AC/DC converters, 223, 230

Acceleration:
- sensorless switched reluctance motors, 120
- sliding mode controller, 153
- switched reluctance motors, 106–107, 112–113

Accuracy enhancement algorithms, 101–107
AC-Cluster algorithm, 373–374

Active magnetic bearings (AMBs) system:
- characterized, 126
- nominal $H_{in}$ control of test rig:
  - experimental results, 137–138
  - parametric system identification, 133–135
  - uncertainty bound specification, 135–137
- nominal sliding mode control of test rig, 148–150
- uncertainty bounds, 130–131

Active power filters (APFs), 224–225, 232

Actuator controller, flight control systems, 68

Adaptation algorithm, general parameter, 22–23

Adaptive aircraft control, 58

Adaptive control algorithms:
- adaptive dynamic programming, 63–64
  - characterized, 62
- neural adaptive control, 64–67

Adaptive control systems, 57

Adaptive Dynamic Programming (ADP), 58, 61–62, 64, 67, 69, 74–75, 85

Adaptive filtering, 234

Adaptive flight control:
- adaptive control algorithms, 62–67
- design for uncertainty, with hard constraints, 82–85
- flight control, 67–68
- fusion structures, 85

LoFLYTE® UAV:
- optimal control, 73–76
- stability augmentation, 76–82

soft-computing techniques, generally, 61–62

X-43A-LS autolander, 68–73

Adaptive linear combiner, least-mean-square (LMS), 22

Adaptive LMS-FIR filter, power systems, 204

Adaptive-network-based fuzzy inference system (ANFIS), 89–90, 99–100, 120, 165

Adaptive neuro-fuzzy inference system (ANFIS), 388

Adaptive resonance theory (ART), tool wear monitoring, 179

Adaptive resonance theory 2 (ART2), 184

Adaptive time-delay neural networks (ATNN), 195

ADC (analog-to-digital converter) channel, 96

Additive uncertainty, 136, 146

Aircraft, high-performance, 57. See also Adaptive flight control

Algorithms, adaptation, 22

Amino acids, binding energy prediction, 344–345

Analog pre-processing, tool wear monitoring system, 175

Analytic continuation, 64

Analyze/StripMiner code, direct kernel ridge regression, 343

Angle estimation systems, switched reluctance motors:
- accuracy, 101–107
  - characterized, 89–90, 94, 101

Annealing, simulated, 41–42

Anomaly detection, 241–242, 246, 265

Anomaly recognition, intrusion detection, 258

Ant colony optimization (ACO):
  - clustering results, 373–374, 392–393
  - components of, 371, 372–374
  - experiment setup, 373–374

Anti-aliasing, 156, 159

Artificial current signal, 230–232

Artificial intelligence (AI), 2, 6, 319
ARX (autoregressive with exogeneous input) model, 134, 140
Association rules, 323
Attenuation, 114, 235
Attribution, EGC calculation, 293–294
Audit trail, intrusion detection, 254–255
Augmented linear controller, 11
Authenticated Post Office Protocol (APOP), 304
Autolander, 64
Automated flight control, 84
Autonomous control system, 46
Autopilot, 67
Autoregression, 37
Autoregressive integrated moving average (ARIMA), 38
Backpropagation:
  fusion structures, 13
  tool wear monitoring, 189
  uncertainty bounds, 152, 155
Baldwinian learning, 42–43
Baldwin local search, 15
Bandpass filter, 204, 225, 232–233
Basic Security Module (BSM), intrusion detection, 254–256, 259
Baum–Welch reestimation, 258
Bayesian network (BN):
  data mining, 323
  intrusion detection, 253
Behavior modeling, intrusion detection systems, 256–259
Best-compromise solution, multiobjective optimization, 43–44
Bias, in data mining, 335, in data mining, 340–341
Boiler-turbine system, supervisory control, 46–47
Booststrapping, 332, 334
Canonic fusion structures, 16
Cascades, fusion of soft computing with hard computing, 12–13
Case-based reasoning, 6
Chat rooms, 302, 307–308
Chattering, 145
Chromosome(s):
  genetic algorithm (GA), 208–210
  modeling and representation, i-Miner framework, 385–387
Closed control loop, 12
Classifying self-organizing map (CSOM) tool wear monitoring, 179
Clustering, switched reluctance motors, 98–100.
  See also specific types of clusters
Combat hybrid power system (CHPs) flywheel alternator, 130–131
Complementary fusion, 12
Complicated emotion allocating method:
  attribution, 293–294
  characterized, 286
  confirmation, 290–292
  dependency, 294–295
  examples of, 296–297
  fortunes of others, 288–289, 296
  prospect-based emotions, 289–290
  well-being, 292–293, 297
  well-being/attribution, 294
Computational intelligence, defined, xvii
Computer security, see Intrusion detection systems (IDSs)
  audit databases, 242, 246
  fusion structures, 242
  importance of, 241
Computer–user interaction, 273.
  See also Human–computer interaction, emotion-generating method
Condensed nearest-neighbor network (CNNN), 179, 182
Confidence, angle estimation, 90, 94, 102
Confidence interval network (CIN), uncertainty bounds, 130, 145–147, 156, 161
Confidence intervals, frequency-dependent, 142, 144
Confirmation, EGC calculation, 290–292
Continuous-time systems, 11
ControlDesk®, 109
Control engineering, 32
Controller(s):
  augmented linear, 11
  proportional integral derivative (PID), 20, 23
Control system(s), see specific types of control systems and controllers
  architecture, 36–37
  design constraints, 83
Cooperative scheduling system, 41–42
Correlation coefficient, 388
Correlation matrix, 339
Cousin features, data mining, 336
Crater wear, 177
Crossover, genetic algorithm (GA), 209–210
CS Telecom, 248
Cumulative uncertainty bound, 159–160
Current reference generators, predictive filtering methods:
artificial current signal corrupted by odd harmonics, 230–232
corrupted by harmonics, 229–230
generally, 225–229
sequence of 49-, 50-, and 51-Hz noisy sinusoids:
characterized, 223–225
corrupted by harmonics, 229–230

cutting conditions, defined, 172. See also Tool wear monitoring system

DARPA IDEVAL, 248–249, 251, 253
Data clustering, Web mining framework, 371
Data kernel, in data mining:
bias, 340–341
defined, 336
regression models based on, 338
transformations, 338–340
Data matrix, 337
Data mining, see Scientific data mining
collecveive approach, 313
development of, 313
dilemma, defined, 336
MetaNeural data format, 323–326
model quality assessment metrics, 333–335
predictive, 329–333, 336
phases of, 313
process overview, 321–322
standard problem of, 326–329

techniques and methods, 322–323
Data strip mining, 328–329
Daubechies-4 wavelet transform, 351
DC gain, 219–220
Decentralization, supply chain optimization system, 40–41
Decision-making process, 40, 43–44
Decision systems, design constraints, 84
Decision trees, 323
Decomposition, hierarchical, 40
Deep-knowledge-based supervisory control, 46–47
Deep reasoning, 46
Degrees of freedom, 230
Delayless filtering, 204
Demand forecasting, 37–39
Design for uncertainty, with hard constraints, 82–85
Diesel generators, 228
Differential equation models, 21
Digital pre-processing, tool wear monitoring, 185, 193–194
Digital signal processor (DSP), switched reluctance motors, 94–96, 120
Direct kernel principal component analysis (DK-PCA), 352, 354, 356
Direct kernel ridge regression:
choosing ridge parameter, 343–344
overview of, 342–343
Direct kernel self-organizing map (DK-SOM), 348–351, 355, 357, 360
Discrete-time systems, 11
Distance functions, multiobjective optimization, 44
Distortion generation, 223
Distribution planners, 42
dSPACE, Inc., 109, 150
Dual-stage optimization, 12–13
EC=HC fusions, 20–21
E-commerce, 393
Edge-search strategies, hybrid genetic algorithms, 43
Electric power engineering, signal processing, 200
Electric power systems, 26
Electricity distribution network, 233
Electromagnetic interferences (EMI), 90
Electromagnetics, design constraints, 84
Electronics, design constraints, 84
E-mail software, 274, 278
Emotion Eliciting Condition Theory, 279, 286–287, 292, 310
Emotion generating calculations (EGC):
complicated emotion allocating method, 286–294, 296–297
components of, 279–280, 285, 310–311
dependency among emotion groups, 294–295
experimental result, 285–286, 297
favorite value database, 280–282
modified element, favorite value of, 284–285
pleasure/displeasure calculation, 282–284
Emotion-oriented interaction systems:
applications, 302–308
facial expression generating method by neural networks:
assign rules to facial expressions, 301–302
characterized, 298–300
Emotion value (EV):
characterized 278–279, 285
Emotion generating calculation (EGC), 279, 288–294
Error cost function, uncertainty bounds, 143–146, 152–153, 155–156, 159, 162
Ethanol production planning, 44–45
Evolutionary algorithms, 42
Evolutionary computation (EC), 6–7, 13, 19–20, 32, 200, 323
Evolutionary optimization, 22
Evolutionary programming algorithm (EPA), 211–213, 226–227, 229, 233
Expert systems, 6, 46
Extended fusion schemes, 22–23

Facial expressions, see Human–computer interaction, emotion–generating method
Fast Fourier transforms (FFTs), uncertainty bounds, 142
Fault detection, supervisory control, 46
Favorite value (FV):
default, 280–281
defined, 278–279
Emotion Generating Calculation (EGC), 288–294
learning method, 281–282
of modified element, 284–285
Feature extraction, tool wear monitoring system, 175, 185
Feedback, hard-computing with soft-computing feedback, 12
Feedback controller, flight control system, 85
Field programmable gate array (FPGA), 204
Filters/filtering, power system, see specific types of filters
Filter tap cross-connections, power systems, 207–211
Finite impulse response (FIR) filter:
power systems applications, 203
tool wear monitoring, 188
Finite-state machine (FSM), tool wear monitoring, 179, 181
FIR tap cross-connections, 222
Fitness function:
current reference generators, 226–229
zero-crossings detector, 214–221
FL/HC fusions, 21
FL=HC fusions, 20
Flank wear, 177
Fletcher–Powell optimization algorithm, 21, 23
Flight control system, 57, 67–68. See also Adaptive flight control
Floating-point processor unit (FPU), 382
Flow chart, in data mining, 341–342
Flow-graph reversal, 17
Flux linkage measurements, 95–97
Flywheel alternators, 130–131
Forecasting models, 32–33, 50
Forecasts, market demand, 37–39
Fortunes of others, EGC calculation, 288–289, 296
Forward-backward procedure, intrusion detection systems, 257–258
Frequency response function (FRF), uncertainty bounds, 142–146
Full qualified domain name (FQDN), 304
Fusion categories, 49–51
Fusion of soft computing and hard computing methodologies, see specific types of systems
characteristics of:
extended fusion schemes, 22–23
general parameter adaptation algorithm, 22
optimization utilizing local information, 21
overview of, 7–9, 19–20, 23
physical models, 20–21
proportional integral derivative (PID) controllers, 20
stochastic system simulators, 22
fusion grades, defined, 9–10
hybrid applications, characterization of, 24–25
large-scale plant control systems, 49–50
structural categories:
cascaded SC and HC, 12–13
connected SC and HC, 11–12
feedback, 12
general mapping functions, 19
hard-computing-assisted soft computing and soft-computing-assisted hard computing, 15–16
hard-computing augmented soft computing and soft-computing-augmented hard computing, 14–15
hard-computing-designed soft computing and soft computing-designed hard computing 13–14
independent SC and HC, 10–11
overview of, 9–10
qualitative classification, 26
hard computing-designed hard computing, 13–14
supplementary categories, 16–19
Fusion structures:
adaptive flight control, 85
emotion-generating method, human–computer interfaces, 308–311
intrusion detection, 267–269
predictive filtering methods, 233–234
scientific data mining, 359
INDEX

INDEX

switched reluctance motors (SRMs), 119–122

tool wear monitoring, 166

uncertainty bounds, 159–162

WWW usage mining, 389–393

FuzzyARTMAP, tool wear monitoring, 179

Fuzzy c-means (FCM) clustering, 98, 374–378, 380–381, 393

Fuzzy Hammerstein models, 49

Fuzzy interference system (FIS):

switched reluctance motors, 98–100, 103–104

WWW usage mining, 382–387

Fuzzy logic (FL):

applications, generally, 2, 6, 26

demand forecasting, 37–39

fusion structures, 16, 19–20

intrusion detection, 242, 251–253

local control, 48

scientific data mining, 323

SRM motor drives, 90

supervisory control, 46

Fuzzy-neuro method, 7

Gain scheduler, 48

Gaussian noise, 153

General parameter (GP), 22–23

Generating station, 31–32

Genetic algorithm (GA):

applications, generally, 7

architecture, 23

intrusion detection systems, 249–250, 252

for optimizing filter tap cross-connections, 207–211

predictive filtering, power systems applications, 207–208

in process scheduling, 41–43

zero-crossings detector, 216, 218

Genetic computing (GC):

applications, generally, 6

intrusion detection using, 249–251

Global manufacturing, scheduling system, 41–42

Global optimization, 12

Google, xix

Group method of data handling (GMDH), tool wear monitoring, 183

H∞ controllers:

linear optimal control, 125

uncertainty bounds, control of AMB test rig estimating uncertainty, 138–147

nominal, 126, 133–138

H∞ control, 48

Hacker attacks, 241. See also Intrusion detection systems (IDS)

Hackers, identification of, 250

Hamilton–Jacobi–Bellman Equation, 63, 85

Hanning window, 114

Hard computing:

defined, xviii

fusion of, see Fusion of soft and hard computing methodologies

Hard constraints, flight control systems, 82

Hard redundancies, in data mining, 337

Harmonic distortion, 223–224

Harmonics, predictive filtering, 229–233, 235–236

Harmonics-resistant adaptive FIR filter, 204–205

HC//EC fusion, 22

HC//EC-type hybrid optimization, 21

HC estimation method, 94

HC/SC fusion, 15, 24–25, 50

HC\SC fusion, 12, 16, 24

HC-(SC+SC+HC)-(HC+SC+SC) fusion, 392

HC-SC fusion, 12–13, 24, 50, 166, 171, 193-195, 310

HC+NN fusion, 22

HC+SC fusion, 14–18, 24–25

HC+SC+SC fusion, 392

HC=SC fusion, 13–14, 19, 24, 359

Heuristics, 43–44

Hidden Markov models (HMMs):

Hidden Markov models (HMMs):
intrusion detection:

components of, 242, 256–260
effectiveness of, 263
fused structures, 266–268
tool wear monitoring, 167

Hierarchical control systems, 32

High-frequency switching, 149

Highpass filter, 136

High-speed test, SRM, 90, 114–118, 120

Human–computer interaction, emotion-generating method

development of, 274

eastional states, 278

Emotion generating calculations (EGC), 279, 298, 310–311

emotion-oriented interaction systems:

applications of, 302–308
types of, 298–302

fusion structures, 278, 308–311
types of, 273–274, 277–278

Human operators, significance of, 36–37, 45

Human preference, multiobjective optimization, 44
INDEX

Human reasoning, 26
Hybrid cascades, 12–14
Hybrid electric vehicles, 67
Hybrid intelligent systems, 2
Hypertext probabilistic grammar (HPG), 368

Identified H∞ controllers, uncertainty bounds, 147–148
IEEE, Xplore™ database, 6
IEEE International Conference on Systems, Man, and Cybernetics, 5
If-then rules, fuzzy interference systems (FIS), 383, 388
i-Miner, 379, 383, 385–387, 393
Industrial electronics, 26
Information density, 336
Information processing:
  human brain analogy, 1
  hybrid, 2
Inner-loop controller, flight control systems, 67, 77
Integral of time absolute error (ITAE), 219
Intelligent model error identification, 141–142
Interactive approach, multiobjective optimization, 44
Interconnections:
  process scheduling, 39–40
  significance of, 23
Interface section, of SC and HC fusion, 2
Internet protocol (IP), 250
Intimate connections, 2
Intrusion detection systems (IDSs):
  anomaly detection, 241–242, 246, 265
  audit data, implications of, 246–247
  commercial products, 242, 247–248
  defined, 245
  error rate, 246, 263, 265
  example of, 247
  experimental results:
    modeling, 263–266
    preprocessing, 261–263
  fusion structures, 267–268
  HMM, effectiveness of, 263, 266
  with hybrid techniques:
    behavior modeling with HMMs, 256–259, 263
    evaluations, 263–266
    multiple models fusion by fuzzy logic, 259–261, 266
    overview of, 253–254, 269
    preprocessing with self-organizing map, 254–256, 261–263
  importance of, 241–242
  misuse detection, 241, 246
  security incidents, prevalence of, 245, 248
  self-organizing maps, 254–256, 261–263
  types of:
    fuzzy logic, 251–253
    genetic computing, 249–251
    neural computing, 248–249
    overview, 241, 247–248
    probabilistic reasoning, 253
Inventory cost, 40
Inverse-model-based control techniques, 23
Isolation, in SC and HD fusion, 10–11
Italian olive oils, predicting region of origin, 346–350
JavaFaceChat, 274, 307–308
JavaFaceMail:
  characteristics of, 274, 278, 302
  client side, 304–305
  mental effects of outputting facial expressions, 305–307
  server side, 302–304
Journals, as information source, 6–7
JUMAN, 302–303
Kalman filter, 48
KANSEI, 274, 309
Kernel-centering algorithm, 341
Kernel ridge regressions, 327. See also Direct kernel ridge regression
Kinematics, aircraft, 68
K-nearest neighbor algorithm, 318
Knowledge discovery and data mining (KDD), 319
KNP, 302–303
Kohonen feature map (KFM), tool wear monitoring, 179, 184
Krylov-space methods, direct kernel ridge regression, 343
k-step-ahead prediction, 135
Lagrangian multipliers, 40, 207, 213–214, 220–222
Lagrangian relaxation methods, 32, 40
Lamarckian learning, 42–43
Lamarckian local search, 15
Large-scale plants:
  characteristics of, 35–36
  control system architecture, 36–37
  fusion models/categories, 49–51
  local control, 47–49
  market demand forecasts, 37–39
process scheduling, 39–45
supervisory control, 36–37, 45–47

Large-scale systems:
defined, 31
hierarchical architecture, 32
Layered neural networks, 13, 22
Learning vector quantization (LVQ) algorithm, 350
Least-squares estimator, 100
Least-squares support vector machines (LS-SVM), 327, 351–352
Leave-one-out (LOO) method, in data mining, 331–332
Left-hand pseudo-inverse, in data mining, 336
LibSVM, 352
Linear genetic programming (LGP), 379, 381–382, 392
Linear quadratic Gaussian (LQG) regulator, 48
LISP, 381
LMS-FIR filter, power systems, 204
Load forecasting, 38–39
Load planning, 42
Local control, 32–33, 47–50
Local-information-based algorithm, 13
Local search strategies, hybrid genetic algorithms, 42–43
Lo-FL YTE® UAV:
defined, 58
Neural adaptive flight controller, 80–81
nonlinear longitudinal model, 74–75
optimal control, 73–76
6-degree-of-freedom (6-DoF), 66, 77, 80–81
stability augmentation, 76–82
LOGSOM, 368
Longitudinal flight dynamics, 74
Loose connections, 2
Low-current low-speed, SRMs, 90, 113–114, 120
LumberJack, 368
Lyapunov synthesis technique, 58, 62–63, 65–66
Mach 5 waverider, 58, 62
Machine IQ (MIQ), 25
Machine learning, 6
Magnetization data, switched reluctance motors, 93–94, 100
Magnetocardiography (MCG), predicting ischemia from:
binary classification of magnetocardiograms, 351–358
characterized, 314–315
data acquisition and preprocessing, 350–351
feature selection, 358–359
Mahalanobis scaling, direct kernel ridge regression, 341, 351–352
Management structure, 40
Mapping functions, 19
Market demand, 32, 37–39
Master–slave structures, 15, 91, 121
Material resource planning, 40–41
MathWorks, Inc., 134
MATLAB, 109, 111, 146, 208
Maxwell’s equations, 129
Mean of squared control inputs (MSCI), 150–151
Mean of squared tracking errors (MSTE), uncertainty bounds, 139, 150, 159
Membership functions, FIS, 383
Mercer conditions, 339
Metal-cutting manufacturing process, 170–172, 194–195. See also Tool wear monitoring system
Meta-learning, 388–389
MetaNeural data format, 323–326
MGP-FIR filters, power systems:
current reference generators, 224, 228, 231–233, 235, 237
multiplicative general-parameter filtering, 205, 207, 229, 232
multiplierless basis filters, 211
Misuse detection, 241
Mixed integer linear programming (MILP) method, 41
Modal analysis, 129
Model error modeling (MEM), uncertainty bounds:
characterized, 140–141
defined, 140
fusion structures, 161
identified \( H_{\text{in}} \) control, 147–148
intelligent error identification, 141–146
uncertainty bound specification, 146
Model predictive control (MPC), 48–49
Monte-Carlo-method-based stochastic simulation, 22
Mountain clustering, 98
Multiclass classification, data mining, 327–328
Multilayer perceptron (MLP) networks:
defined, 22
intrusion detection, 248–249
tool wear monitoring, 166, 178–179, 182–183, 187
Multilayer perceptrons with a sliding input window (MLP-sw), 187
INDEX

Multiplicative general-parameter filtering, power systems, 205–207, 229, 232
Multiplicative uncertainty, 136
Multiplierless basis filters, power system, 211–213
Mutations:
  genetic algorithm (GA), 210
  multiplierless basis filters, 212
  zero-crossings detector, 216
MYCIN project, 47

NASA X-43, 58
Nearest-neighbor clustering, 98
Neuro-fuzzy classifiers (NEFCLASS), tool wear monitoring, 179
Neural Adaptive Controller (NAC™), 58, 61–62, 65–67, 69, 80, 85
Neural computing (NC):
  defined, 6
  intrusion detection using, 248–249
Neural network(s):
  characterized, 2, 7, 13, 22
  data mining, 332
  demand forecasting, 37–39
  direct kernel ridge regression, 346
  emotion-oriented interaction systems, 298–302
  fusions of, 16, 19–20
  learning, 389
  local control, 48–49
  scientific data mining, 323
  tool wear monitoring, 171, 178–184
  uncertainty bounds, 141–142
Newton’s laws, 129
NN/HC fusions, 21
NN=HC fusions, 20
No free lunch (NFL) theorems, 204
Noise, SRM motor drives, 90
Noise gain (NG), in predictive filtering, 226–231
Nominal H4 controllers, uncertainty bounds, 147–148
Noninferior solutions, multiobjective optimization, 44–45
Noninteractive approach, multiobjective optimization, 44
Nonlinear autoregressive model with exogenous inputs (NARX), 195
Nonlinear optimization, 21
Nonlinear regression, 314
Nonlinear systems, 125
Nonverbal communication, 277–278
Nyquist frequency, 143
Operating conditions, 125
Operatorless plant, 32
Optimal control law, 58
Optimal cost functional, 63–64
Optimal phase selection, 90
Optimal schedule, 32
Optimization, 21, 32, 43–45
Order and supply planning, 41
Outer-loop controller, flight control systems, 67

Paper industries, 41–42
Paralanguage, 278
Parallel connections, feedback, 12
Parallel sand-glass-type neural network, 298–299, 310
Pareto optimal solutions, 43–44
Partial least squares (PLS), 327
Parten window, 339
Passive system, design constraints, 84
Pattern recognition, 13
Penrose inverse, data mining, 336
3-Ghz Pentium, 208
Petri net, 23
Petroleum plant, supervisory control, 46
Pharaplots, 359
Phase windings, switched reluctance motors, 96

Physical models:
  characterized, 20–21
  tool wear monitoring, 171, 176–178
Plant tables, 45
Pleasure/displeasure, calculation of, 282–284
Polynomial predictive filter, 94, 105–107, 237
Power plants, start-up scheduling, 43
Power systems:
  predictive filtering methods:
    current reference generators, 223–233
    fusion structures, 233–234
    genetic algorithm for optimizing filter tap cross-connections, 207–211
    multiplicative general-parameter filtering, 205–207, 229
  multiplierless basis filters, design by evolutionery programming, 211–213
  overview of, 203–205, 234–237
  zero-crossings detector, 213–223, 225
  process scheduling, 40
Predictive control structure, 49
Predictive data mining, 336
Preference function, multiobjective optimization, 44
Preprocessing, intrusion detection, 261–263
Principal component regression (PCR), 327
Probabilistic reasoning (PR), 6, 51, 253
Probability theory, 323
Process scheduling:
  hybrid genetic algorithms, 42–43
  impact of, 32
  multiobjective optimization, 43–45
  problem decomposition, 39–42
Production planning/scheduling, 40. See also Process scheduling
Proportional integral derivative (PID), generally:
  controllers, 20, 23, 134
  control methods, 32, 48
Prospect-based emotions, EGC calculation, 289–290
Pulse-width modulation (PWM), 225
Q2/q2, 335
Quadratic approximation, 64
Quantitative structural activity (QSAR), 323, 329, 360
Quantitative structural property relationship (QSPR), 323
Radial basis function (RBF), generally:
  approximation, 64, 78–79
  kernel, 339
Radial basis function networks (RBFNs):
  defined, 22
  feedforward, 151
  industrial electronics applications, 237
  scientific data mining, 327
  tool wear monitoring, 179, 181
  uncertainty bounds, 126, 142–145, 151–157
Real-time resistance estimation, 94
Real-time systems, 22
Recurrent neural network (RNN), tool wear monitoring, 179
Recursive least-squares (RLS), generally:
  algorithm, 38, 126, 135
  estimate, 134, 180
Recursive linear smoothed newton (RLSN) predictors, 106, 108–109, 139
Reduced-rank adaptation, 22
Redundancies, in data mining, 337
Reference generators, 200
Regression, data mining techniques, 328
Reinforcement Learning, 51
Research and development (R&D), xix
Resilient propagation (RPROP), 189
Ridge regression, 338. See also Direct kernel ridge regression
Right-hand pseudo-inverse, in data mining, 336–337
Robotic joint control, 67
Robust control, uncertainty bounds:
  active magnetic bearings (AMBs), 130–132
  modeling, 135–136
  nonlinear:
    of AMB test rig, 148–150
    intelligent SMC, 156, 159
  significance of, 129
  specifications of, 146
ROC (Receiver operating characteristics) curve, 261, 263, 354
Root mean square error index (RMSE), 333, 335, 393
Rotors, switched reluctance motors, see Sensorless SRM motor drives; Switched reluctance motors (SRMs)
Rough sets, 51
Sampling, data mining and, 328
SC/HC systems, 11–12, 24, 122, 126, 161
SC//HC fusions, 24–25, 50, 121, 310
SC//HC structures, 12, 16, 24
SC&HD-type systems, 10–11, 24
SC-designed hard computing, 234
SC=HC fusion, 13–14, 19, 24, 359
SC-HC fusion, 12–13, 24, 58, 194
SC-HC//SC fusion, 50
SC-HC-SC fusion, 194
SC+HC fusion, 14–18, 24–25, 58, 392
SC+SC fusion, 393
SC+SC+HC fusion, 392
Scheduling, 32–33, 50. See also Process scheduling
Scientific data mining:
  applications of, generally, 314–315
  characterized, 320–321
  direct kernel methods:
    bias, 340–342
    case studies, 344–359
    fusion structures, 359–360
    machine learning dilemmas, 335–337
    regression models based on, 338–340
    ridge regression, 342–344
  types of, 317–318
Selection-crossover-mutation chain, 15
Self-organizing maps:
  direct kernel (DK-SOM), 348–351, 355, 357, 360
  intrusion detection, 242, 248–249, 254–256
  scientific data mining, 318, 327, 348
  WWW usage mining:
    applications, generally, 371
    clusters, 378, 382–383, 385, 390
Sensorless SRM motor drives:
- acceleration from zero speed, 90, 112–113, 120
- accuracy enhancement algorithms:
  - hard-computing-based on-line resistance estimation, 104–105

Sensorless SRM motor drives (Continued)
- polynomial predictive filtering, 105–107
- significance of, 101–102
- soft-computing-based optimal phase selection, 102–104
- characterized, 93–95
- defined, 89
- digital signal processor (DSP), 94, 120

fuzzy logic model:
- flux linkage characteristics, measurement of, 95–97
- training and validation, 97–101
- hardware configuration, 109–110
- high-speed test, 90, 114–118, 120
- low-current low-speed test, 90, 113–114, 120
- magnetization data, 93–94, 100
- software configuration, 110–111
- step change of load, test of, 90, 118–120

Sequential function chart, 45
Servoactuators, 67–68
Setpoint, parametric system identification, 134, 138
Shallow reasoning, 46
Signal processing:
  - design constraints, 83
  - predictive filtering, power systems, 199–200
Simple mail transfer protocol (SMTP), 304
Simple network manipulation protocol (SNMP), 246–247
Simulators, stochastic system, 22–23
Simulink®, 109, 111
Single value decomposition (SVD), 337
Sinusoids, 49-, 50-, and 51-Hz, 217–222, 225–230, 239–240
6-DOF models, flight control, 67–70
Size of map, self-organizing maps, 261–263
Sliding mode control (SMC) systems, uncertainty bounds:
  - characterized, 125–126, 129–130
  - estimating uncertainty for SMC of AMB test rig:
    - experimental results, 156–159
    - intelligent model error identification, 155–156
    - intelligent system identification, 151–154
  - nominal, of AMB test rig, 148–150

Soft computing (SC), see specific fusion structures
- adaptive flight control, 61–62
- characterized, 5–7
- defined, xvii
- hard computing methodology, fusion with, 1, 7–27
  - principal requirements of, 8

Soft constraints, flight control systems, 82
Soft redundancies, in data mining, 337
SOM-HMM, 242
Sperry, Roger W., 1
SQUID (superconducting interference device), 351
Stability augmentation system, 67
Stabilizing controllers, 63–64
Stand-alone FIR filters, 221
Statistics, in data mining, 323
Stochastics, intrusion detection systems, 256–257
Stochastic system simulators, 22–23
Structural fusion categories, 9–10
Subfilters, 227
Subsystems, in process scheduling, 39–41
Subtractive clustering, 98
Sugeno-type fuzzy motor model, 90
Supervisory control, 32–33, 36–37, 45–47, 50
Supply chain optimization system, 40–41
Support vector machines (SVMs), data mining, 318, 327, 339, 342, 344, 351
Switched reluctance motors (SRMs):
  - angle estimation, 89–91, 101
  - characterized, 89–90
  - fusion structures, 119–122
  - sensorless, see Sensorless SRM motor drives simulation algorithm, 108–109
System identification, uncertainty bounds, 129, 133–135, 138
System model uncertainty, 125
Systems, components of, 31
Systems engineering, 26
Table lookup scheme, switched reluctance motors, 97–98
Tabu search, 41–42
Takagi–Sugeno fuzzy inference system (TSFIS), 371, 388, 392
Taylor’s tool-life equation, 182–183
Telecommunications, 26
Temporal RPROP, 189
Thermodynamic phase changes, 47
Thermodynamics, principles of, 129
Time-delay neural network (TDNN), tool wear monitoring, 166, 185, 187–190, 192, 195
Time-delay radial basis function (TDRBF) networks, 195
Time-series analysis, data mining problems, 329
Time-series prediction, 22
Tool wear monitoring system, indirect on-line: analytical models:
  sensor-based methods, 177–178
  sensorless methods, 176–177
architecture, 172–176
characteristics of, 166, 170
estimation, generally, 165–166
experimental results, 189–192
functional levels of, 166
fusion of physical and neural network models, 181–184
fusion structures, 166, 192–195
importance of, 165, 169–170
influential factors, 171
neural network model:
  characterized, 171
  disadvantages of, 180–181
  examples of, 179–180
  fusion with physical models, 181–184
techniques, 178–181, 187–189
physical model, 176–178
problem description, 172–176
process parameters, 172
solution:
  dynamic neural network at wear model level, 187–189
  outline of, 184–185
  physical force model at digital preprocessing level, 185–187
Total harmonic distortion (THD), 230–233
Transient load test, SRMs, 90, 118–120
Transposition, structural, 17–18
Truncation errors, 115
Ultrasound, tool wear monitoring, 178
Uncertainty bounds:
estimation of:
  components of, 129–130
  nominal $H_{\infty}$ control of AMB test rig, 133–138
  robust control of AMB, 130–132, 148–151
  fusion structures, 159–162
  sliding mode control (SMC) systems, 151–159
  Unity-coefficient basis FIR filter, 213, 221, 223, 228
  Unmanned aerial vehicles (UAVs), 58, 62, 67
  Unstructured uncertainties, 136
Vectors:
  data mining, 332
  emotion, 302
  HC-SC/SC-HC fusion, 13, 19
  intrusion detection systems, 262
  neural adaptive control, 65–66
  synthetic, 282–284
  weight, 332
  wisdom, 332
  Viterbi algorithm, 258
Water treatment plant, supervisory control, 46
Wear model, tool wear monitoring system, 176, 185
Weighting functions, uncertainty bounds, 136–139
Weights, multiobjective optimization, 44
Weight vector, 332
Welch method, 114
Well-being, EGC calculation, 292–294, 297
White noise:
  gain, 226, 229–230
  impact of, 181
  Widrow-Hoff least mean-square (LMS) adaptation algorithm, 203
Winding resistance, switched reluctance motors:
  characterized, 94–96
  on-line estimation, 104–105, 108
  Wisdom vector, 332
World Wide Web (WWW) usage mining:
  applications, generally, 363–364
  clustering, daily and hourly:
    analysis of, 377–378
    ant colony optimization (ACO), 372–374
    fuzzy clustering algorithm, 374–376
    self-organizing maps (SOMs), 376–377
  development of, 367
  fusion structures, 364, 389–393
  framework for, 368–372
  log format, 368
  log records, 363–364, 369
  usage analysis, daily and hourly:
    experiment setup, training, and performance evaluation, 386–389
    fuzzy inference systems (FIS), 382–387
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear genetic programming (LGP)</td>
<td>379–382, 389, 392</td>
</tr>
<tr>
<td>neural network learning</td>
<td>389</td>
</tr>
<tr>
<td>significance of</td>
<td>378–379</td>
</tr>
<tr>
<td>X-43A-LS autolander</td>
<td>68–73</td>
</tr>
<tr>
<td>xPC Target</td>
<td>134, 137</td>
</tr>
<tr>
<td><em>Xplore</em>™ database</td>
<td>6</td>
</tr>
<tr>
<td>Zadeh, Lotfi A.</td>
<td>xvii, 5–6, 26</td>
</tr>
<tr>
<td>Zero-crossings detector, predictive filtering methods for power system:</td>
<td></td>
</tr>
<tr>
<td>characterized</td>
<td>200</td>
</tr>
<tr>
<td>49-, 50-, and 51-Hz sinusoids corrupted by noise, sequence of</td>
<td>217–223</td>
</tr>
<tr>
<td>single 60-Hz sinusoid corrupted by noise,</td>
<td>213–217, 222–223</td>
</tr>
</tbody>
</table>