor process migration remodeling, 250–258
 ultralinear MBE machine calibration, 263–268
Axiomatic subprocess decoupling
 see In-situ control

Biomedical
 microwave microscopy, 23
 nanomaterials prosthesis, 247

Common mode
 rejection, 33, 40–44, 46, 48–49, 94, 97–98, 179
 voltage gain, 33, 40–41, 95, 175
Computational intelligence
 fuzzy logic, 228, 237, 239
 neural network, 224, 261–263
 rule based, 188, 233, 257–258
Conversion system examples
 aerospace I/O, 171
 compact disc player, 167
 dc voltmeter, 156
 digital controller, 210
 oversampled, 162
 pre-D/A interpolation, 163
 space probe, 200
 video data, 165
 virtual instrument, 23

Data acquisition
 see Analog signal conditioning
Digital-to-analog converters
 applications, 162, 165, 171, 198, 200, 210
 binary codes, 118
 device errors, 117, 177, 183, 215
 differential nonlinearity, 116
 LSB decimal equivalents, 125
 multiplying, 121
 peripheral interface, 122, 198
 R-2R network, 120
 voltage reference, 120
 weighted-resistor network, 120

Error basics
 algorithmic propagation, 185–186, 201–202
 apparatus summary, 48, 69–70, 73, 91, 99, 102,
 173, 210
 controlled variable, 210–212
 instrumentation interpretation, 2
Ex-situ planners
 autoclave rule base, 233–234
 ceramic densification, 240, 242
 chemical vapor deposition, 228–229
 roadmap, 208, 225
 process migration remodeling, 224–225
 steel annealing, 260
 superconductor processing, 254–258
 titanium forging, 248
 UAV avionics architecture, 191

Filter amplitude characteristics
 bandpass, 74, 79
bandreject, 75, 82
Bessel, 57–59
Butterworth, 55, 57
ideal, 54
Filter error analysis
 dc and sinusoidal signals, 68–70
 harmonic signals, 70–74
Filter phase characteristics
 Bessel, 57
 Butterworth, 55
 ideal, 54
Fuzzy logic
 see Computational intelligence
Grounding practice
 analog, 40, 43–45, 93, 96, 100, 171, 210
 chassis, 93, 171, 210
 digital, 93
 power, 93
 sensor, 93, 96, 100, 171
 shielded cables, 93, 96, 100
Hierarchical subprocess influences
 autoclave parameters, 189, 234
 axiomatic subprocesses, 227, 255
 ceramic matrix composites, 240, 242
 chemical deposition subprocesses, 228
 control subprocesses, 226, 251, 254, 265
 information uncertainty, 235
 titanium forging subprocesses, 248
 UAV avionics subprocesses, 191
In-situ control
 axiomatic subprocess decoupling, 226–227
 exfoliated nanocomposites, 251
 fuzzy compensation, 228, 239
 hierarchical subprocess influences, 226
 molecular beam epitaxy, 264–265
 product features remodeling, 224
 steel recrystallization annealing, 259–263
 superconductor deposition, 254
In-situ subprocesses
 computationally intelligent, 233–234, 237–239,
 258, 261–263
 decoupled, 249–251, 254–255
 hierarchical, 226–228, 234, 251, 254, 260
 implied, 248
 remodeling adaptive, 224, 249–250, 258
Instrumentation amplifiers
 see Amplifiers
Instrumentation analysis suite, 178–183
Interpolation
 applications, 159, 161, 165, 171, 177, 183, 210,
 216
 bandlimiting filters, 159–161, 171, 200, 212,
 216
 by pre-D/A converter, 163–164
 ideal, 142
 signal recovery comparison, 159–162
 signal spectral ensemble, 160
 step-interpolated equivalents, 154, 158–161
 transfer delay, 162
 video, 165
Intersample error
 graphical representation, 150, 152
 mathematical definition, 153–154
 system examples, 156, 166, 173, 177, 183, 210,
 216
JFET vs bipolar drift, 35
K, filter efficiency, 94
Logarithmic functions, 103–104
Multiplexer, analog
 applications, 113, 171, 198, 210
 connections, 111
 device errors, 111, 176, 182, 214
 transfer error, 112
 types, 110
Multisensor
 fusion, 186–192, 208
 hierarchy, 224, 226, 228, 251, 254, 265
Neural network
 see Computational intelligence
Noise
 amplifier sources, 87–89
 attenuation examples, 95–96, 98, 100
 error analysis, 91–92, 94–95
 quantization, 124–125
Operational amplifiers
 see Amplifiers
Oversampling, 162, 172–173

PID controller tuning
 quarter decay, 216–218
 trapezoidal, 216–218, 264

PN-junctions
 temperature dependence, 31, 35
 volt-ampere characteristic, 30

Process apparatus
 airflow measurement, 184–185
 autoclave composite cure, 234
 chemical vapor deposition, 219
 exfoliated nanocomposites, 249
 flue gas limestone scrubber, 220–222
 molecular beam epitaxy, 201, 263–264
 steel recrystallization annealing, 259–260
 steel strip chromate coating, 231–232
 superconductor deposition, 253–254
 three-zone furnace, 240–241
 titanium forging, 248
 tribological laser ablation, 238–239

Process data accountability
 apparatus controlled variables, 210, 219, 220–224, 256
 ex-situ planner identification, 191, 224, 255–256, 260
 in-situ parameter attribution, 224, 228, 230, 256, 264–265

Quantization
 decimal equivalents, 125
 error, 123–125
 noise, 124–125
 uncertainty, 123–124, 126

Reconstruction of sampled data
 see Interpolation

Rule based
 see Computational intelligence

Sample hold
 acquisition time, 114
 aperture time, 113, 135
 applications, 113, 130, 159, 171
 circuit, 112
 device error, 115, 175, 182
 timing relationships, 113–114

Sampled data
 aperture, 113, 150, 157
 folding frequency, 141, 145–147, 149
 frequency domain, 141, 145, 160
 ideal, 142
 interpolator comparison, 161
 interpolation functions, 143, 160, 163
 noise aliasing, 146–149, 176, 181, 215
 non return-to-zero, 141
 oversampling, 162
 recovery spectrum, 160
 return-to-zero, 141
 signal aliasing, 145
 sinc error, 143–144
 step-interpolated, 141, 151–152, 154, 159
 theory, 140–144
 time delay, 151–152
 time domain, 140–143, 150, 152, 159

Sensor basics
 calibration, 21, 265
 definitions, 2–3
 elements, 3
 error, 2, 98, 174
 linearization, 4

Sensors, analytical
 dielectric, 234
 ellipsometer, 268
 infrared, 22
 microwave microscopy, 23
 scintillation, 18
 spectrometer, 19, 189, 208, 219, 239, 250
 x-ray, 17, 242, 250

Sensors, chemical
 hydrocarbon, 20–21
 oxygen, 20–21
 pH, 20, 220–223
 sulfur oxides, 20–21, 222
 YBCO, 256

Sensors, displacement
 acceleration, 12
 LVDT, 9

Sensors, environmental
INDEX

airflow, 184–185
energy, 256–257
fluid flow, 8–11
nuclear, 17
pressure, 8
temperature, 5–7
toxicity, 190
Sensors, flow
area, 184–185
rate, 9–11
mass, 10–11
volumetric, 10–11
weir, 11
Sensor fusion
heterogeneous biological-environmental, 190
heterogeneous spectrometer-temperature, 189
homogeneous sonar, 187
UAV avionics architecture, 191
Sensors, imaging
boulemeter, 15
CCD, 165
ellipsometer, 268
feature classification, 208, 224
microwave microscopy, 23
quantum array, 16
ultrasound, 13
Sensors, pressure
microsensor, 8
piezo resistive, 100, 171
strain gauge, 12
Sensors, quantum
array, 16
CCD, 165
Hall effect, 14
infrared, 15
photoconductive, 16
Sensors, thickness
infrared, 22
nuclear, 17
quartz microbalance, 256
Shielding
electric fields, 86
guarding, 87, 93, 100, 171
magnetic fields, 87
Signal acquisition
see Analog signal conditioning
Sinc functions
RZ sampling, 143
NRZ sampling, 144
Tuning
PID controller, 216–218, 264
nanocomposite morphology, 247
UAV avionics architecture
see Sensor fusion
Virtual instrument
graphical program, 24
interfaces, 193
microwave microscopy, 23
Wideband-widerange conversion, 133–135
X-ray
exposure, 17
measurement, 18
YBCO superconductor, 252
Z-Fit spectrometer modeling, 250