Subject Index

Ab initio calculations, [2,3]-Witting rearrangement, molecular orbital calculations, 242–243

(−)-Acamptodral, Wolff rearrangement, 271–272

ACE inhibitors, Mitsunobu reaction, alcoholsulfide conversion, 722–723

Acetate aldehyde equivalents, Evans aldol reaction, 358–359

3-Acetophenone, Keck allylation reaction, additives, 592–593

Acetylenic reaction, Schmidt reactions, 362–362

N-acetylactimobalamine, siloxy-Cope rearrangement, 105

3-Acetyl[6-methyl-9-[4-methyl-ethyl]bicyclo[4.2.0]nona-2,9-diene, Meyer-Schuster rearrangement, 346

Achiral aldehydes, Roux allylation reaction, 616–618

Acid chlorides, Curtius rearrangement, acyl azides from, 143–1443

Acid hydrazides, Curtius rearrangement, acyl azides from, 141

Acid labile compounds, Mitsunobu reaction, intermolecular alcohol inversion, 682

Acrolein, Evans aldol reaction, 547

Acyl azides.

Curtius rearrangement:

from acid chlorides, 142–143
from acid hydrazides, 141
amino acids, 144
asymmetric chiral amine pathways, 147–148
historical perspective, 136–137

α-hydroxy acyl azides, 146
nitrogen retention, 141
photochemical induction, 159–160
polyamides, 144–145
polymer supports, 157–159
Shioiri-Ninomiya-Yamada modification, 151–155

α,β-unsaturated acyl azides:
migrating carbon stereochemistry, 139–140
synthetic function, 146
Weinhouse variant, 148–150

Schmidt reactions, mechanism, 354–355

Acyl cyanides, Passerini reaction, 770

N-Acylaminium ions, Manuch reaction, 657

N-Acylxazolidinone derivatives, Evans aldol reaction:

basic principles, 532–533
mechanism, 533–535
α-Acyloxymethyl ethers, Passerini reaction, 765

α-Acyloxythioethers, Passerini rearrangement, basic principles, 334

Acyl silanes, Brook rearrangement:
cyanide initiation, 417–418
eight-membered ring synthesis, 421–422
homoenolate equivalents, 418–419
retro-Brook-1,2-rearrangement, 429–430
silyl enol ether formation, 446

Adamantyl substituted reagents, Mitsunobu reaction, 674
cis-Additions, diastereoeoxy-Cope rearrangement, 116–117

Additive Passerini sequence, 335–336

Additives, Keck allylation reaction, 591–595
Adrenergic receptor agonists, Neber rearrangement, 469

Akyl azides, Schmidt reactions:
 intermolecular reactions, 356
 intramolecular reactions, 356–357

Akyl ethers, Mitsunobu reaction, 691–692

β-Alanine, Hofmann rearrangement, 192

Alcohol-alkyl azide reaction, intramolecular Schmidt reactions, 360–361

Alcohols:
 Mitsunobu reaction:
 allene synthesis, 727–728
 amine conversions, 698–719
 azide-based amine conversions, 719–720
 ether formation, 691–696
 halogenation, 726
 intermolecular inversion, 680–687
 intramolecular lactone formation, 687–691
 sulfide conversion, 720–723
 Smiles rearrangement, 593–596

Aldehydes:
 Bamford-Stevens reaction, epoxide synthesis, 651
 Keck alkylation reaction, crotylamine stereoselectivity, 593–595
 Mannich reaction:
 basic principles, 653
 mechanisms, 653–654
 Posselt reaction, basic principles, 765–767
 pinacol rearrangements, 331
 Roush allylation, natural reactions, 616–618
 chiral aldehydes, 620–626
 metal-complexed unsaturated aldehydes, 618–620
 Ugi reaction:
 mechanisms, 787–790
 precondensation mechanism, 803

Alder-En reaction:
 asymmetric reactions, 25–27
 basic principles, 2–3
 historical perspective, 3–7
 Lewis acid catalysis, 9–10, 21–22
 intramolecular aldehydes, 30–31
 mechanisms, 7–11
 regioselectivity and stereoselectivity, 11–18
 solid support catalysis, 29
 special case enolphiles, 9
 synthetic utility, 28–29

thermal Alder-ene reactions, 19–23
thermally-promoted reactions, 7–9
transition metal catalysts, 10–11, 22–25
 selectivity, 17–18
Trost conditions, 30

Aldols:
 Evans aldol reaction:
 acetate aldol equivalents, 538–539
 α-alkoxyacetate aldol reactions, 537–538
 α-alkyl aldols, 552
 basic principles, 532
 boron aldol reaction, 549–550
 chiral auxiliary removal, 550–554
 Crammins oxazolidinethione aldol reaction, 539
 Crammins procedure, 554
 crotonyl enolate aldol reactions, 537
 experimental compounds, 548–552
 haloacetyl aldol reactions, 538
 historical perspective, 533
 mechanisms, 533–535
 natural products, 539–547
 “iron-Evans” sny aldols, 551–552
 (3S)-3-(1-oxopropyl)-4-(phenylmethyl)-2-oxazolidinone, 548–549
 propionate aldol reactions, 537
 reaction types and synthetic utility, 535–547
 variations and improvements, 547–548
 Mannich reaction, mechanisms, 654
 Roush allylation, natural product synthesis, 631–634
 Aliphatic Claisen rearrangement:
 basic principles, 35
 enantioselectivity, 42–43
 synthetic utility, 36–38

Alkaldoids:
 anionic oxy-Cope rearrangement, 107–108
 Mitsunobu reaction, alcohol amine conversion, 703–704
 Pitham cyclization, 757–758

Allenes:
 Alder-ene reaction, regioselectivity and stereoselectivity, 11–13
 Bamford-Stevens reaction, 643
 synthetic utility, 645

Curtius rearrangement:
 migrating carbon stereochemistry, 139–140
 Shioiri-Yonemita-Yamada modification, 154–155
Subject Index

Parham cyclization, 755–756
Alkenyllithium reagents, cationic oxy-Cope rearrangement, 116–117
3-Alkynylpyridines, Stevens rearrangement, 526
Alkoxy: Hofmann rearrangement, bromine compounds, 173–175
α-Alkoxyacetate adducts, tervalent aldon reaction, 537–538
α-Alkoxalkyl ethers, Rouns allylboration, 621–622
Alkoxymethylamines, Tiffan-Demjanov rearrangements, 362
Alkyl azides: Schmidt reactions: intermolecular reactions, 356
alcohol-alkyl azide reaction, 360–361
intramolecular epoxide-alkyl azide reactions, 361–362
intramolecular amin-alkyl azide reactions, 359–360
Alkyl carbons, Smiles rearrangement, 497–498
Alkyl groups, Wagner-Meerwein rearrangement, 576
Alkenes, Mitsunobu reaction, 727–728
Alkenic alkynes, Alder-Ene reaction, 22–25
Allyl acetates, Carroll rearrangement, 53–55
Allylboronates, Round allylboration: achiral aldehydes, 617–618
natural product synthesis, 630–634
Allyl ethers, [2,3]-Wittig rearrangement:
 basic principles, 241
 mechanisms, 241–243
 synthetic utility, 246–254
Allyl glycol derivatives, Stevens rearrangement, 519–520
Allylic alcohols:
 Brook rearrangement, silyl enol ether formation, 412–416
 Overman rearrangement, amine conversion, 210–218
 synthetic utility, 220–222
 pinacol rearrangement, 329–331
 Wagner-Meerwein rearrangement, 390–391
Allylic silane, Pummerer rearrangement, 342–343
π-Allyl intermediates, Alder-Ene reaction, transition metal catalysts, 17–18
Allylmagnesium, Pummerer rearrangement, 346
α-Allyloxoyhydrazone, [2,3]-Wittig rearrangement, 250–251
Allylhydrazines, retro-1,4-Brook rearrangement, 431–432
Allylsilane products:
 Rouns allylboration, 626–627
 Wagner-Meerwein rearrangement, [3–2] cycloaddition, 386
Allylstannanes, Keck allylation reaction, experimental compounds, 608–610
Allytrimethylstannane, Keck allylation reaction, 587–588
Altermicidine, Curtius rearrangement, Shioiri-Ninomiya-Yamada modification, 154
Alumina, Mannich reaction, 660
Alumina sulfuric acid (ASA), Beckmann rearrangement, 280
Aluminum/salen complex, Passerini reactions, 774
Amberlyst type resin A-252, Rupe reaction, 314
Ambident reaction, Mitsunobu reaction, 735–737
(1)-Aminocarboxylic acid, Meerwein-Eschenmoser Claisen rearrangement, 66
Amide enolates:
 Brook rearrangement, 418–419
 [2,3]-Wittig rearrangement, 252
Amides:
 aza-Claisen rearrangement, 75
 Beckmann rearrangement, microwave irradiation, 276
 Meerwein-Eschenmoser Claisen rearrangement, 65–66
 Phenol-Passerini-Smiles rearrangement, 507–508
 Smiles rearrangement, 492–499, 500
Amines:
 Mannich reaction, 656
 Ugi reaction, 789–790, 792
Amines:
 aza-Claisen rearrangement, 73–77
 2-aza-Cope rearrangement, 123
 aza-Payne rearrangement, 480–483
 Mannich reaction:
 mechanisms, 654
 tandem aza-Cope sequences, 666
 variations, 661–662
 Mitsunobu reaction, alcohol-amine conversion, 698–719
Amines (continued)

Overman rearrangement, allylic alcohol/amine conversion, 210–212
Smiles rearrangement, 504–505, 508
Stevens rearrangement:
 basic principles, 516
 variations and improvements, 518–527
Ugi reaction:
 asymmetric variants, 300–304
 mechanisms, 787–790
 precondensation mechanism, 803
 [1,2]-Wittig rearrangements, 234
 [2,3]-Wittig rearrangement, 244

Amino acids:
 Claisen and related rearrangements, bioisosteres, 33–34
 Curtius rearrangement, 144
 Weintraub, variant, 149–150
 Hofmann rearrangement, iodobenzene
 histidine, 189
 Wolff rearrangement, imidic-β-amino acids, 271
 α-Amino acids, Nebel rearrangement, 470–471
 β-Amino acids, Mannich reaction, 657
 1-Aminobenzobicyclo[2.2.1]heptene, Hofmann
 rearrangement, 654
 β-Amino-carboxyl compound, Mannich reaction, 653
 2-Amino-4-chloropyridine, Hofmann
 rearrangement, 192

Amine-Cope rearrangement:
 basic principles, 93
 synthetic functions, 119–120
 5-Amino-2,3-dihydrothieno[2,3-d][2,7]benzo-
 pyridine, Smiles rearrangement, 513

β-Aminooester synthesis, Curtius rearrangement,
 Shioiri-Ninomiya-Yamada modification, 153

β-Aminoesteric derivatives, Smiles
 rearrangement, 491

β-Amino-α-hydroxyamides, Passerini reactions,
 774–779
α-Aminoacetonitrile, Nebel rearrangement, 472
Aminopyrazoles, Mitsunobu reaction, allylic
 amine conversion, 708
Aminoquinolines, Smiles rearrangement, 491
2-Aminothiazolines, Mitsunobu reaction,
 736–737

Amphidinolide fragments:

Evans aldol reaction, 542, 544
Roush allylboration, 633–634
Amphimedine, Passerini reactions, 780
Amines, Smiles rearrangement, 504

Anionic rearrangement:
 benzylic acid rearrangement:
 basic principles, 395
 experimental compounds, 439–440
 historical perspective, 395–397
 mechanism, 396
 synthetic utility, 402–403
 variations and improvements, 397–402

Brook rearrangement:
 1,3-rearrangement, 423–424
 1,4-rearrangement, 424–427
 1,5-rearrangement, 427–428
 basic principles, 406
 benzhydryloxymethylidiphenylsilane, 434
 carbon stereochemistry, 410–411
 cyanide initiation, 417–421
 eight-membered ring synthesis, 420–422
 five-membered ring synthesis, 419–420
 historical perspective, 406–408
 homocoulate equivalents, 418–419
 kinetic evidence, 408–409
 non-hydride ester reduction, 422
 retro-1,2-rearrangement, 428–430
 (1-hydroxy-2-propenyl)trimethylsilane, 425
 retro-1,3-rearrangement, 430–431
 retro-1,4-rearrangement, 431–432
 retro-1,5-rearrangement, 433
 retro-1,6-rearrangement, 432–434
 retro-Brook directionality vs., 411
 seven-membered ring synthesis, 420
 silicon stereochemistry, 409
 silyl enol ether formation, 412–416
 synthetic utility, 412–422
 variations and improvements, 422–434

Favorskii rearrangement:
 basic principles, 438
 carboxylic acid branching, 440–441
 cyclopropane formation, 445–446
 ester experimental compounds, 450
 historical perspective, 439
 homo-Favorskii variation, 446–447
 mechanisms, 439–440
 natural products, 441–442
 photo-Favorskii rearrangement, 449–450
quasi-Favorskii variation, 448-449
steroids, 443-444
synthetic utility, 440-446
trihaloketones, 444-445
unsaturated carboxylic acids, 442-443
Grob fragmentation:
 basic principles, 452
 bicyclic fragmentation, 6- to 8-membered rings, 458-459
 bicyclic fragmentation, 9-membered rings, 459-461
 historical perspective, 452-453
 mechanisms, 453-455
 methyl 2,3,4-trihalo-5-hydroxy-6-propylenbenzene, 461
 monocyclic fragments, 457-458
 (2α,4α,5α)-2α,3α,4,5,6,8,9-octahydro-4-(methoxymethoxy)cyclohexa-
 [cd]pentalen-7(12H)-one, Grob fragmentation, 462
 synthetic utility, 456-461
 three-product molecules, 456-457
 variations and improvements, 455-456
Nebert rearrangement:
 α-amino acids, 470-471
 α-amino ketones, 472
 2H-azirine formation, 467, 471-472
 basic principles, 464
 heterocyclic chemistry, 469-470
 historical perspective, 464-465
 mechanism, 465-466
 medicinal chemistry, 469
 natural product synthesis, 467-469
 oxime replacements, 466
 synthetic utility, 467-471
 oxy-Cope rearrangement:
 basic principles, 90-92
 experimental compounds, 128
 synthetic functions, 105-117
Payne rearrangement:
 basic principles, 474
 1α-exo-tetrahydroreticulicin, 486
 chroman-4-ol, 486
 2,3-disubstituted tetrahydrofuran rings, 484-485
 epoxy amines, 483-484
 experimental compounds, 486-487
 historical perspective, 474
 mechanism, 474-475
 peptidomimetics, 485
 spiro- and fused-hydroxypyridocines, 484
 synthetic utility, 483-486
 variations, 475-483
Smiles rearrangement:
 antinflammatory agent analogs, 510-511
 antimicrobial agents, 512
 basic principles, 499-490
 benzilideneaniline, 541
 experimental compounds, 513
 mechanism, 490
 pharmacologically active compounds, 513
 spiro-pyridocines, 511
 synthetic utility, 510-513
 variations and improvements, 490-510
Stevens rearrangement:
 basic principles, 516
 (±)-desoxycorticosterone synthesis, 527-528
 enantioselective morpholine synthesis, 528-529
 historical perspective, 517
 mechanism, 517
 synthetic utility, 527-529
 variations and improvements, 517-527
Antibiotics:
 Evans aldol reaction, 539-540
 Hoffmann rearrangement, 187-189
 Mitsunobu reaction:
 alcohol-amine conversion, 710, 714
 halogenation reactions, 726
 Overman rearrangement, 220
 Roush allylation, 631-632
 Wagner-Meerwein rearrangement, 387-388
 Wolff rearrangement, 270-271
Anti-Perkin products. Roush allylation, α-
 methyl-β-enol aldehydes, 263-266
Antinflammatory agents, Smiles rearrangement, 510-511
Anti-lenshmannial chalcones, Mannich reaction, 665
Anti mechanisms:
 Evans aldol reaction, Heathcock procedure, 552
 Grob fragmentation, 454-455
 Antimicrobial agents, Smiles rearrangement, 512
 Antinflammatory compounds, Mannich reactions, 664-665
Antiviral compounds:
 Meyer-Schuster rearrangement, 308
 Pennerer rearrangement, 344-345
Aphidicolin diterpenoid, Bamford-Stevens reaction, 549
Apoptolidine, Evans aldol reaction, 546
(-)-Apsidolpyrone, Mitsunobu reaction, alcohol-amine conversion, 712
Aquatic skeleton, Grob fragmentation, 489–490
Araomide ring system, aminooxy-Cope rearrangement, 111
Aqueous mineral acids, Pauson-Khand reaction, 770
Arenesulfonates, Wagner-Meerwein rearrangement, 374–375
(-)-Aristeromycin, Hofmann rearrangement, 181
Aristocumarine alkaloids, Parham cyclization, 753–754
Aromatic Claisen rearrangement:
 basic principles, 35
 enantioselectivity, 42–43
 synthetic utility, 36–38
Aromatic-Cope rearrangement:
 basic principles, 95
 synthetic functions, 126–127
Arylaylazines, Naylor rearrangement, heterocyclic compounds, 470
Arylbenzofurans, Grob fragmentation, 487
Aryl ethers, Mitsunobu reaction, 691–692
8-Arylmethylanilines, Stevens rearrangement, 524
Aryl methy ketones, benzilic acid rearrangement, 399
(3-Arylmethylproline tert-butyl esters, Stevens rearrangement, 527
Ascorbic acid derivatives, Mitsunobu reaction, carbon formation, 695
(1R)-Apsidopyridine, Schmidt reactions, 365–366
(1R,5S)-Apsidopyridine, Cope rearrangement, 97–98
Asymmetric reactions:
 Alder-Emod reaction, 25–27
 amino-Cope rearrangement, 119–120
 enamine-Claissen rearrangement, 77–78
 carbon–carbon bond formation:
 Evans aldol reaction:
 acrolein aldol equivalents, 538–539
 α-alkoxyacrolein aldol reactions, 537–538
 anti aldols, 552
 basic principles, 532
 boron aldol reaction, 549–550
 chiral auxiliary removal, 550–551
 Crimmins oxazolidinethione and
 thiazolidinethione aldol reaction, 539
 Crimmins procedure, 551
 crotonyl enolate aldol reactions, 537
 experimental compounds, 548–552
 halobutyl aldol reactions, 588
 historical perspective, 533
 mechanism, 533–535
 natural products, 539–547
 “non-Evans” syn aldols, 551–552
 (S)-3-[(1-oxoproxy)-4-phenylmethyl]-2-oxazolidinone, 548–549
 propionate aldol reactions, 537
 reaction types and synthetic utility, 535–547
 variations and improvements, 547–548
 Hajos-Wiechert reaction:
 basic principles, 554–555
 experience, 577–580
 historical perspective, 555–556
 mechanism, 556–558
 total synthesis applications, 561–577
 variations, 558–561
 Keck alkylation reaction:
 additives, 591–593
 asymmetric catalysts, 604–608
 basic principles, 583–584
 BINOL/titanium complexes, 595–597
 catalytic reactions, 595
 chiral phosphoramidite silicon-tetrachloride activation, 600–601
 chromium-titanium complexes, 599
 crotylsilanes/crotylsilane desilylation preparations, 608–610
 crotylsilane diastereoselectivity, 593–595
 Donnet-Santelli toluene solvent modification, 610
 historical perspective, 584–585
 mechanisms, 585–591
 non-chiral Lewis acids, 601–604
 PyBos/PhosBox systems, 600
 silver complexes, 598–599
 synthetic utility, 601–608
 zirconium binaphthyl complexes, 597–598
 Roush allylation:
 achiral aldehydehy reactions, 616–618
 α-alkoxy aldehydes, 621–622
 basic principles, 613
 chiral aldehydehyes, 620–622
 (4R,5R)-diisopropyl 2-allyl-1,3,2-
deoxygenolane-4,5-dicarboxylate synthesis, 634–635
(R,R)-disopropyl (Z)-crotylboronate preparation, 636–637
(A,R)-disopropyl tiane (Z)-crotylboronate preparation, 635–636
(2S,8S,8R)-2,4-dimethyl-2-(tert-butyldiphenylsilyloxy)-hex-5-en-3-one preparation, 637
historical perspective, 613–614
mechanisms, 614–615
metal-complexed unsaturated aldehydes, 618–620
α-methyl-β-alkoxy aldehydes, 622–626
natural product synthesis, 628–634
structure-activity-relationship studies, 628–634
synthetic utility, 615–626
variations, 626–628
Carroll rearrangement, 57
Claissen rearrangements, 38
Curtius rearrangement:

dinitrogen triamines, 147–148
Shiotani-Nishiyama-Yamada modification, 151–155
Mannich reaction, heterocyclic compounds, 567–568
Meerwein-Pischnner-Clarissen rearrangement, 67–68
Passerini reactions, 773–774
Schmidt reactions, hydroxyalkyl azides, 358–359
thio-Claissen rearrangement, 81–82
Ugi reaction, 800–801
Wagner-Meerwein rearrangement, palladium promoters, 378–379
[2,3]–Wittig rearrangement, 250–254
(5α,7α)-7-Aza-androsten-3-ol, Beckmann rearrangement, 287
3-Azabicyclo[3.3.1]nonane skeleton, Meyer-Schuster rearrangement, 309
Azacarboxaldehyde, Beckmann rearrangement, 288
Aza-Claissen rearrangement:

basic principles, 72
synthetic utility, 73–77
2-Aza-Cope rearrangement:

basic principles, 93–94
experimental compounds, 128–129
synthetic functions, 129–123
tandem Mannich reactions, 666
[3,3]-Aza-Cope rearrangement, Overman rearrangement, 210
3-Aza-Cope rearrangement:

basic principles, 94
synthetic functions, 123–124
tandem Mannich reactions, 666
Azadicarboxylates, Mitsunobu reaction, 673–675
Azamacrocycles, Mitsunobu reaction, alcohol-amine conversion, 713
Aza-Payne rearrangement:

bioactive compounds, 478–483
peptidomimetics, 485
Azapolyolycyclic ring systems, Pummerer rearrangement, 341–343
Azasteroid, Hoffmann rearrangement, bromine-alkoxide compounds, 174–175
Aza-[2,3]–Wittig rearrangement:

acrylic mechanisms, 244
(15,2[R]-N-tert-butoxycarbonyl-2-methyl-1-phenyl-3-(phenylidimethylsilyl)-but-3-enylhydrazine, 254–255
(−)-indolizidines, 243
Azides, Mitsunobu reaction, alcohol-amine conversions, 719–720
Azides, Schmidt reactions, 366
α-Azidoalcohols, photo-induced Schmidt reaction, 356
Azinomycin, Passerini reactions, 776
Aziridines:

Mitsunobu reaction, alcohol-amine conversion, 705–706, 711
Payne rearrangement, ring synthesis, 478–483
N-Azirinyl imines, Sharpless-Takaya reaction, 486
Azirines, Neber rearrangement:

2H-imine formation, 467–471, 472
heterocyclic compounds, 470
mechanisms, 465–466
medicinal chemistry, 489
1,1′-(Azodicarboxyl)-dipiperidine (ADDP), Mitsunobu reaction, 673–674
ether formation, 694
Azodicarboxylate enophiles, Alder-Enne reaction, 8–9

FACE inhibitor:

Mitsunobu reaction, intramolecular alcohollactone formation, 684–689
BACE inhibitor (continued)
Passerini reactions, 776
Baeyer-Villiger oxidation:
Demjanov and Tsujienev-Demjanov rearrangements, 296–298
Hajos-Wiechert reaction, vitamin D analogs, 568–569
Bamford-Stevens reaction:
basic principles, 642
Claisen rearrangements, 37–38
cold ether (chlorovinylcyclopropane and vinylcyclopropane formation, 650
epoxide synthesis, aldehyde-sulfur ylide sources, 651
historical perspective, 642
mechanisms, 642–643
natural product synthesis, 648–650
synthetic utility, 644–650
variations and improvements, 643–644
Basilikamides A and B, Roush allylation, 631
Beckmann rearrangement:
basic principles, 274
experimental compounds, 289
historical perspective, 274–275
liquid-phase reaction, 278–279
mechanism, 275
microwave-assisted reaction, 275–276
oxime rearrangements, 279–287
solvent-free reaction, 279
synthetic utility, 287–288
vapor-phase cyclohexanone oxime rearrangement, 276–278
Bellus-Claisen rearrangement, basic principles, 57–60
Benzazepines, Parham cyclization, 761
Benzazepine, Beckmann rearrangement, 283
Benzenes, aromatic-Claisen rearrangement, 126–127
1,3,5-Benzenehexcarboxyl triazide, Curtius rearrangement, 145
Shindo-Ninomiya-Yamada modification, 151–155
Benzidinaphthyl-diphenyl bilane, Brook rearrangement, 434
Benzilic acid rearrangement:
basic principles, 395
experimental compounds, 430–404
historical perspective, 395–396
mechanism, 396
synthetic utility, 402–403
variations and improvements, 397–402
Benzimidazole:
Mitsunobu reaction, alcohol-amino conversion, 707–708
Smiles rearrangement, 495
Benzimidazole-pyrrolidine proline, Hajos-Wiechert reaction, 559
1H-Benzof[d]imidazol-2(3H)-one, Lossen rearrangements, 265
Benzocyclopentene, Parham cyclization, 761
Benzo[b]thiophenones, benzilic acid rearrangement, 397
Benzofuran, Parham cyclization, 755–756
Benzofuranones, Truce-Smith rearrangement, 495–496
2,3-Benzodienafuranone, Wolff rearrangement, 262
Benzophenone oxime, Beckmann rearrangement, microwave irradiation, 276
Benzothiophenopyridine, Smiles rearrangement, 511–512
Benzotriazoles, Mannich reaction, 656
Benzoxazines, Wolff rearrangement, 262–263
Benzyl azide, Curtius rearrangement, 137–138
Benzyl alcohols:
Mitsunobu reaction, ether formation, 696
Pummerer rearrangement, 337
Benzyl cyclopropane-3-oxycarbamate, Lossen rearrangements, 268
Benzylidimethylsilyl (BDS) group, Alder-Ene reaction, 24–25
Benzyl ethers, [1,3]-Wittig rearrangement, 236–237
Benzylidene carbon atoms, Stevens rearrangement, 521–522
1-Benzzyloxycarbonyl-2-oxazolidinedione-5-carboxylic acid, Hofmann rearrangement, 193
N-Benzzyloxycarbonyl-L-2,3-diaminopropanoic acid, Hofmann rearrangement, 193
N-tet-butyl-2-benzzyloxy-3-chloro-2-chloromethylpropanamide, Passerini reaction, 782–783
Benzyltrimethylammonium chloride, Hofmann rearrangement, 166
Benzyl-3-vinylcarbamate, Curtius rearrangement, 161
Besselin. Passeilhri reactions, 777
Bicyclic amine, Alder-En reaction, 29
Bicyclic fragments. Grob fragmentation: 6- to 3-membered rings, 458–459
9-membered rings, 459–460
BILN 2865 HCV protease inhibitor, Mitsunobu reaction, intermolecular alcohol inversion, 684–685
(±)-Bilobalide, amination, Cope rearrangement, 1911
BINAP catalysts, Alder-En reaction, asymmetric reactions, 26–27
1,1'-Binaphthalene-2,2'-diol (BINOL). See also Titanium-BINOL catalyst
Keck allylation reaction: additives, 592–593
basic principles, 593–594
historical perspective, 584–585
mechanisms, 587–591
silver catalysis, 598–599
zinc-catalyzed bispinaphthyl complexes, 597–598
Bioactive compounds, aza-Payne rearrangement, 478–483
(±)-Biotin, Hofmann rearrangement, sodium hypochlorite, 177–178
Biphenyl compounds, Curtius rearrangement, stereochemistry, 140
Biphenylamine 1, Alder-En reaction, 28–29
Birch reduction. Cope rearrangement and, 99
Bismuthphosphate trifluoromethane sulfone, Hajo-Wicheck reaction, 359
Bismuthcarbonic lactones, Beckmann rearrangement, 283
Bis-oxo phosphonium intermediate, Mitsunobu reaction, intermolecular alcohol inversion, 682–684
Bis-protected amines, Mitsunobu reaction, alcohol-amine conversion, 702–703
Bis-silyl phenylphenyl methane, Brook 1,4-rearrangement, 425
Bistrimamide A, Evans aldo reaction, 547
Bis(2,2,2-trichloroethyl)azine carboxylate, Mitsunobu reaction, 673
2,4-Bis(tetrafluoromethyl)-phenyl pyridine, [1,2]-Wittig rearrangements, 232–233
(4)-Blepharonmycolic D, Keck allylation reaction, 604–605
Boc amines, Misunobu reaction, alcohol-amine conversion, 702–703
N2-BOC-L-α,β-diaminopropanic acid, Hofmann rearrangement, 193
N-Boc azidobenzolethene, aza-Payne rearrangement, 481
Boekeman's synthesis, Roush allylation, ikanganyem, 628–630
Borane boron adducts, Keck allylation reaction, 592–594
Bornol, Wagner-Meerwein rearrangement, 373–374
Boron aldols, Evans aldo reaction, 537–538, 540–550
Boronic ester, Mannich reaction, 658
Boronic acid, Mannich reactions, 664
(±)-exo-Brevicomin, Payne rearrangement, 486
Bridge-bicyclic structures:
Brook rearrangement, eight-membered ring synthesis, 421–422
Demjanov and trifluoro-Demjanov rearrangements, 298–301
Schmidt reactions, 366–367
Bromide, Mitsunobu reaction, halogenation reactions, 726
Bromine compounds, Hofmann rearrangement, 166–171
alkoxide, 173–175
hydroxide and, 171–173
α-Bromomethyl ethers, [1,2]-Wittig rearrangements, 232
Bromoketenethioacetate, Parham cyclization, 756
A-Bromophthalalimide (NBP), Hofmann rearrangement, 366–167
N-Bromostuceneimide, Hofmann rearrangement, 166–170
N-Bromostoceneimide (NBS), Hofmann rearrangement, 178–180
Brominated acids:
Curtius rearrangement, 140–141
ester enolate-Claisen rearrangement, 51
Passerini reaction, 776
Ugi reaction, mechanisms, 787–790
Brook rearrangement, 1,3-rearrangement, 423–424
1,4-rearrangement, 424–427
1,5-rearrangement, 427–428
anionic oxy-Cope rearrangement and, 114–115
basic principles, 406
Brook rearrangement (continued)
- benzhydryldimethylidiphenylsilane, 434
- carbon stereochemistry, 410-411
- cyanide initiation, 417-418
- eight-membered ring synthesis, 420-422
- five-membered ring synthesis, 419-420
- historical perspective, 406-408
- homocoulate equivalents, 418-419
- kinetic evidence, 408-409
- non-hydride ester reduction, 422
- retro-1,2-rearrangement, 428-430
 - (1-hydroxy-2-propenyl)dimethylsilane, 435
- retro-1,3-rearrangement, 430-431
- retro-1,4-rearrangement, 431-432
- retro-1,5-rearrangement, 433
- retro-1,6-rearrangement, 433-434
- retro-Brook directionality vs., 411
- seven-membered ring synthesis, 420
- silicon stereochemistry, 409
- silyl ether formation, 412-416
- synthetic utility, 412-422
- variations and improvements, 422-424
- Bryostatin, Keck alkylation reaction, 606-607
- Burgess reagent, Mitsunobu reaction, alcohoxide conversion, 709-710
- Burgi-Dunitz angle, Roush allylboronation, chiral aldehydes, 620-621
- Butenes, Alder-En reaction, 12
 - (E)-2-Butenyltrimethylsilane, Keck alkylation reaction, 609-610
 - (Z)-2-Butenyltrimethylsilane, Keck alkylation reaction, 608-609
- (1S,2R)-N-,tert-Butoxycarbonyl-2-methyl-1-phenyl-3-(phenyl)diphenylmethyl)-but-3-amine, aziridination, [2,3]-Wittig rearrangement, 254-255
- (3S)-tert-Butyl 3-benzyl-3-[(tert-Butoxycarbonyl)(phenyl)methyl]-2-oxo-indoline-1-carboxylate, Mannich reaction, 669
- (E)1,12,2,3,3R)-1-[3-(tert-Butyl)phenylsiloxy]-4,4-dimethyl-1,2,4-trihydrofuranylidene-2-yl]-5-(trimethylsilyl)prop-2-en-1-ol, [1,2]-Wittig rearrangements, 258
- tert-Butyl ethers, Bamford-Stevens reaction, 646
- (SR)-5-tert-Butyl-1-(R)-5-hydroxy-2-methyl-2-phenylpiperazine-2-one, Schmidt reaction, 370
- (S)-1-tert-Butyl-2-hydroxy-3-[1-(4-methylphenyl)sulfonyl-1H-indole]acetamide, Passerini reaction, 781
- n-Butyllithium:
 - retro-Brook, 1,2-rearrangement, 428-430
 - [2,3]-Wittig rearrangement, 243
- (tert-Butyl)-(2S,3R)-3-(2,2,2-trichloroacetamido)pent-4-en-2-ylcarbamate, Cverman rearrangement, 223-224
- (2S)-Bis(schlinic acid, Fisher's rearrangement, 441-442
- Calicheamicinone, Mitsunobu reaction, alcohol-sulfide conversion, 720-723
- Callipeltoside A, Ireland-Chaisen rearrangement, 48
- Callystatin A, Cram's thiazolidinethione alcohols, 545-546
- Calphesatin, Mitsunobu reaction, intramolecular alcohol inversion, 682-684
- Camphors, Wagner-Meerwein rearrangement, 382-390
- Cappnellene sesquiterpene, Meyer-Schuster rearrangement, 313
- Capronycyclidine, Mitsunobu reaction, alcoholamine conversion, 705-706
- Capronycin 1B, Hofmann rearrangement, iodobenzene bis(trifluoroacetate), 187-189
- Capro lactam catalysts, Beckmann rearrangement, 279-287
- Carbamates:
 - Hofmann rearrangement:
 - bromine-alkoxide compounds, 173-175
 - iodosobenzene diacetate, 185-186
 - Mitsunobu reactions, 729
 - retro-1,4-Brook rearrangement, 432
 - [1,2]-Wittig rearrangements, tandem reactions, 211-232
- Carbamions:
 - Brook rearrangement:
 - basic principles, 406
 - silyl enol ether formation, 413-416
 - retro-Brook, 1,2-rearrangement, 430
 - [1,2]-Wittig rearrangement, 236
 - [2,3]-Wittig rearrangement, 242-243
Carbon compounds:
 Brook rearrangement, stereochemistry, 410
 skeletal rearrangement:
 Favorovskii rearrangement, 438, 440–441
 Puckel rearrangement, 310–329
Carbonitriles, Beckmann rearrangement, 285
Carbon-nitrogen migration, Curtius rearrangement:
 concertedness mechanisms, 128–130
 stereochemistry, 139–140
Carbonolide bright wing synthesis, Wolff rearrangement, 270
Carbonyl compounds, Pummer reaction, 770
Carboxylic acids:
 Favorovskii rearrangement:
 highly branched structures, 440–441
 unsaturated acids, 442–443
 Lossen rearrangements, reagent improvements, 204–205
 Mitsunobu reaction, intermolecular alcohol inversion, 683–687
Pummer reaction:
 basic principles, 765
 substrate compatibility, 769–772
Schmidt reactions:
 basic principles, 353–354
 mechanism, 354–355
Smiles rearrangement, 509
Wagner-Meerwein rearrangement, 291
Carbodiimide analogs, Hajos-Wiechert reaction, 565–567
Cardiol glycosides, Hajos-Wiechert reaction, 565
Carroll rearrangement:
 asymmetric reactions, 57
 basic principles, 51–52
 natural product synthesis, 55–56
 synthetic utility, 53–55
 variations and improvements, 52–53
R-Carbone, Demjanov and Tiffeneau-Demjanov rearrangements, 303
Cascade reactions, Bamford-Stevens reaction, 647
Cassiol, Cope rearrangements, 98
Catalytic asymmetric reactions:
 Keck allylation reaction, 595–601
 examples of, 604–610
 Mitsunobu reaction, 679
Cationic rearrangements:
 Beckmann rearrangement:
 basic principles, 274
 experimental compounds, 289
 historical perspective, 274–275
 liquid-phase reaction, 273–279
 mechanism, 275
 microwave-assisted reaction, 275–276
 oxime rearrangements, 279–287
 solvent-free reaction, 279
 synthetic utility, 287–288
 vapor-phase cyclohexanone oxime rearrangement, 276–278
Demjanov and Tiffeneau-Demjanov rearrangement:
 basic principles, 293
 experimental compounds, 303–304
 historical perspective, 293–294
 mechanism, 294–298
 selectivity, 298–301
 synthetic utility, 302–303
 variations and improvements, 301–302
Meyer-Schuster rearrangement:
 5-acetyl-6-methyl-9-(1-methylethyl) bicyclo[4.3.0]nona-2,9-diene, 316
 basic principles, 395
 historical perspective, 305–306
 mechanism, 306–307
 synthetic utility, 307–315
Pinacol rearrangement:
 aldehydes, 331
 basic principles, 319
 historical perspective, 319–320
 mechanism, 320–323
 synthetic utility, 327–331
 variations, improvements, and modifications, 323–326
Pummerer rearrangement:
 basic principles, 334
 experimental compounds, 350–351
 historical perspective, 334–335
 synthetic utility, 343–350
 variations and modifications, 335–343
Schmidt reactions:
 asymmetric ketom-hydroxyalkyl azides, 358–359
 basic principles, 353
 experimental compounds, 369–371
 historical perspective, 354
intermolecular reactions, ketones-alkyl azides, 356
intramolecular reactions:
 alcohol-alkyl azides, 360–361
 epoxide-alkyl azides, 361–362
 gold-catalyzed acetylene reaction, 362
 ketones-alkyl azides, 356–358
 olefin-alkyl azides, 359–360
 mechanism, 354–355
 photo-induced oxazolidinones, 356
 synthetic utility, 363–369
variations and improvements, 355–363
Wagner-Meerwein rearrangement:
 basic principles, 373
 classical–non-classical ion controversy, 374–375
 experimental compounds, 391–392
 historical developments, 373–375
 mechanism, 375–376
 natural interpenetrated rearrangement, 379
 palladium promotion, 378–379
 radical promotion, 377
 synthetic utility, 370–371
Cephalosporins, Hajos–Pichler reaction, 576
Ceric ammonium nitrate (CAN), Mannich reaction, 660
Cesium fluoride, [2,3]-Wittig rearrangement, 249–254
“Chair-chair” transition, Alder-Ende reaction, 13
Chair-like rearrangement, Ireland-Claisen rearrangement, 47–48
Cleavage:
 anionic oxy-Cope rearrangement, 110
 aza-Claisen rearrangement, 75–76
 Evans aldol reaction mechanisms, 534–535
 Ireland-Claisen rearrangement, ester enolate, 44–45
 Keck allylation reaction,
 enantiomotive stereoselectivity, 394
 non-chiral Lewis acids, 601–604
 [1,2]-Wittig rearrangement, 229
Chemical libraries, Ugi reaction, 794–795
Chemoselectivity, Ireland-Claisen rearrangement, 48
Chiral compounds:
 Alder-Ende reaction, regioselectivity and
 stereoselectivity, 11–13
 Curtius rearrangement, chiral amine
 asymmetry, 147–148
 Evans aldol reaction, 532–533
 alcohols, 543–544
 auxiliary removal, 550–551
 Crimmins
 oxazolidinone/hydroxazolidinone
 aldehydes, 539
 synthetic utility, 535–547
 Keck allylation reaction, phosphoramidite
 activation, 500–501
 Mannich reactions, 664
 Mitsunobu reaction:
 alcohol–amine conversion, 706–707
 tertiary alcohols, 696
 Roush allylboration, aldehyde
 allylboration, 620–626
 silicon-Cope rearrangement, 113–115
 thio-Claisen rearrangement, 82
 Ugi reaction, 788–790
 asymmetric variants, 800–801
 [2,3]-Wittig rearrangement, 250
Chlorocyclopentanated sugar, benzylic acid
 rearrangement, 400–401
Chloroformates, Curtius rearrangement, Lebel
 modification, 156–157
Cholesterol absorption inhibitor, Mitsunobu
 reaction, ether formation, 694
Chorismate mutase, Claisen and related
 rearrangements, 33–34
Chroman-3-ol synthesis, Payne rearrangement, 486
Chromone derivatives, Mitsunobu reaction,
 alcohol–sulfide conversion, 720–723
Chromium complexes:
 Alder-Ende reaction, asymmetric reactions,
 26–27
 Keck allylation reaction, salen complexes, 599
 Cinchonidoxime, Beckmann rearrangement, 286
 Citralitrione, anionic oxy-Cope rearrangement, 111
Claisen and related rearrangements:
 aliphatic and aromatic rearrangements, 35–38
 aza-Claisen rearrangement, 72–78
 Bamford-Stevens reaction and, 37–38,
 646–647
 basic principles, 33–35
Claisen and related rearrangements (continued)
 Bellus-Claisen rearrangement, 57-60
 Carroll rearrangement, 51-57
 enantioselective rearrangement, 42-43
 ester enolate and Ireland-Claisen rearrangement, 43-51
 Johnson-Claisen rearrangement, 68-72
 Meerwein-Eschenmoser Claisen rearrangement, 60-68
 Mitsunobu reaction, microwave irradiation, 678
 Reformatsky-Claisen rearrangement, 45-51
 Sauve-Claisen rearrangement, 38-43
 Thio-Claisen rearrangement, 78-82
 Classical-nonclassical ion controversy, Wagner-Meerwein rearrangement, 374-375
 (−)-Clavulonic acid, Evans aldol reaction, 543-544
 CMBP reagent, Mitsunobu reaction, 679
 CMBP reagent, Mitsunobu reaction, 679
 alcohol amine conversion, 698-719
 Collerodiol, Mitsunobu reaction, intramolecular alcohol-lactone formation, 687-688
 Combinatorial chemistry, Mannich reaction, 661
 Combretin D, Mitsunobu reaction, intramolecular alcohol-lactone formation, 689

Complex molecule synthesis:
 Curtius rearrangement, Shiotsu-Ninomiya-Yamada modification, 153-155
 Wagner-Meerwein rearrangement, 384-385
 [1,2]-Wittig rearrangements, 225-238
 [2,3]-Wittig rearrangement, 251-254

Concerted rearrangement:
 Aldol-Fine reaction:
 asymmetric reactions, 25-27
 basic principles, 2-3
 historical perspective, 3-7
 Lewis acid catalysis, 9-10, 21-22
 intermolecular aldehydes, 30-31
 mechanisms, 7-11
 regioselectivity and stereoselectivity, 11-18
 solid support catalysis, 29
 special case ensembles, 9
 synthetic utility, 28-29
 thermal Aldol-Fine reactions, 19-21
 thermally-promoted reactions, 7-9
 transition metal catalysis, 10-11, 22-25
 selectivity, 17-18
 Trost conditions, 30
 Curtius rearrangement:
 aliphatic and aromatic rearrangements, 35-38
 aza-Curtius rearrangement, 57-60
 basic principles, 33-35
 Bellus-Claisen rearrangement, 57-60
 Carroll rearrangement, 51-57
 enantioselective rearrangement, 42-43
 ester enolate and Ireland-Claisen rearrangement, 43-51
 Johnson-Claisen rearrangement, 68-72
 Meerwein-Eschenmoser Claisen rearrangement, 60-68
 Reformatsky-Claisen rearrangement, 45-51
 Sauve-Claisen rearrangement, 38-43
 Thio-Claisen rearrangement, 78-82
 Cope rearrangements:
 amino-Cope, 93, 119-120
 aromatic oxy-Cope reaction, 90-92, 105-117, 128
 aromatic Cope, 95, 126-127
 2-aza-Cope, 93-94, 126-129, 128-129
 3-aza-Cope, 94, 123-124
 basic principles, 88
 cyclopropyl-Cope, 94, 95, 124-126
 historical background, 88-89
 mechanisms, 89-90
 2-oxo-aza-Cope, 92, 117-119
 oxy-Cope reaction, 90, 101-103
 prototypical Cope, 127
 silyloxy-Cope, 103-105
 synthetic utility, 96-127
 Curtius rearrangement:
 acyl azides:
 from acid chlorides, 142-144
 from acid hydrazides, 142
 α-hydroxyl acyl azides, 146-147
 α,β-unsaturated acyl azides, 146
 amino acids, 144
 asymmetric reactions, chiral amines, 147-148
 azide nitrogen atom retention, 141
 basic principles, 136
 benzyl-N—vinyl carbamate, 161
 tert-butyl-N(2-pyridyl)carbamate, 162
 historical perspective, 136-137
 Lebel modification, 135-137
Lewis and Brønsted acid catalysis, 140-141
mechanism, 135-141
microfluidic systems, 160
photochemical induction, 159-160
polyamines, 144-145
polymer supported methods, 157-159
Shirai-Nishimya-Yamada modification, 150-155
stereochemistry, 139-140
synthetic utility, 141-148
Weinsteck conditions, 148-150
Cleb fragmentation, 453-455
Horner rearrangement:
1-aminobenzobicyclo[2.2.1]heptene, 194
2-amino-4-chloropyridine, 192
basic principles, 164
1-benzoxycarbonyl-2-oxoimidazolidine-5-
carboxylic acid, 193
N-Benzoxycarbonyl-2,3-
diaminopropanoic acid, 193
N-Boc-L-α,β-diaminopropanoic acid, 193
bromine:
alcohol and, 173-175
hydroxide and, 171-173
N-bromosuccinimide, 178-180
2,6-diacytoxy-1-1-1,6-dioxo-carbonylaminocyclohexane, 193
electrochemical method, 191-192
historical perspective, 164
[hydroxyhydroxyliden]benzene, 190-191
iodosobenzene bis(trifluoracetate), 186-189
iodosobenzene diacetate, 183-186
lead tetraacetate, 181-183
mechanism, 164-166
sodium hypochlorite, 175-178
synthetic utility, 171-192
variations and improvements, 166-171
Loosn rearrangement:
basic principles, 200
degradation, 203-204
experimental compounds, 208-209
historical perspective, 200-201
mechanism, 201-202
reagents for controlled mechanisms, 204-205
related hydroxamic acids, 202
synthetic utility, 205-208
Overman rearrangement:
basic principles, 219
experimental compounds, 222-224
historical perspective, 210-212
mechanism, 212-214
scope and limitations, 218-219
synthetic utility, 220-222
variations and improvements, 214-218
[1,2]-Wittig rearrangement:
amines and sulfides, 235
basic principles, 226
camphosorcyclicity, 234
cnoates, 231
experimental compounds, 238
historical perspective, 226-227
amine rearrangement, 234-235
mechanism, 227-228
scope and limitations, 230-231
stoichochemistry, 228-229
synthetic utility, 235-238
variations, 231-234
[2,3]-Wittig rearrangement:
aza-[1,3]-Wittig rearrangement, 254-255
basic principles, 241
historical perspective, 241
mechanism, 241-243
(3R,4R)-4-methylhept-5(E)-en-1-yn-3-ol, 254
synthetic utility, 246-254
variations, improvements, and modifications, 243-246
Wolff rearrangement:
basic principles, 257
experimental compounds, 272
historical perspective, 258
mechanism, 258
synthetic utility, 270-272
variations and improvements, 258-269
Coxia-type reactions: Alder-Ene reaction:
asymmetric reactions, 27
enophile selectivity, 14-17
gold catalyst, 9
thermally-promoted reactions, 19-21
Conjugate additions, aza-Claisen rearrangement, 77
COP-Cl complexes, Overman rearrangement, 218
Cope rearrangements:
anionic Cope, 93–119–120
anionic oxy-Cope variation, 99–102, 105–117, 128
aramic Cope, 95, 126–127
2-aza-Cope, 93–94, 120–123, 124–129
3-aza-Cope, 94, 123–124
basic principles, 88
Brook rearrangement:
eight-membered ring synthesis, 420–422
seven-membered ring synthesis, 420
Claisen rearrangement:
aliphatic and aromatic rearrangement, 35–38
microwave irradiation, 40–41
cyclopropyl-Cope, 94–95, 124–126
historical background, 88–89
mechanisms, 99–100
2-exo-mono-Cope, 92, 117–119
Grub fragmentation, 458
oxy-Cope variation, 90, 101–103
prototypical Cope, 127
siloxy-Cope, 103–105
synthetic utility, 96–127
Copper complexes:
Allder–Ene reaction, asymmetric reactions, 25–27
Hajos–Wieghert reaction, vitamin D analogs, 571–572
Mannich reaction, enamines, 659
Parham cyclization, 752
Pasterin reactions, 774
Stevens rearrangement, 521–522
(4)-Cassanderide, Cope rearrangement, 96
Crinmae alkaldoids, Meierwein–Pachmannose
Claisen rearrangement, 64–65
Crniman’s thiazolidinedione alkaldoids:
anil: aldol additions, 548
calystatin A, 545–546
Evans aldol reaction:
mechanisms, 534–535
oxazolidinedione reaction, 539
experimental compounds, 551
Crinmae, Mitsunobu reaction, intermolecular alcohol inversion, 684–685
(4)-Crispide, Mitsunobu reaction, alcohol-amine conversion, 699
(1)-Crispide, Mannich reaction, 667
Crossover experiments, croto-Crook–1,2-
rearrangement, 428–430
Crotonyl enolate aldols, Evans aldol reaction, 537
Crotlyborate reagents, Rougly allylboronation
achiral aldehydes, 616–618
α-alkoxy aldehydes, 621–622
basic principles, 615
mechanisms, 615
metal-complexed unsaturated aldehydes, 618–620
α-methyl-β-alkoxy aldehydes, 624–626
natural product synthesis, 631–634
synthetic utility, 616
Crotlystannanate, Kek allylation reaction:
diastereoselective reactions, 593–595
experimental compounds, 608–610
oxy adducts, 589–591
Crown ethers, anionic oxy-Cope rearrangement, 91–92
Cryptophycin unit A, Kek allylation reaction,
non-chiral Lewis acids, 661–662
Cubane carbon skeleton, Favorskii
rearrangement, 440–441
Curcumin, Mitsunobu reaction, carbon–carbon
bond formation, 724
Curtius rearrangement:
acyl azides:
from acid chlorides, 142–144
from acid hydrazides, 142
α-hydroxyl acyl azides, 146–147
α-unsaturated acyl azides, 146
amine acids, 144
asymmetric reactions, chiral amines, 147–148
azide nitrogen atom retention, 141
basic principles, 136
benzyl–N-vinyl carbamate, 164
tert-butyl-N-(2-pyrrolidinyl)carbamate, 162
historical perspective, 136–137
Lebel modification, 155–157
Lewis and Bronsted acid catalysis, 140–141
mechanism, 136–141
microfluidic systems, 160
photochemical induction, 159–160
di aryloxides, 144–145
diaryloxides, 144–145
polyaryloxides, 145–146
polymer-supported methods, 157–159
Schmidt reactions, 353–354
Shiroishi–Ninomiya–Yamada modification, 150–155
stereochemistry, 139–140
synthetic utility, 141–148
Weinbrenner conditions, 148–150
Cyanide, Brook rearrangement, 417–418
(1)-Cyathichin, Hajos-Wiechert reaction, 574
Cyclic mechanisms, Cope rearrangements, 89–90
Cyclization pathway:
- Helm accessed rearrangement, iodobenzene diacetate, 183–184
- Smiles rearrangement, 494–510
- [4 + 3]-Cycloaddition, cyclopropyl-Cope rearrangement, 125
Cycloalkylmethyamines, Demjanov and Tiffeneau-Demjanov rearrangements, 302
Cyclobutanes, homo-Favorskii rearrangement, 446–447
Cyclooctaspiro, Barnard-Stevens reaction, 648
Cycloheptadiones, cyclopropyl-Cope rearrangement, 126
Cycloheptanes, Demjanov and Tiffeneau-Demjanov rearrangements, 303
Cyclohexane oxime:
- Beckmann rearrangement, catalysts, 279–287
- Liquid-phase Beckmann reactions, 278–279
- Vapor-phase Beckmann rearrangement, 276–278
Cyclohexanes, Barnard-Stevens reaction, 645
1-Cyclohexyl-2-(1-hydroxy-2-methylpropylmethyl)acetamide, Passerini reaction, 783
2-Cyclohexyl-2-hydroxy-N-morpholinoacetamide, Passerini reaction, 781–782
Cyclopentanol synthesis, Brook 1,4-rearrangement, 414–424
Cyclopentanone synthesis, Brook rearrangement, five-membered rings, 419–420
Cyclophanes, Stevens rearrangement, 525–526
Cyclopropane sequential functionalization, Favorskii rearrangement, 445–446
Cyclopropyl-Cope rearrangement:
- basic principles, 94–95
- synthetic function, 124–125
- 2-Cyclopropylphenols, Parham cyclization, 755–756
Cytosinopromycin, Mitsunobu reaction, alcohol-amine conversion, 704–705
Cytosineglycosyltransferase, Passerini reactions, 778–779

Decalin:
- Chaisen rearrangements, 40
- Grob fragmentation mechanisms, 454–455
ex-Decalin, Cope rearrangements, 98–99
Dehydration methods, Mitsunobu reactions, 733
Dehydrobenzyl compounds, Wolff rearrangement, 265–266
Dehydrobenzocamphor, Tiffeneau-Demjanov rearrangement, 309
Demjanov rearrangement:
- basic principles, 293
- experimental compounds, 303–304
- historical perspective, 293–294
- mechanism, 294–298
- selectivity, 298–301
- synthetic utility, 302–303
- variations and improvements, 301–302
Demuth's reaction, [1,2]-Wittig rearrangements, 237
1-Deoxymannojirimycin analogs, Mitsunobu reaction, alcohol-amine conversion, 705–706
1-Deoxypaclitaxel, Wagner-Meerwein rearrangement, 386
Deprotonation:
- Favorskii rearrangement, 439–440
- [1,2]-Wittig rearrangement, 226
Depsipeptides, Passerini reactions, 774–779
(e)-Deoxycycloeximide synthesis, Stevens rearrangement, 527–528
Deuterobenzyloxyethyl ether, retro-Brook-1,2-rearrangement, 429–430
Diacetates, Stevens rearrangement, 523
2,6-Diacetoxy-1-tert-butoxycarbonylamino-1-cyanocyclohexane, Hofmann rearrangement, 193
Diacetoxyl indolhecacyclopene, Hofmann rearrangement, 160
DIAD analogs:
- Mitsunobu reaction, 674
tether formation, 692–698
tertiary alcohol formation, 696
Mitsunobu reactions, mild conditions, 731
1,2,5,6-Diiodohexa-1,4-diene, L-mannitol, Mitsunobu reaction, 739
Diaminoxy-Cope rearrangement, synthetic function, 115–117
Diastereoselectivity:
- Overman rearrangement, 217–218
Passerini reactions, 772–773
Diastereoselectivity (continued)
Ugi reaction, 800–801
Diazadihipentaene, Smiles rearrangement, 500
Diazirines, Smiles rearrangement, 494
Diazocalkanes, Demjanov and Tiffineau-Demjanov rearrangement:
 basic principles, 293
 mechanism, 294–298
Diazocompounds, Banford-Stevens reaction, 644
Diazoketones:
 pinacol rearrangements, 325–326
 Stevens rearrangement, 520
 Wolff rearrangement, 259, 268–269
Diazonium, Demjanov and Tiffineau-Demjanov rearrangements:
 mechanisms, 294–298
 variations and improvements, 301–302
3-Diazoniminotetrafluoroborates, Wolff rearrangement, 265
Diazonorleucinates, Wolff rearrangement, 264
Diazosulfoimidionones, Wolff rearrangement, 260
(+)-(2S,5R,2'S,3'R)-2,3'-Dibenzoyloxycarbonyloxy-1,1'-hexamethylindolinium perchlorate, 350–351
Dihalohexatriene, Hofmann rearrangement, 166–167
4,4'-Dibromoacetophenone, benzilic acid rearrangement, 400
Dibromoprophaphyllin.
 Hofmann rearrangement, iodobenzene bis(trifluoroacetate), 187–189
 Pummerer rearrangement, 338
Dichloroacetone, Ugi reaction, 315
Dichloromethylsilane, Brook 1,3-rearrangement, 423
Diels-Alder reaction:
 Alder-Edwards reaction, 2–4
 Claissen rearrangement, 41
 Grob fragmentation, 459
 Hajo-Wiechert reaction, steroid synthesis, 564, 567
 Johnson-Claissen rearrangement, 71–72
 Passerini reactions, 774
 Pummerer rearrangement, 342–343
 Schmidt reactions, 365–366
 Ugi reaction and, 791–792
Diene compounds:
 Cope rearrangement, 101
 dienonic oxy-Cope rearrangement, 115
 Dienone, homo-Favorskii rearrangement, 447
 Dichloroacetylcyclobutanone, Wolff rearrangement
 basic principles, 671
 dienone formation, 692–698
 intramolecular alcohol lactone formation, 658–691
 mechanisms, 672–673
 supported reagents, 676–677
 Diethyl chlorophosphate catalyst, Beckmann rearrangement, 286
 (3)-Digitoxinin, Hajo-Wiechert reaction, 567–568
 2a,6b-cis-Dihydro-A-cyclopenta[b]-benzofuran, Parham cyclization, 762
 Dihydrobenzo[2,3-b]1,8-naphthyridine, Smiles rearrangement, 490–491
 (S)-3,4-Dihydro-2-phenyl-2H-1-benzopyran-3-carboxaldehyde, Parham cyclization, 762
 Dihydrothiophene[2,3-b]thiophene, Parham cyclization, 761–762
(4R,5S)-Diospropyl 2-allyl-1,3,2-dioxaborolane-4,5-dicarboxylate synthesis, Roush allylboronation, 634–635
(R,R)-Diospropyl (Z)-crotylboronate preparation, Roush allylboronation, 636–637
Diospropyl tartrate (DPT): Roush allylboronation:
 basic principles, 613
 (E)-crotylboronate preparation, 635–636
 mechanisms, 614–615
 synthetic utility, 615–616
1,2-Diketones, benzilic acid rearrangement, 395–402
Dilantin, benzilic acid rearrangement, 399–400
Dimerization, Lossen rearrangement, 201
(5)-N-[2-(3,4-Dimethoxyphenyl)ethyl]-2-hydroxy-2-phenylacetamide, Passerini reaction, 782
3-(Dimethylamino)-1-phenylpropan-1-one, Mannich reaction, 668
2,6-Dimethyl-1,4-benzoquinone (DMBQ), Mitsuobu reaction, 680
1,6-Dimethyl-1,5,7-heptahydro-1,4,6,7-
tetrazocin-2,5-dione (DH110), Mitsunobu reaction, 674-675
carbon-carbon bond formation, 725
(E)-γ-(Dimethylphenylsilyl) allylboronate, Roush allylboronation, 628
(2S,3S,4R,2,4-Dimethyl-2-[(tert-butyldiphenylsilyl)oxy]hex-5-en-3-ol preparation, Roush allylboronation, 637
Dinitrobenzenesulfonamides, Mitsunobu reaction, alcohol-amine conversion, 712-716
Diols:
Groeb fragmentation, 455-456
Hajos-Wiechert reaction, 565
Mitsunobu reactions, 725-729
Payne rearrangement, 475
placcal rearrangement, 320-323
Dioxaborolane auxiliary, Roush allylboronation, 614-615
Dioxinepyridines. Smiles rearrangement, 496
Diphenyl ether, Smiles rearrangement, 496-497, 500-501
Diphenylphosphorouous chloride, Mitsunobu reaction, 679-680
Diphenylphosphoryl azide (DPPA): Curtius rearrangement: complex molecular synthesis, 153
Lebel modification, 155-157
Shirai-Nimoriya-Yamada modification, 150-155
Mitsunobu reaction, alcohol-amine conversions, 719-720
Diphenyl sulfides. Smiles rearrangement, 492-493
Dipropionates, Roush allylboronation, α-methyl-β-alkoxy aldehydes, 624-626
syn, α, α-Dipropionates, Roush allylboronation, α-methyl-β-alkoxy aldehydes, 624-626
"Directed lithiation." Parham cyclization, 751
Disodermolide, Evans aldol reaction, 533-536
syn-1,3-Dihydropyranone, retro-Brook-1,4-rearrangement, 431-432
2,3-Disubstituted tetracyclobutane rings, Payne rearrangement, 484-485
Di-tert-butyl diacetoxybutyrate (DBAD), Mitsunobu reaction, 675-676
ether formation, 695
Di-tert-butyl dicarbonate, Curtius rearrangement, Lebel modification, 155-157
Dithiane, Brook 1,5-rearrangement, 427-428
Divinylcyclopropanolate, Brook rearrangement, eight-membered ring synthesis, 420-422
ecl. Divinylcyclopropanes, cyclopropyl-Cope rearrangement, 124
DME solvent, Schmidt reaction, 369-371
(--)-Drolabullurinone, dianion oxy-Cope rearrangement, 115
Doucet-Santelli modification, Keck allylation reaction, 610
Dragnetrolin F, Neber rearrangement, 468-469
Dudley's fragmentation, 455
(--)-Dioecaminycin, Mitsunobu reactions, 734
Ethpinapen, Bamford-Stevens reaction, 649
Etirelandin 743, Ugi reaction, 799
ecl.-Effect, Alder-Ene reaction, enophile selectivity, 15-17
Electrochemical method, Hofmann rearrangement, 171, 191-192
Electrolytically, Groeb fragmentation: basic principles, 452
stepwise mechanism, 453-455
three product molecules, 456-457
Electro-withdrawing group (EWG): Alder-Ene reaction, 13
enophile selectivity, 15-16
thermally-promoted reactions, 19-21
Cope rearrangements, 88-89
β-Elimination:
Brook rearrangement, silyl enol ether formation, 412-416
Mannich reaction, 665
Enamines, Hajos-Wiechert reaction, 556-558
Enantioselective morpholines. Stevens rearrangement, 528-529
Enantioselectivity:
Bellet-Simpler rearrangement, 60
Claisen rearrangement, 42-43
ester anolates, 51
Keck allylation reactions, titanium-BINOL-catalyzed asymmetric, 595-597
Roush allylboronation, 614-615
achiral aldehydes, 617-618
[1,2]-Wittig rearrangements, 234
Subject Index

Endo-cyclization, Alder-F knowledge reaction, 29
Endo-eco reactions, Alder-F reaction, 2–3
Enkephalins, Hofmann rearrangement, iodo-sulfone bis(tributylacetic)
436–439
Enol esters:
Mannich reaction, 658
Reiss allylboronation:
α-methyl-β-alkoxy aldehydes, 624–626
natural product syntheses, 632–634
[1,2]-Wittig rearrangements, 231
Enol ethers:
Bamford-Stevens reaction, vinylcyclopropane formation, 650
Passerini reaction, 770
Enophiles, Alder-F reaction, 2–4
selectivity, 14–18
special case enophiles, 9
Enthalpic driving force, Overman rearrangement, 212–214
Epoxidine intermediates, Mitsunobu reaction, azide-based alcohol-amine conversion, 719–720
Epibatidine, Hoffmann rearrangement, lead tetraacetate, 824
Epicumorph, Curius rearrangement, α,β-
unsaturated nyl azides, 146
(2)-Epichlorohydrin, Brook 1,4-rearrangement, 425, 426
Epoxy-alkyl azides, intramolecular Schmidt reactions, 361–362
Epoxyesters:
Bamford-Stevens reaction, 651
Mitsunobu reaction, ether formation, 694–695
Mitsunobu reactions, epoxies, 728–729
Payne rearrangement mechanisms, 474–475
variations and improvements, 475–483
pinacol rearrangement, 323–324
retro-1,2-Brook rearrangement, 433, 434
Wagner-Meerwein rearrangement, 377
Epoxy alcohols, Payne rearrangement: basic principles, 474
experimental compounds, 486–487
mechanisms, 474–475
variations and improvements, 476–483
Epoxy amines, Payne rearrangement, 483–484
(+)-Camphorrolide A, Evans aldol reaction, 545
Eschenmoser hydrzones, Bamford-Stevens reaction, 646
Eschenmoser’s salt, Mannich reaction, 655–656
Eschenmoser-Tandoh fragmentation, variations, 455
Ester compounds, Favoriski rearrangement, 450
Ester endolate:
Ireland-Claisen rearrangement, 45–51
[2,3]-Wittig rearrangement, 252
Ester reduction, Brook rearrangement, 422
Estradiol, Hajes-Wickeht reaction, 564–565
Estrenol, Hajes-Wickeht reaction, 562
Ethiers, Mitsunobu reaction, 691–698
Ethoxy-2-cyclohexen-1-one, Beckmann rearrangement, 281–282
Ethynyl vinyl esters (EVE), Pummerer rearrangement, 340–341
Ethylidene, Nebel rearrangement, 471
(5S,7aR,10R, 10aR)-10-Ethyllocihydrone-3,4,7-trihydro-1,4(1H,5H)-dione, Schmidt reaction, 370
Eupraxstatin A, Passerini reactions, 777–778
Evans aldol reaction:
acetate aldehyde equivalents, 538–539
α-alkoxyacetate aldehyde reactions, 537–538
anti aldols, 552
basic principles, 532
boron aldol reaction, 549–550
chiral auxiliary removal, 550–551
Crimmins oxazolidinethione and thiazolidinethione aldol reaction, 539
Crimmins procedure, 551
crotonyl enolate aldol reactions, 537
experimental compounds, 548–552
haloacetyl aldol reactions, 538
historical perspective, 533
mechanisms, 533–535
natural products, 539–547
“non-Evans’” syn aldols, 551–552
(8S)-3-(1-oxoethyl)-4-(phenylmethyl)-2-
oxazolidinone, 548–549
propanate aldol reactions, 537
reaction types and synthetic utility, 515–547
variations and improvements, 547–548
Evans’ oxazolidinone methodology, Hofmann rearrangement, iodo-sulfone bis(tributylacetic), 188–189
Factor XII inhibitors, Passerini reactions, 777
Favoriski rearrangement:
basic principles, 438
carboxylic acid branching, 440-441
cyclopropane formation, 445-446
cysteine experimental compounds, 450
historical perspective, 439
homo-Favorskii reaction, 446-447
mechanisms, 439-440
natural products, 441-442
photo-Favorskii rearrangement, 449-450
quasi-Favorskii reaction, 448-449
steroids, 443-444
synthetic utility, 440-446
tribhaloketones, 444-445
unsaturated carboxylic acids, 442-443
Felkin adducts, Roush allylbromination, α-methylpyrrolyl aldehydes, 263-266
Felkin-Abn control
Brook rearrangement, silyl enol ether formation, 413-416
Roush allylbromination, chiral aldehydes, 620-626
Penchelenes, Wagner-Meerwein rearrangement, 389-390
Pentyl carboration, Wagner-Meerwein rearrangement, 382
Fleming-Tamao oxidation, Roush allylbromination, 626-628
Fluorinated dialkyl azodicarboxylate (Rauhut-Cink), Mitsunobu reaction, 674-675, 677-678
Fluorine-based reagents, Mannich reactions, 662
Fujino β-amino acids, Wolff rearrangement, 271
Formic acid, Meyer-Schuster rearrangement, 305
Funiclor, Mitsunobu reaction, alcohol-sulfide conversion, 722-723
FR 1901463, 2-aza-Cope rearrangement, 122
Friedel-Crafts reaction, Wagner-Meerwein rearrangement, 305
Frontier molecular orbital analysis, Ireland-Chaisen rearrangement, 46, 47
Fukuyama-Mitsunobu variant, alcohol-amine conversion, 712, 713
Fullerene derivatives, Curtius rearrangement, 143-144
Furanomycin, Ugi reaction, 795-796
Furanyl heterocycle, Curtius rearrangement, Weinstock variant, 149
Furofuran rings, Evans aldol reaction, 542
Eutrotic[3,4b]indole, Pummerer rearrangement, 347
Furanopyrimidine, Pummerer cyclization, 755-756
2-Furylhydrazine, Alder-Ene reaction, thermally-promoted reactions, 29-21
Fused carbocyclic skeletons, Wolff-Cope rearrangement, 266
Fused cyclic systems, Domjanov and Tiffeneau-Domjanov rearrangements, 297-298
Coprecipitate, Schmidt reaction, 369
Genomic, [2,3]-Wittig rearrangement, 346
Germane alcohols, Grob fragmentation, 469
Gibberellin acid, Cope rearrangements, 99
cro-Glycosides, Hamford-Stevens reaction, 646
Glycerol, benzoic acid rearrangement, 397-398
Glycosyl ether derivatives, [1,2]-Wittig rearrangements, 233
Glycopeptides, Passerini reactions, 779
Glycosides, [1,2]-Wittig rearrangements, 236
Glycosyl sulfides, Mitsunobu reaction, alcohol-sulfide conversion, 723
Glyoxylates, Pummerer rearrangement, 349-350
GobR antagonist, Mitsunobu reaction, alcohol-amine conversion, 714-715
Gold catalysts:
Alder-Ene reaction, Conto-type reactions, 9
aza-Chaisen rearrangement, 74
Chaisen rearrangements, 38
Mannich reaction, 659-660
Meyer-Schuster rearrangement, 314-315
Schmidt reactions, 362-363
Wolff rearrangement, 261-262
Green chemistry conditions, Mannich reaction, 660
Grignard reagents, Mannich reactions, 662
Grob fragmentation:
basic principles, 452
bicyclic fragmentation, 6- to 8-membered rings, 458-459
bicyclic fragmentation, 9-membered rings, 459-461
historical perspective, 452-453
mechanisms, 453-455
methyl 2,3,4-tri bromo-5 hydroxy-6-propylbenzoate, 441
Grob fragmentation (continued)
monocyclic fragments, 457-458
(2αR*,4αR*,8a,2a,3,4,5,6,8,9-nonalueto4-
(methoxymethoxy)cyclotetra-
[αβ]pentadec-7(10)-ene, 462
synthetic utility, 456-461
three-product molecules, 456-457
variations and improvements, 455-456
Guaiacol derivative. Claisen rearrangement, 411-412
Guadacines. Mitsunouh reaction, alcohol-amine conversion, 717-718
Hagiwara-Lida procedure, Hajos-Wiechert reaction, 573-574
Hajos-Parrish reaction:
estrone, 562
Hajos-Wiechert reaction:
cardenolide analogs, 565
(+)-eythritol, 574
natural product synthesis, 576-577
Hajos-Wiechert reaction:
- basic principles, 554-555
- experience, 577-580
- historical perspective, 555-556
- mechanism, 556-558
- total synthesis applications, 561-577
- variations, 556-561
Halochloroines, Beckmann rearrangement, 288
Haloacetyl aldehyde reactions, Evans aldol reaction, 538
Halo aldol reaction, Evans aldol reaction, 547-548
Halogeneration. Mitsunouh reaction, 726
Halogen-lithium exchange, Parham cyclization:
- basic principles, 349
- experimental compounds, 761-762
- historical perspective, 349-350
- mechanisms, 750-751
- synthetic utility, 753-756
- variations and improvements, 751-753
Halogen-magnesium exchange, Parham cyclization, 751-752
(-)-Halosamine. Mitsunouh reaction, alcohol-amine conversion, 707-708
Hamnett studies. Brook rearrangement, kinetic analysis, 408-409
(4)-Halosabamine. anionic oxy-Cope rearrangement, 105
HCV protease inhibitors:
- Mitsunouh reaction, 684-685
- Passerini reactions, 776-777
Heathcock procedure, Evans aldol reactions, 551-552
Heck reaction, Hajos-Wiechert reaction, 564-566
Heterocyclic compounds:
- Lassen rearrangement, degradation, 203-204
- Mannich reaction, 658-659
- asymmetric variations, 667-668
- Norter rearrangement, 469-470
- Passerini reactions, 779-780
- thio-Claisen rearrangement, 79-82
- Ugi reaction, 793-794
- natural products, 796-799
1,5-Hexadiene, Grob fragmentation, 452-453
Hexonamide, Wolff rearrangement, 267-269
Highest occupied molecular orbital (HOMO):
- Alder-Ene reaction, 3
- [2,3,3-Witt rearrangement, mechanisms, 242-243
Hippocastaine, Bamford-Stevens reaction, 648
Histamine H3 receptor antagonist, Meyer-Schuster rearrangement, 306-309
HIV-1 reverse transcriptase inhibitor, Bamford-Stevens reaction, 643
Hofmann rearrangement:
- 1-aminobenzocyclo[2.2.1]heptene, 194
- 2-aminobenzocyclo[2.2.1]heptene, 192
- basic principles, 164
- 1-benzylxycarbonyl-2-oxoimidazolidine-5-carboxylic acid, 193
- N,N-Dibenzyxycarbonyl-L-2,3-diaminopropanoic acid, 193
- N,N-Boc-L-α,β-diaminopropionic acid, 193
- Breuine:
- alkoxide and, 173-175
- hydroxide and, 171-173
- N-bromosuccinimide, 178-180
- 2,6-disecetoxy-1-[(carbonyl)amino]-1-cyclohexene, 193
- electrochemical method, 191-192
- historical perspective, 164
- [hydroxy(tetrafluorobenzene)]benzene, 190-191
- iodosobenzene bis(trifluoroacetate), 186-189
iodosobenzene diacetate, 183–186
lead tetraacetate, 181–183
mechanism, 164–166
sodium hypochlorite, 175–178
synthetic utility, 171–192
variations and improvements, 166–171
Holton synthesis, Wagner-Meerwein rearrangement, 386–387
Homoallylic alcohols:
Keck allylation reaction:
 basic principles, 583–584
 non-chiral Lewis acids, 603–604
[2,3]-Wittig rearrangement, 241
synthetic function, 250–254
Homo-Brook rearrangements, variations, 422–434
Homo-enameolate equivalents, Brook rearrangement, 418–419
Homo-Pavorski rearrangement:
 historical perspective, 459
 variations, 446–447
Homolysis/radical recombination, [1,2]-Wittig rearrangement, 227–228
Homo-Peterson process, Brook 1,4-rearrangement, 426
Homophenylalanine, Neben rearrangement, 470–471
Homoproline analog, Hajos-Wiechert reaction, 558
Homosteroids, Wagner-Meerwein rearrangement, 386
Horner-Wadsworth-Emmons reaction, Hajos-Wiechert reaction, vitamin D derivatives, 570
Hydrazines, Mitsunobu reactions, 730
Hydrazine acid:
 Passerini reaction, 770–771
 Schmidt reactions:
 basic principles, 353–354
 variations, 355–363
Hydrazones, Mitsunobu reaction, other formation, 695
Hydrogen species, Mannich reaction, 657–658
Hydroxamic acids, [1,2]-Wittig rearrangements, 237–238
Hydroxyamino acids:
 Hofmann rearrangement, 165–166
 Lossen rearrangement:
 mechanism, 201–202
 variations and improvements, 202
Hydroxide, Hofmann rearrangement, bromine and, 171–173
α-Hydroxyacyl azides, Curtius rearrangement, 146
Hydroxyalkyl azides, Schmidl reaction of ketones, 358–359
α-Hydroxyamides, Passerini reaction, 765
α-Hydroxy carboxylic acids, benzoic acid rearrangement, 395
Hydroxycycloalkylmethylamines, Demjanov and Tiffeneau-Demjanov rearrangements, 302
Hydroxy epoxides, semipinacol rearrangements, 328–334
N-(2-Hydroxyethyl)-thiourea, Mitsunobu reaction, 736–737
N-Acyloylhydrazides:
 Lossen rearrangement:
 degradation, 203–204
 historical perspective, 201
 Lossen rearrangements, reagent improvements, 204–205
Hydroxylamines, Mitsunobu reaction, alcohol-amine conversion, 716–717
Hydroxyl ketones, Stevens rearrangement, 525
Hydroxyphenylstatin, pinacol rearrangement, 327
β-Hydroxyphenylalanine derivatives, [1,2]-Wittig rearrangements, 237
Hydroxyproline derivatives, Hajos-Wiechert reaction, 558–561
(1-Hydroxy-2-propenyl)trimethylsilane, retro-Brook-1,2-rearrangement, 435
Hydroxypropiolines, Payne rearrangement, spiro- and fused synthesis, 484
α-Hydroxysilanes, Brook rearrangement, basic principles, 407–408
[Hydroxy(oxyl)-heteroannulene, Hofmann rearrangement, 170–171, 190–191
(S)-(-)-Hygrimic acid, Hajos-Wiechert reaction, 558
Ikarugamycin, Roush allyliboration, 628–630
Imidazoles, Mitsunobu reaction, alcohol-amine conversion, 717–718
Imidazopyridine derivative, Mitsunobu reaction, 697–698
Imides, Mitsunobu reaction, alcohol-amine conversion, 700–701
Imidoyl chloride, Passerini reactions, 773–774
Imines:
 Mannich reaction, 635–656
 Ugi reaction, mechanisms, 787–790
Imminium ion:
 2-aza-Cope rearrangement, 120–121
 Mannich reactions, 662
 semipinacol rearrangements, 330–331
Imminium salts, Mannich reaction, 656
Imine [1,2]-Wittig rearrangements, 234–235
Immonium chlorides, Nebel rearrangement, 466
Immonoketenes, aza-Claisen rearrangement, 76
Indane, Parham cyclization, 756
Indium catalysis, Alder-Ene reaction, 22
Indol-2-ones, Ugi reaction, 792
Indoles:
 Mitsunobu reaction, alcohol-amine conversion, 698–699
 Parham cyclization, 756
 Pummerer rearrangement, 345–346
Indolizine formation, Wolff rearrangement, 265
Insect pheromones, Meyer-Schuster and Rupe rearrangements, 311–312
Intermolecular reactions:
 Alder-Ene reaction, aldehyde Lewis acid catalyst, 30–31
 Brook 1,5-rearrangement, 427–428
 Keck allylation reaction, transition states, 590–591
 Mitsunobu reaction:
 alcohol inversion, 680–687
 other formation, 697
 Parham cyclization, 754–755
 retro-1,4-Brook rearrangement, 432
 Schmidt reactions, alkyl azides, 356
Intramolecular reactions:
 Alder-Ene reaction:
 ionic liquids, 23–25
 regioselectivity and stereochemistry, 11–14
 azaene oxy-Cope rearrangement, 106
 benzoic acid rearrangement, 396
 Brook rearrangement:
 cyanide inhibition, 417–418
 retro-1,4-Brook rearrangement, 432
 Cope rearrangement, 97
 Cope rearrangements, 89–90
 cyclopropyl-Cope rearrangement, 125
 Favorskii rearrangement, 438–440
 Hajos-Wiechert reaction:
 steroid skeletons, 564
 variations, 558–561
 Keck allylation reaction, transition states, 590–591
 Mitsunobu reaction:
 alcohol-amine conversion, 698–719
 alcohol-lactone formation, 687–691
 other formation, 697–698
 Pummerer rearrangement, 348
 Schmidt reactions:
 alcohol-alkyl azide reaction, 360–361
 alkyl azide-ketone reactions, 356–357
 azidoketenes, 366
 epoxide-alkyl azide reactions, 361–362
 gold-catalyzed acetylenic reaction, 362–363
 olefin-alkyl azides, 359–360
 Smirnov alkaloid stenine, 365–369
 Smiles rearrangement:
 basic principles, 489
 mechanisms, 490
 pyrroloquinolines, 501
 variations and improvements, 490–510
 [1,2]-Wittig rearrangement, scope and limitations, 250–251
Inverse electron demand, Alder-Ene reaction, 21
Inversion, Brook rearrangement, carbon stereochemistry, 410
Iodosobenzene bistrifluoroacetate, Hofmann rearrangement, 169, 186
Iodosobenzene compounds, Hofmann rearrangement, 168–169
Iodosobenzene diazirine, Hofmann rearrangement, 169, 183–186
Ionic liquids:
 Alder-Ene reaction, 23–25
 Beckmann rearrangement, cyclohexanone oxime, 279–287
 Mannich reaction, 461
Ionic pathways, Nebel rearrangement, 465–466
Ireland-Claisen rearrangement:
 basic principles, 43–45
 natural product synthesis, 47–50
 synthetic utility, 45–47
Irindium complexes:
 Alder-Ene reaction, 22–25
 Claisen rearrangements, aliphatic and aromatic rearrangements, 37
 Iron complexes, Alder-Ene reaction, 23–25
 (+)-Iso-o-cassine, Overman rearrangement, 222
isocyanates:
 Curtius rearrangement:
 photochemical induction, 159–160
 polymer supports, 158–159
 Lossen rearrangement, 200–202
 Mitsuobu reactions, 729–730
isocyanides, Ugi reaction, 788–790
 isocyanide intermediates, Passerini reaction, 767
 isodindolin-1-ones, Parham cyclization, 757
isocarboxylics, Passerini reaction, 765
 substrate compatibility, 769–772
isopropanol additive, Keck alkylation reaction, 591–592
 (R)-6-isopropyl-3-methyl-cyclohexene-2-ene, Demjanov and Tiffeneau-Demjanov rearrangements, 303–304
 (P)-6-isopropyl-3-methyl-cyclohexene-2-ene, Demjanov and Tiffeneau-Demjanov rearrangements, 303–304
isocyanolines, Parham cyclization, 758–759
Isotope effects. Hofmann rearrangement, 165–166

Japp-Klingemann reaction, Smiles rearrangement, 498–499
Jarothy reaction, antipodal oxy-Cope rearrangement, 111
Jeffrey modification, Hofmann rearrangement, 165–166
Johnson-Claisen rearrangement:
 basic principles, 68–69
 synthetic utility, 69–72
Julia-Kocienski olefination, Mitsuobu reaction, alcohol-sulfone conversion, 722–723

Kappa opioid receptor agonists, Mitsuobu reaction, 737
Keck alkylation reaction:
 additives, 591–593
 asymmetric catalysts, 604–606
 basic principles, 583–584
 BINOL/titanium complexes, 595–597
 catalytic reactions, 595
 chiral phosphoramidite silicon-tetrachloride activation, 600–601
 chromium-salen complexes, 599
 crotylstannaneallylstannane preparations, 608–610
 crotylstannane diastereoselectivity, 593–595
Donnet-Santelli toluene solvent modification, 610
 historical perspective, 584–585
 mechanisms, 585–591
 non-chiral Lewis acids, 601–604
 PyBox/PheBox systems, 600
 silver complexes, 598–599
 synthetic utility, 601–608
 zirconium binaphthol complexes, 597–598
Ketals, Passerini reaction, 770
Ketones:
 Grub fragmentation, 460
 Wolff rearrangement:
 basic principles, 257
 mechanisms, 258
 variations, 258–269
 α-Ketosides, Passerini reactions, 774–779
Ketones:
 Beckmann rearrangement:
 carboxylate formation, 285
 hydroxylamine catalysis, 281
 microwave irradiation, 276
 solvent-free Beckmann rearrangement, 279
 Brook rearrangement:
 five-membered ring synthesis, 419–420
 heteroalcohol equivalents, 418–419
 seven-membered ring synthesis, 420
 silyl enol ether formation, 415
 Grub fragmentation, mechanisms, 453–455
 homo-Favorskii rearrangement, 446–447
 Neber rearrangement:
 α-aminoketone, 472
 basic principles, 464
 heterocyclic compounds, 470
 Passerini reaction, basic principles, 765–767
Schmidt reactions:
 alkyl azide reactions:
 intermolecular reactions, 356
 intramolecular ketone-alkyl azide reactions, 356–357
 asymmetric hydroxyalkyl azides, 358–359
 synthetic utility, 365–369
 semipinacol rearrangements, 327–331
 [3,3]-Wittig rearrangement, 250
 Wolff rearrangement, 262
 Ketopinic acid, benzylic acid rearrangement, 402–403
Kinetic isotope effect (KIE):
 Alder-Ene reaction, 9
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic isotope effect (KIE) (continued)</td>
</tr>
<tr>
<td>retro-Brook-1,2-rearrangement, 429-430</td>
</tr>
<tr>
<td>Kinetic reactions, Brook rearrangement, 406-409</td>
</tr>
<tr>
<td>Kishner reduction, Alder-Ene reaction, thermally-promoted reactions, 20-21</td>
</tr>
<tr>
<td>KW-2189, Wagner-Meerwein rearrangement, 387-388</td>
</tr>
<tr>
<td>Lactams:</td>
</tr>
<tr>
<td>Mannich reaction, 650</td>
</tr>
<tr>
<td>Ugi reaction, 797-798</td>
</tr>
<tr>
<td>Lactones:</td>
</tr>
<tr>
<td>cyclopropyl-Cope rearrangement, 125</td>
</tr>
<tr>
<td>Mitsunobu reaction, intramolecular alcohol-lactone formation, 687-691</td>
</tr>
<tr>
<td>Lamivudine, Pummerer rearrangement, 344-345</td>
</tr>
<tr>
<td>Lactonolysis, Meyer-Schuster rearrangement, 310-311</td>
</tr>
<tr>
<td>Lasalocid A:</td>
</tr>
<tr>
<td>Evans aldol reaction, 545</td>
</tr>
<tr>
<td>Incland-Claissen rearrangement, 47</td>
</tr>
<tr>
<td>Lasiol, siloxy-Cope rearrangement, 103-104</td>
</tr>
<tr>
<td>Laseronolide A, 2-oxo vinyl-Cope rearrangement, 118</td>
</tr>
<tr>
<td>(+)-Lasubine, Roush allylation, 630-631</td>
</tr>
<tr>
<td>Laurodactin catalyst, Beckmann rearrangement, 282</td>
</tr>
<tr>
<td>Lead tetraacetate, Hofmann rearrangement, 167-168, 181-183</td>
</tr>
<tr>
<td>“Lenz motion” principle, Demjanov and Diefenb-Demjanov rearrangements, 301</td>
</tr>
<tr>
<td>Lebel modification, Curtius rearrangement, 155-157</td>
</tr>
<tr>
<td>(+)-Leucaenandrolide A, Mitsunobu reaction, intramolecular alcohol-lactone formation, 689</td>
</tr>
<tr>
<td>Levofloxacin, Mitsunobu reaction, halogenation reactions, 726</td>
</tr>
<tr>
<td>Lewis acid catalysts:</td>
</tr>
<tr>
<td>Alder-Ene reaction, 13</td>
</tr>
<tr>
<td>“chain-chain” transition, 13</td>
</tr>
<tr>
<td>historical perspective, 5-7</td>
</tr>
<tr>
<td>intermolecular aldehyde reaction, 30-31</td>
</tr>
<tr>
<td>transition metal promoters, 4-10</td>
</tr>
<tr>
<td>variations, 21-22</td>
</tr>
<tr>
<td>azo-Claissen rearrangement, 73-77</td>
</tr>
<tr>
<td>Beckmann rearrangement, 286-287</td>
</tr>
<tr>
<td>Bellus-Claissen rearrangement, 59-60</td>
</tr>
<tr>
<td>Curtius rearrangement, 140-141</td>
</tr>
<tr>
<td>ester enolate-Claissen rearrangement, 51</td>
</tr>
<tr>
<td>Evans aldol reaction, mechanisms, 534-535</td>
</tr>
<tr>
<td>Kekul allylation reaction, 586-588</td>
</tr>
<tr>
<td>chelation-stereoselectivity, 595</td>
</tr>
<tr>
<td>non-chiral Lewis acids, 601-604</td>
</tr>
<tr>
<td>phosphonamide activation, 606-601</td>
</tr>
<tr>
<td>Passerini reaction, 768-771</td>
</tr>
<tr>
<td>semipinacol rearrangements, 328-331</td>
</tr>
<tr>
<td>Ugi reaction, mechanisms, 787-790</td>
</tr>
<tr>
<td>“Linchpin coupling,” Brook 1,4-rearrangement, 425-427</td>
</tr>
<tr>
<td>S-Lipoxygenase inhibitor (CML-977), Mitsunobu reaction, alcohol-amine conversion, 716</td>
</tr>
<tr>
<td>Liquid-phase Beckmann rearrangement, 278-279</td>
</tr>
<tr>
<td>Lithium cation, retro-Brook reactions, 411</td>
</tr>
<tr>
<td>Lithium salts, Bamford-Stevens reaction, 645</td>
</tr>
<tr>
<td>Lithium t-butoxide, benzoic acid rearrangement, 401-402</td>
</tr>
<tr>
<td>Lithium thiophenoxide, Brook rearrangement, silyl and ether formation, 415</td>
</tr>
<tr>
<td>Lithium diisopropylamide (LDA), [2,3]-Wittig rearrangement, 246-254</td>
</tr>
<tr>
<td>Longipine derivative skeletons, Wagner-Meerwein rearrangement, 588-589</td>
</tr>
<tr>
<td>Loracerol, Mitsunobu reaction, alcohol-amine conversion, 710</td>
</tr>
<tr>
<td>Lassen rearrangement:</td>
</tr>
<tr>
<td>basic principles, 200</td>
</tr>
<tr>
<td>degradation, 203-204</td>
</tr>
<tr>
<td>experimental compounds, 208-209</td>
</tr>
<tr>
<td>historical perspective, 200-201</td>
</tr>
<tr>
<td>mechanism, 291-202</td>
</tr>
<tr>
<td>reagents for controlled mechanisms, 204-205</td>
</tr>
<tr>
<td>related hydroxamic acids, 202</td>
</tr>
<tr>
<td>synthetic utility, 205-208</td>
</tr>
<tr>
<td>Lowest unoccupied molecular orbital (LUMO):</td>
</tr>
<tr>
<td>Alder-Ene reaction, 3</td>
</tr>
<tr>
<td>Lewis acid catalysts, 21-22</td>
</tr>
<tr>
<td>[2,3]-Wittig rearrangement, mechanisms, 242-243</td>
</tr>
<tr>
<td>[2,3]-Lindencin, oxa-Cope rearrangement, 102-103</td>
</tr>
<tr>
<td>Lysagge acid, Neber rearrangement, 467-469</td>
</tr>
<tr>
<td>Macrocycles:</td>
</tr>
<tr>
<td>Grob fragmentation, 460</td>
</tr>
</tbody>
</table>
Mitsunobu reaction:
 intermolecular alcohol inversion, 687
 intramolecular alcohol-lactone formation, 688–691
Macroalactones, Mitsunobu reaction, intramolecular alcohol inversion, 687
Macroal_domains, Mitsunobu reaction, intramolecular alcohol-lactone formation, 689
Macrolides:
 Evans aldol reaction, 546–547
 Roush allylboronation, 632–634
Magnus intermediate, Mitsunobu reaction, alcohol-sulfide conversion, 720–723
Malayamycin A, Mitsunobu reaction, 697–698
Malonates, Mitsunobu reaction, carbon-carbon bond formation, 725
Manuch reaction:
 2-aza-Cope rearrangement, 121
 basic principles, 653
 (3S)-s-carbocyclic 3-benzyl-3-[(trans-
 butylcarboxyl)methyl]phenoxy) methyl-2-oxo-
 indoline-1-carboxylate, 659
 3-(dimethylamino)-1-phenylprop-1-one, 668
Hajos-Wiechert reaction, 553–556
 historical perspective, 653
 mechanisms, 653–654
 synthetic utility, 664–668
 variations, improvements, and modifications, 654–664
Merk's staunton, Koch alkylolation reaction, non-chiral Lewis acids, 602–603
Matrix photolysis, Wolff rearrangement, 259
Medicinal chemistry:
 Hajos-Wiechert reaction, basic principles, 554–555
 Mitsunobu reaction, alcohol-amine conversion, 704–705
 Neber rearrangement, 469
Mercer-Emmons-Claisen rearrangement:
 basic principles, 60–61
 natural products, 64–67
 synthetic utility, 63–64
 variations and improvements, 62–63
Mercer-Princent-Verye reaction, Broek rearrangement, silphenone ether formation, 416
(1R,2S,5R)-5-Methyl-2-(1-
 methylethyl)cycloheptyl-4-nitrobenzoate, Mitsunobu reaction, 733
2-Methyl-2-(3-oxobutyl)-1,3-cyclohexanedione, Hajos-Wiechert reaction, 570–580
(7aS,7aR)-Methyl-2,3,7,7a-tetrahydro-7a-methyl-
 1H-indene-1,5-(6H)-dione, Hajos-
 Wiechert reaction, 577–579
Meyers allene synthesis, Mitsunobu reaction, 727–732
Meyer–Schuster rearrangement:
 2-acetyl-6-methyl-9,10-(1-methyl-
 ethyl)bicyclo[4.3.0]nona-2,9-diene, 316
 basic principles, 205
 historical perspective, 305–306
Meyer-Schuster rearrangement (continued)
m mechaninsm, 306-307
synthetic utility, 307-318
Michael addition:
S-state-Cope rearrangement, 123-124
Hijos-Wieschert reaction, 554-555
Parham cyclization, 759-760
Schmidt reactions, 364
Michael-Aldol pathway, Hijos-Wieschert reaction, 560-561
Microfluidic systems, Curtius rearrangement, 160
Microwave irradiation:
 Beckmann rearrangement, 275-276
 benzylic acid rearrangement, 399-400
 Claisen rearrangements, 49
 Mannich reaction, 659-661, 664
 Mitsunobu reaction, 678
Mitsunobu reaction:
 basic principles, 671
 experimental compounds, 737-739
 mechanism, 672
 standard methods, variations, and improvements, 672-680
 alternative activating agents, 679-680
 azadicarboxylates, 673-675
 catalytic reactions, 679
 fluorous DEAD/TPP, 677-678
 microwave-promoted reactions, 678
 phosphine reagents, 675-676
 supported TPY/DEAD compounds, 676-677
 synthetic utility, 680-697
 alcohol-amine conversion, 698-719
 alcohol-sulfide conversion, 720-723
 allene synthesis, 727-728
 antitumor reactions, 725-727
 azide-based alcohol-amine conversion, 719-720
 carbonates and carbamates, 729
 carbon-carbon bond formation, 723-725
dehydration, 733
 diox reaction, 738-739
 ether formation, 691-698
 halogenation, 726
 hydrazines, 730
 intermolecular alcohol inversion, 680-687
 intramolecular lactone formation, alcohol inversion, 687-694
 isocyanates, 729-730
 neighboring-group participation, 733-735
 phosphonate esters, 731-732
 pyridinium ion reactions, 732-733
 tetrazole synthesis, 730-731
 TPP:DIAD base, 631
 Monocyclic fragments, Grob fragmentation, 457-458
 Monohydroxides, Wolff rearrangement, 266-267
 Monta-Baylis-Hillman reactions
 Brook rearrangements, 423-424
 Evans aldol reaction, 547-548
 Morphyne-6-glucuronide, Mitsunobu reaction, 709
 Morpholines:
 Mitsunobu reaction, intramolecular alcohol-lactone formation, 689
 Stevens rearrangement, 528-529
 Ugi reaction, 793
 Motopozin, Ugi reaction, 797
 Mukaiyama-Michael cascade, 2-oxonia-Cope rearrangement, 118-119
 Mukaiyama reaction, 2-aza-Cope rearrangement, 121
 Multicomponent reaction (MCR), Ugi reaction, 786-787
 Mucaidamone A, Keck alkylation reaction, non-chiral Lewis acids, 642
 Mycexstirium A, Overman rearrangement, 220
 Myriaporones, Evans aldol reaction, 541
 Naphthols, Grob fragmentation, 458-459
 Naphthyl groups, Stevens rearrangement, 520
 Natural products:
 anionic oxy-Cope rearrangement, 105-117
 Barnford-Stevens reaction, 648-650
 Carroll rearrangement, 55-56
 Claisen rearrangements, aliphatic and aromatic compounds, 38
 Cope rearrangement, 101
 Curtius rearrangement:
 Shinoh-Ninomiya-Yamada modification, 154-155
 Weinfein variant, 149-150
 Evans-aldol reaction, 539-547
 Favoskii rearrangement, 441-442
 Hapao-Wieschert reaction, 576-577
 Ireland-Claisen rearrangement, 47-50
Keck allylation reaction, silver catalysts, 667–668
Mitsunobu reaction, alcohol-amine conversion, 717–718
intramolecular alcohol inversion, 682–684
intramolecular alcohol-lactone formation, 690–691
Nebert rearrangement, 467–469
Pummerer rearrangement, 343–350
Rough allylation:
α-methyl-β-alkoxy aldehydes, 622–626
structure-activity-relationship studies, 628–634
Thio-Claissen rearrangement, 79–82
Ugi reaction, 795–799
Wagner-Meerwein rearrangement, 379
[1,2]-Wittig rearrangements, 237–238
Nazarov electrocyclization, Schmidt reaction, 368–369
Nebert rearrangement:
α-amino acids, 470–471
α-ammonoketones, 472
2-imidazoline formation, 472, 471–472
basic principles, 484
heterocyclic chemistry, 469–470
historical perspective, 464–465
mechanism, 465–466
medical chemistry, 469
natural product synthesis, 467–469
oxime replacements, 466
synthetic utility, 467–471
Neighboring-group participation, Mitsunobu reactions, 733–735
Nelfinavir® HIV protease inhibitor, Mitsunobu reaction, intramolecular alcohol-lactone formation, 688
Nickel catalysts, Grob fragmentations, 455–456
Nicotine, Schmidt reaction, 368–369
Nitric acid, vapor-phase Beckmann rearrangement, 277
Nitro compounds, Smiles rearrangement, 493
Nitrophen, Ugi reaction, 792
4-Nitrobenzenamine, Lossen rearrangements, 208
5-Nitrobenzo[c]indol-2(1H)-one, Lossen rearrangements, 208–209
Nitrochalcones, Meyer-Schlüter rearrangement, 309
Nitrogen compounds:
Carbonyl rearrangement, 141
concentrated mechanisms, 138–141
Mitsunobu reaction, alcohol-amine conversion, 704–705, 717–718
neighboring-group participation, 735
Stevens rearrangement, 517
Nitrosophenacylamides, Mitsunobu reaction, alcohol-amine conversion, 712
Nocardin A, Ugi reaction, 796–798
Novamucine, Repe reaction, 312
Nonactin, Evans aldol reaction, 542
“non-Evans” syn aldol products:
Crimmin’s
oxazolidinethione/thiazolidinethione alcohols, 539
mesoaldehydes, 540–547
Evans aldol reaction, mechanisms, 534–535
Heathcock procedure, 551–552
Norborane derivative, quasi-Favorskii rearrangement, 448–449
Norbornadiene-fused pyrazoles, Wagner-Meerwein rearrangement, 381–382
Norcamphor, Tiffeneau-Demjanov rearrangement, 306
Nor-C-statine, Hofmann rearrangement, lead tetraacetate, 181–182
Ω-Norgestrel, Hajos-Wiechert reaction, 561
Norstatines, Passerini reactions, 776
Norsteroids, benzylic acid rearrangement, 403
(+)-19-Nor testosterone, Hajos-Wiechert reaction, 563
Nucleofugae:
Grob fragmentations, 455–456
basic principles, 452
stepwise mechanism, 453–455
three component molecules, 456–457
Smiles rearrangement, 503–504
Nucleophilic mechanism, Pummerer cyclization, 750–751
Nucleoside derivatives, Mitsunobu reaction, alcohol-amine conversion, 718–719
Subject Index

(2aR,4S*,4aR)-2,2a,3,4,5,6,8,9-Octahydro-4-
(methylsulfonyl)cyclonon-1(2H)-one, Grob
fragmentation, 462
Olefinic, Wagner-Meerwein rearrangement,
380
Olefins:
Mitsunobu reaction, intermolecular alcohol
inversion, 681–682
Schmidt reactions, intramolecular olefin-alkyl
azide reactions, 359–360
Omulovide, Ugi reaction, 798
ONO-2668 neutrophil elastase inhibitor, 1-oxen
rearrangements, 206–207
Ophiobolin metabolites, Wagner-Meerwein
rearrangement, 387
(1'R)-Opronetone, Wolff rearrangement, 270
Organocatalysis, Mannich reactions, 664
Organolithium species:
Brook rearrangement, silyl enol ether
formation, 415–416
[1,2]-Wittig rearrangement, scope and
limitations, 220–221
Overman rearrangement:
basic principles, 210
experimental compounds, 222–224
historical perspective, 210–212
mechanism, 212–214
scope and limitations, 218–219
synthetic utility, 220–222
variations and improvements, 214–218
Oxa-bicycloacetal, Demjanov and Tiffeneau-
Demjanov rearrangements, 301
Oxaza-Claissen rearrangement, pyrrole derivative,
36–37
1,4-Oxazin-2-one, Stevens rearrangement, 525
Oxazolines, Mitsunobu reaction, alcohol-amine
conversion, 799–810
Oxidesqualene, Wagner-Meerwein
rearrangement, 379
2,3-Oxidesqualene cyclase, lanosterol synthase
(OSC), Meyer-Schuster rearrangement,
311–312
Oxidesqualene cyclase (OSC), Grob
fragmentation, 458
Oximes:
Beckmann rearrangement:
basic principles, 274
experimental compounds, 289
historical perspective, 274–275
liquid-phase Beckmann reactions, 278–279
mechanism, 275
microwave-assisted reactions, 275–276
solvent-free Beckmann rearrangement, 279
synthetic utility, 287–288
vapor-phase cyclohexanone reaction,
276–278
Hajos-Wertheim reaction, steroid synthesis,
565–566
Neber rearrangement:
α-amino acids, 471
mechanisms, 465–466
natural products, 467–469
replacements, 466
tosyloximes, 464–465
2-Oxonia-Cope rearrangement:
basic principles, 92
Grob fragmentation, 458
synthetic functions, 117–119
Oxonium ions, semipinacol rearrangements,
236–331
(5S)-3-(1-Oxopropyl)-4-(phenylmethyl)-2-
oxazolidinone, Evans aldol reaction,
548–549
Oxy-Cope rearrangement:
basic principles, 90
synthetic functions, 101–103
[1,2]-Wittig rearrangements, tandem
reactions, 232
Pactamycin, Overman rearrangement, 220
Palladium complexes:
anionic oxy-Cope rearrangement, 112
Cope rearrangement, 108–109
Grob fragmentation, 455–456
Mannich reaction, 665
Overman rearrangement, 213, 214–218
Wagner-Meerwein rearrangement, 378–379
Pallavicin, Grob fragmentation, 457
(±)-Palomal, diatomic oxy-Cope
rearrangement, 115
Pectinesterases alkaloids, Pictet cyclization,
760
Panek's selective crotylsilane allylation, Roush
allylation, 631
Pantocan B antibiotic, Hofmann rearrangement,
iodobenzene bistrifluoroacetate,
187–189
Subject Index

Para-nitrobenzoic acid (PNBA), Mitsunobu reaction, intermolecular alcohol inversion, 681–687

Parlhim cyclization:
- basic principles, 349
- experimental compounds, 761–762
- historical perspective, 349–350
- mechanisms, 750–751
- synthetic utility, 753–754
- variations and improvements, 751–753

Parikh–Doering conditions, Smiles rearrangement, 509

Pauson reaction:
- basic principles, 765
- N-(tert-buty-1)-benzoxoxy-3-chloro-2-chloromethylpropanamide, 782–783
- (S)-(−)-N-(tert-buty-1)-hydroxy-3-(1-(4-methylphenyl)sulfonyl)-1H-indole-2-carboxamide, 781
- classical mechanisms, 766–768
- 1-cyclohexyl-5-(1-hydroxy-2-methylpropyl)tetrazole, 783
- 2-cyclohexyl-2-hydroxy-N-(2-morpholinoethyl)tetrazole, 781–782
depsipeptides, α-ketoamides, and β-amino-α-hydroxyamides, 774–779
- (S)-N-[2-(3,4-dimethoxyphenyl)ethyl]-N-2-hydroxy-2-phenylacetamide, 782
- glycopeptides, 779
- heterocycles, 779–780
- historical perspective, 765–786
- Lewis acid-promoted reaction, 768–769
- stereoselectivity, 772–774
- asymmetric reactions, 773–774
- diasteroselective reactions, 772–773
- substrate compatibility, 769–772
- acid components, 770–772
- carbonyl surrogates, 770

Payne rearrangement:
- basic principles, 474
- (+)-exo-breviscarin, 486
- chroman-3-ol, 486
- 2,3-disubstituted tetrahydronaphthalene rings, 484–485
- epoxy amines, 483–484
- experimental compounds, 486–487
- historical perspective, 474
- mechanism, 474–475
- peptidomimetics, 485
- spiro- and fused-hydroxypyrrolidines, 484
- synthetic utility, 483–486
- variations, 475–483

Pederin, Curtius rearrangement, Shioiri-Ninomiya-Yamada modification, 152
Penicillin G potassium, Curtius rearrangement, Shioiri-Ninomiya-Yamada modification, 150–155
Penicillone, Alder-ene reaction, 13
Peptide assays:
- Hofmann rearrangement, iodobenzene bis(trifluoracetate), 186–189
- Lossen rearrangements, 205–208
Peptide bonds, Ugi reaction, basic principles, 786
Peptidomimetics:
- Mitsunobu reaction, intermolecular alcohol inversion, 683–684
- Pauson reactions, 776–779
- Payne rearrangement, 485
- Wolff rearrangement, 262–263
- Perhydrobenzoxazine, Alder-ene reaction, 13
- (R)-Perilla alcohol, [2,3]-Wittig rearrangement, 251
- Petasis reaction, Mannich reactions and, 664
- Peterson elimination, Roush allylation, 626–628
- Peterson olefination, Brook 1,3-rearrangement, 423–424
- Pharmacologically active compounds, Smiles rearrangement, 513
- Phase-transfer catalysis (PTC):
 - Bamford-Stevens reaction, 644
 - benzoic acid rearrangement, 398
 - Curtius rearrangement, acyl azides from acid chlorides, 142–143
 - PheBox Lewis acids, Knoe allylation reaction, 600
 - Phenol-Pauson–Smiles rearrangement, 507–508
- Phenols:
 - Mitsunobu reaction, 691–692
 - Ugi–Smiles coupling reaction, 507
- Phentothiazines, Smiles rearrangement, 495, 510
- Phenylalanine, Hajos-Wiener reaction, 559–561
- total synthesis applications, 562–577
- Phenylcyclohexyl ketones, Demjanov and Tiffeneau-Demjanov rearrangements, 298
C8-2-Phenylethylpropylamine, Curtius rearrangement, Weimstok variant, 148–150
(2S)-2-Phenylpropionylhydroxamic acid, Lossen rearrangements, 207
1-Phenyl-1H-1,2,3-triazol-5-yl (PT) sulfonfyl amions. Brook rearrangement, silyl enol ether formation, 413–414
2-Phenylthieno[3,2-c]quinoline-4(5H)one, Beckmann rearrangement, 280
Phomoidride B, Meerwein-Eschenmoser Claissen rearrangement, 66
Phomoidride family, silyloxy-Cope rearrangement, 104–105
Phorbol, Evans aldol reaction, 540
Phosphine reagents, Mitsunobu reaction, 675–676
Phosphonate esters, Mitsunobu reactions, 731–732
Phosphoramides, Koch allylation reaction, 600–601
Phosphoramidite, Mitsunobu reaction, 736
Photochemical reactions:
 Cuirtius rearrangement, 159–160
 Meyer-Schuster rearrangement, 309
 Wolff rearrangement, 258–259
Photo-Favorskii rearrangement, 449–450
Photo-induced Schmidt reaction, α-azidohydrins, 256
Photolysis, Wolff rearrangement, 259–260
Phthalimide:
 Hofmann rearrangement, 168–169
 Mitsunobu reaction, alcohol-amine conversion, 699–703, 710
Pictet-Spengler cyclization, Smiles rearrangement, 509
Pimcol rearrangement:
 aldehydes, 331
 basic principles, 319
 historical perspective, 319–320
 mechanism, 320–321
 synthetic utility, 327–331
 variations, improvements, and modifications, 323–326
α-Pinane, Alder-Ene reaction, 8–9
(+)-Pimavasin A, Ireland-Claissen rearrangement, 50
π-cation cyclization, Brook rearrangement, silyl enol ether formation, 412–416
Piperazic acid derivative, Mitsunobu reaction, alcohol-amine conversion, 768
Piperidine analog, Hago-Wiehert reaction, 558
(+)-Piroxetin, Evans aldol reaction, 540–541
Platelet glycoprotein antagonist, Hofmann rearrangement, indenosobenzene dicarboxylate, 184–185
Polyamines, Curtius rearrangement, 144–145
Polycyclic systems, Grob fragmentations, 456–461
Polyhalogenated phenols, Grob fragmentation, 458–459
Polyketide natural products, Roush allylation, 631–632
Polymer compounds, Curtius rearrangement, 157–159
Polyporphosphoric acid trimethylsilyl ester (TPSE):
 Meyer-Schuster rearrangement, 307–308
 Pummerer rearrangement, 337–338
Polyporpionate natural products, Roush allylation, α-methyl-β-allyloxy aldehydes, 622–626
Polyquinolines, anionic oxy-Cope rearrangement, 113
Poranethene, Mannich reaction, 665
Post-Passerini transfer, synthetic applications, 777–778
Potassium carbonate, Overman rearrangement, variations and improvements, 216–218
Potassium hydroxide, Hofmann rearrangement, 1-A-bromoacetanilide and, 179–180
Powder procedure, Curtius rearrangement, 152–155
(+)-Propocalladiene, anionic oxy-Cope rearrangement, 112
Precondensation mechanism, Ugi reaction, 803
Pregnane derivatives, Demjanov and Tiffeneau-Demjanov rearrangements, 302–303
Prelog-Djerassi lactone, Carroll rearrangement, 53–55
Premarin derivatives, Mitsunobu reaction, intermolecular alcohol inversion, 683–684
Prephamate, Claissen and related rearrangements, 53–54
Pretzschring, Mitsunobu reaction, intermolecular alcohol inversion, 684–685
Prius cyclization, Grob fragmentation, 458
Prins/saccharimol rearrangements, 331
Progesterone receptor antagonists, Mitsuobu reaction, alcohol-amine conversion, 707–708
Proline derivatives, Mitsuobu reaction, alcohol-amine conversion, 707–708
Proline methyl ester, Hajos-Wiehert reaction, 558
Propargylic alcohols.
Meyer-Schuster rearrangement, 306–307
n-circ-Brook-1,3-rearrangement, 430–433
Propionamide, Smiles rearrangement, 506
Propionate aldols, Evans aldol reaction, 6537
Pyrotypical Cope rearrangement, 127
Pseudelaric acid A, Pummerer rearrangement, 347–348
Pseudoepinephrine 2,5-furanocyclic ring system, [2,3]-Wittig rearrangement, 254
Pseudoephedrine, Mitsuobu reaction, 697–698
Pummerer rearrangement:
basic principles, 334
experimental compounds, 350–351
historical perspective, 334–335
synthetic utility, 345–350
variations and modifications, 335–343
PyBox Lewis acids:
Keck allylation reaction, 600
Passantini reactions, 774
Pyrac, Keck allylation reaction, 605–606
Pyridine lactone, Piancatelli cyclization, 762
Pyridinium ion reactions, Mitsuobu reactions, 732–733
Pyridones, Mitsuobu reaction, 733–736
Pyridylketene, Wolf rearrangement, 260–261
Pyroglutamic acid, Grob fragmentation, 459–460
Pyroline derivatives, Meerwein-Bischenroder Claisen rearrangement, 68
Pyridazines, aza-Pyridine rearrangement, 482–483
Pyridine derivatives. Egl reactions, 791–792
Pyroglutamates, Smiles rearrangement, 502–503
Pyroloquinoline, Smiles rearrangement, 501–502
Pyruvaldehyde, benzylidene acid rearrangement, 507–508
Quasi-Favorskii rearrangement, 448–449
Quaternary carbon centers:
3-aza-Cope rearrangement, 124
Claisen rearrangement, 39
Keck allylation reaction, non-clausal Lewis acids, 562
Quaternary salts, Stevens rearrangement, 526–527
Quenching mechanisms, Overman rearrangement, 222–223
Quinolines:
Mitsuobu reaction, 735
Smiles rearrangement, 491
Quinolizidines, Stevens rearrangement, 522
Quinoxalines, Stevens rearrangement, 523–524
2-Quinuclidinonium tetrafluoroborate, Schmidt reaction, 371
Radical mechanisms:
photo-Favorskii rearrangement, 450
Smiles rearrangement, 505
Wagner-Meerwein rearrangement, 397
[1,2]-Wittig rearrangement, 222–223
scope and limitations, 230–231
RAMPSAMP hydrazone chiral auxiliary, Carroll rearrangement, 57
Reagent compounds, Lossen rearrangements, 204–205
Rebecchamycin analogs, Mitsuobu reaction, alcohol-amine conversion, 669
(5,5)-Rehovotine, Mitsuobu reaction, alcohol-amine conversion, 711
Reformatsky-Claisen rearrangement, synthetic utility, 45–47
Regioselectivity:
Alder-Frey reaction, 11–18
Mitsuobu reaction, alcohol-amine conversion, 711–712
Pike reaction, 477
Pummerer rearrangement, 345–346
Schmidt reactions:
intramolecular olefin-alkyl azide reactions, 360
unsubstituted tetralone, 384
Repinotan receptor antagonist, Mitsuobu reaction, other formation, 690
Retinoic acid, Meyer-Schuster rearrangement, 315–316
Retro-Brook directionality:
Brook rearrangement:
retro-1,2-rearrangement, 428–430
Retrosynthetic directionality (continued)
(1-hydroxy-2-propenyl)trimethylsilane, 435
retro-1,3-rearrangement, 436-437
retro-1,4-rearrangement, 431-432
retro-1,5-rearrangement, 433
retro-1,6-rearrangement, 432-434
Brook rearrangement vs., 411
Reverse aromatic-Cope rearrangement, 127
Reversible anionic oxy-Cope rearrangement, 106-107
Rhodium catalysts:
Alde-Ene reaction, 23-25
asymmetric reactions, 26-27
aza-Chaiahen rearrangement, 74-77
Barstow-Stevens reaction, 644-650
Claisen rearrangements, aliphatic and aromatic rearrangements, 37
Cope rearrangement, 101
Ireland-Claisen rearrangement, 47
Keck allylation reaction, PhMe2Si Lewis acids, 600
Stevens rearrangement, 518-527
thio-Claisen rearrangement, 80-82
Wolff rearrangement, 260, 267
Ring synthesis:
anionic oxy-Cope rearrangement, 111
aza-Payne rearrangement, 478-483
Brook rearrangement:
eight-membered ring synthesis, 420-422
five-membered rings, 419-420
seven-membered ring synthesis, 420
Claisen rearrangement, 39
Cope rearrangement, 97-98
Grub fragmentation:
6- to 8-membered rings, 458-459
9-membered rings, 459-460
Hajos-Wiechert reaction, 560-561
CD ring system, 573-574
Ireland-Claisen rearrangement, 49-50
Mitsunobu reaction, intermolecular alcohol inversion, 686-687
Parham cyclization, 759-760
Pummerer rearrangement, 348-349
Robinson annulation, Hajos-Wiechert reaction, 558-561
Robinson's biomimetic synthesis, Mannich reaction, 655
Refellerstatin I, Pummerer rearrangement, 343-344
Roush allylation reaction:
achiral aldehyde reactions, 616-618
o-alkoxy aldehydes, 621-622
basic principles, 613
ciral aldehydes, 620-622
(R)(S)-diisopropyl 2-allyl-1,3,2-
dioxaborolane-4,5-dicarboxylate
synthesis, 634-635
(R,R)-diisopropyl (Z)-crotylboronate
preparation, 630-637
(R,R)-diisopropyl tetrat (E)-crotylboronate
preparation, 635-636
(2S,35,4R)-2,4-dimethyl-2-[(tert-
butyldiphenylsilyloxy)-methyl]-6-oxo-5-en-3-one
preparation, 637
historical perspective, 613-614
mechanisms, 614-615
metal-complexed unsaturated aldehydes, 618-620
o-methyl-β-alkoxy aldehydes, 622-626
natural product synthesis, 628-634
structure-activity-relationship studies, 628-624
synthetic utility, 615-626
variations, 626-628
Rupf reaction:
3-acetyl-6-methyl-4(1-methyl-
ethyl)pyrrolybicyclo[4.3.0]nona-2,6-diene, 516
basic principles, 305
historical perspective, 305-306
mechanism, 306-307
synthetic utility, 307-315
Rupf rearrangement, Meyer-Schuster
rearrangement and, 305
Ruthenium complexes, Alder-Ene reaction, 22-23
synthetic utility, 28-29
Trost conditions, 30
Salen complexes, Keck allylation reaction, chromium-salen complexes, 599
Salicylaldehydes, Mitsunobu reaction, ether formation, 695
Salicylaldehydes, Beckmann rearrangement, 282
Salicylaldehydes, Mitsunobu reaction, intermolecular alcohol inversion, 686
Samarium iodide, [2,3]-Wittig rearrangement, 248
Subject Index

(−)-Salin A, Mitsunobu reaction, azide-based alcohol-amine conversion, 719–720
Sauzy-Claisen rearrangement, basic principles, 38–41
Scale-up efforts, Lossen rearrangements, 205–208
Schaumann process, Brook 1,4-rearrangement, 425
Schmidt reactions:
 asymmetric ketone-hydroxyalkyl azides, 358–359
 basic principles, 353
 experimental compounds, 369–371
 historical perspective, 354
 intermolecular reactions, ketones-alkyl azides, 356
 intramolecular reactions:
 alcohol-alkyl azides, 360–361
 epoxide-alkyl azides, 361–362
 gold-catalyzed acetylenic reaction, 362–363
 ketones-alkyl azides, 356–360
 olefin-alkyl azides, 359–360
 mechanism, 354–355
 photo-induced α-hydroxydrines, 356
 synthetic utility, 363–369
 variations and improvements, 355–363
Selectivity, Demjanov and Dibene-Demjanov rearrangements, 298–301
Selenium, seminacol rearrangements, 326
Selenoxide, Pummerer rearrangement, 343
Semi-benzylc mechanism, quasi-Favorskii rearrangement, 448–449
Seminacol rearrangements:
 mechanisms, 324–327
 Schmidt reactions, 367–368
 synthetic utility, 327–331
Serine derivatives, Mitsunobu reaction:
 alcohol-sulfide conversion, 720–723
 intramolecular alcohol inversion, 681–682
 intramolecular alcohol-lactone formation, 687–691
Shapiro reaction, Bamford-Stevens reaction and, 642, 645
Shilolocht, oxy-Cope rearrangement, 102–103
(+)-Shinzui lactone, benzilic acid rearrangement, 403
Shiuri-Ninomiya-Yamada modification, Curtius rearrangement, 150–155
polymer compounds, 157–159
(−)-Sibirine, Pummerer rearrangement, 346
(−)-Sigmatropic process, Meyer-Schuster rearrangement, 369
[1,3]-Sigmatropic process:
 anionic oxy-Cope rearrangement, 90–92
 Cope rearrangements, 89–90
 tetrahydroazocinones, 88
 Johnson-Claisen rearrangement, 70–72
 Overman rearrangement, scope and limitation, 219–220
Sigmatropic reactions:
 Stevens rearrangement, 522–527
 [2,3]-Wittig rearrangement, 241–243
 [2,2]-Sila-Wittig rearrangement, 245–246
 Silanes, retro-1,5-Brook rearrangement, 433
Silica-supported supported Beckmann rearrangement, microwave irradiation, 276
Silicon, Brook rearrangement and
catalyst chemistry of, 409
Silicon chloride catalysts, Passerini reactions, 773–774
Silicon-lithium exchange, [2,3]-Wittig rearrangement, 251
Siloxo-Cope rearrangement, synthetic functions, 103–105
Silver catalysts:
 Curtius rearrangement, Lebel modification, 156–157
 Heck alkylation reaction, 598–599
 natural product synthesis, 567–568
 (E)-γ-(Silyl) allyl boronates, Roush allylation, 626
 Silylcarbnoils, Brook rearrangement, 408–409
 1-Silyloxychloroalkane, Brook rearrangement, 423–424
 Silyl dihalomethyl lithiums, Brook 1,4-rearrangement, 424–427
Silyl enol ether formation:
 Brook rearrangement, 412–416
 Mannich reaction, 658
Silyl group transfers, Brook rearrangement, 422–434
Silylketenes, Wolff rearrangement, 250
γ-Silylketone, retro-1,5-Brook rearrangement, 433
Silyloxy epoxides, Payne rearrangement, 476
Single-electron transfer (SET), Parham cyclization, 750
Skew effect, Alder-ene reaction, enophile selectivity, 17
Smiles rearrangement:
- antiinflammatory agent analogs, 510–511
- antimicrobial agents, 512
- basic principles, 489–490
- benzoquinoneipryidine, 511
- experimental compounds, 513
- mechanism, 490
- pharmacologically active compounds, 513
- spiro-pyrrolidines, 511
- synthetic utility, 510–513
- variations and improvements, 496–510
Sodium bromide, Hofmann rearrangement, 166
Sodium ethanolate, Brook rearrangement, eight-membered ring synthesis, 421–422
Sodium hypochlorite, Hofmann rearrangement, 175–178
Sodium methoxide, Hofmann rearrangement, N-bromosuccinimide and, 179–180
Solid base reactions, 324
Solid support catalysts, Alder-ene reaction, 29
Solvent effects:
- Alder-ene reaction, thermally-promoted reactions, 21
- Brook, 1,4-rearrangement, 425–427
- Curtius rearrangement, 138–141
- Solvent-free Beckmann rearrangement, 279
- Sommeyer-Hauser rearrangement, Stevens rearrangement, 518
- sp3 carbons, Curtius rearrangement, 139–140
- Sparteine chiral ligands, [2,3]-Wittig rearrangement, 243
- (+)-Sparteine, Beckmann rearrangement, 287–288
Spectinomycin analogs, Mannich reaction, 658
Spirostreptolides, Mitsunobu reaction, carbon–carbon bond formation, 724–725
Spirocyclic amino acids, Mitsunobu reaction, alcohol–amine conversion, 705–706
Spirocyclic aminochroman derivative, Mitsunobu reaction, 697–698
Spirocyclic oxindole derivatives, Pummerer rearrangement, 338
Spiro-pyrrolidines:
- aza-Payne rearrangement, 482–483
- Smiles rearrangement, 511
trans-Squalene, Johnson-Claisen rearrangement, 69–72
Stang’s reagent, Pummerer rearrangement, 338
Stannanes, Keck allylation reaction:
- asymmetric catalysts, 604–610
- basic principles, 583–584
- crotylstannanes/allylstannane experimental compounds, 608–610
- mechanisms, 585–591
- non-chiral Lewis acids, 601–604
- nucleophilicity, 588–589
- α-Stannylethyl, [1,2]-Wittig rearrangement, 228–229
Staudinger-aza-Wittig/Ugi three-component (SAWU-3CR), polyhydroxylated proline analogs, 791–792
Steglich-Keck conditions, Favorskii rearrangement, 442
Stemona alkaloid stamine, Schmidt reactions, 365–369
Stepwise mechanism:
- Grob fragmentation, 453–455
- Wolff rearrangement, 258
Stereochemistry:
- Brook rearrangement:
 - carbon, 410
 - silicon, 409
- Curtius rearrangement, migrating carbon, 139–140
- Grob fragmentation, mechanisms, 454–455
- Keck allylation reaction, transition states, 589–591
- pinacol rearrangements, 327–331
- Roush allylboration, 614–615
- Ugi reaction, natural product synthesis, 796–799
- Wagner-Meerwein rearrangement, 383–384
- [1,2]-Wittig rearrangement, 228–229
Steroselectivity:
- Alder-ene reaction, 11–18
- Keck allylation reaction, crotylstannanes, 593–595
- Lossen rearrangements, 205–208
- Mitsunobu reaction, alcohol–amine conversion, 711–712
- Passerini reactions, 712–714
- pinacol rearrangements, 322–323
- Roush allylboration, chiral aldehydes, 620–626
- thin-Clausen rearrangement, 80–81
- Ugi reaction, 789–790
asymmetric variants, 800–801
Wagner-Meerwein rearrangement, 381
[2,3]-Wittig rearrangement, 242–243
Stoichiometric effects:
- Alder-Claisen reaction, 2–3
- enophile selectivity, 15–16
- transition metal catalysts, 17–18
Demjanov and Tiffeneau-Demjanov rearrangements, 297–298
Mitsunobu reaction, intermolecular alcohol inversion, 681–687
Wagner-Meerwein rearrangement, 685
[2,3]-Wittig rearrangement, 244–245
Steroids:
- Favorskii rearrangement, 443–444
- Hajos-Wiechert reaction:
 - basic principles, 554–555
 - total synthesis applications, 561–577
 - variations, 559–561
- Mitsunobu reaction:
 - carbon–carbon bond formation, 723–724
 - intermolecular alcohol inversion, 683–684
Stevens rearrangement:
- basic principles, 516
- (+)-desoxycorticosterone synthesis, 527–528
- antipodal morpholine synthesis, 528–529
- historical perspective, 517
- mechanism, 517
- synthetic utility, 527–529
- variations and improvements, 517–527
Stille-Heck coupling reaction, Hajos-Wiechert reaction, 564
Stille reaction, Mitsunobu reaction, intermolecular alcohol inversion, 687
Stannic relief: Cope rearrangement, 97
Strecker reaction, Mannich reactions and, 664
Structure-activity-relationship studies: Roush allylation, 628–634
Strychnine, 2-aza-Cope rearrangement, 122
(−)-Strychnine, Mannich reaction, 666
Substrate compatibility, Passerini reaction, 769–772
Sulfoanil, Mitsunobu reaction, microwave irradiation, 678
Sulfhydryl derivatives, Mitsunobu reaction, 736–737
Sulfides:
- Mitsunobu reaction, alcohol-sulfide conversion, 720–723
- Pummerer rearrangement:
 - glyoxalates, 349–350
 - safety-catch linkers, 349
- Smiles rearrangement, 506–507
- Stevens rearrangement:
 - basic principles, 516
 - variations and improvements, 518–527
- [1,2]-Wittig rearrangements, 234
- Sulfones, Wolff rearrangement, 261
- Sulfoxyl chloride, Payne rearrangement, 477–478
- Sulfonamides: benzoic, Mitsunobu reaction, 679
- Sulfonamides, Mitsunobu reaction, alcoholamine conversion, 701–702, 704–705, 712–713
- Sulfones, Mitsunobu reaction, carbon–carbon bond formation, 725
- Sulfonamides, Brook rearrangement, silyl enol ether formation, 413–414
- Sulfoxides, Pummerer rearrangement:
 - basic principles, 334
 - mechanism, 335–336
 - variations and modifications, 336–343
- Sulfur complexes, thio-Claisen rearrangement, 78, 82
- Sulfur-ylides, Bamford-Stevens reaction, 647
- epoxide synthesis from aldehydes, 651
- Superstilbene, anionic oxy-Cope rearrangement, 109
- Swern oxidation, Wolff rearrangement, 262
- Tamifu, Curius rearrangement, acyl azid reaction, 143
- Tandem reactions:
 - azza-Cope-Vannich reaction sequence, 666
 - Bamford-Stevens reaction and Claisen rearrangement, 644–647
 - Brook rearrangement, eight-membered ring synthesis, 421–422
 - Evans aldol reaction, 547–548
 - Pummerer rearrangement, 341–343
 - Schmidt reactions, 365–369
 - semipinacol rearrangements, 328–331
 - Schmidt reactions with, 367–368
 - Smiles rearrangement, Japp-Klingemann reaction, 498–499
 - Ugi reaction, 790–792
- [1,2]-Wittig rearrangements, 231–234
- Wolff-Cope rearrangement, 266
Taxane diterpenoids:
- Cope rearrangement, 96–97
- Wagner-Meerwein rearrangement, 386–387

Taxane skeleton, [1.2]-Wittig rearrangements, 236

Taxol A/B ring system, Meyer-Schuster rearrangement, 310–311

Taxol C-ring system, Evans aldol reaction, 540
- (-)-Taxol, anionic oxy-Cope rearrangement, 105–106

Terpenoids:
- Hajos-Wiechert reaction, 574–577
- Tiffeneau-Demjanov rearrangements, 303

Terphenyl diaceto ketone, Wolff rearrangement, 268

2,4,4,6-tetramethoxy-2,5-cyclohexadiene, Mitsunobu reaction, 679

Terahydopyran
- [1.2]-Cope rearrangement, 120
- [2.3]-Wittig rearrangement, 253

Terahydropyrromethene, 2-oxa-Cope rearrangement, 118–119

Terahydropyryl methyl sulfate, Grob fragmentation, 457–458

Tetranine, Parham cyclization, 749

N,N,N',V'-tetramethylazodicarboxamide (TMAD), Mitsunobu reaction, 674–675

Tetrazoles, alcohol-amine conversion, 698–719

Tetrazole syntheses:
- Mitsunobu reactions, 730–731
- Passerini reaction, 770–771
- Ugi reaction, 793–794

Tetralinvin A, oxy-Cope rearrangement, 103

Thermally-promoted reactions, Alder-Ene reaction, 7, 9, 19–21

experimental compounds, 30

Thiazolines, Mitsunobu reaction, alcohol-amine conversion, 709

Thiiranium intermediates, Pummerer rearrangement, 336–343

1,2-Thio-Cope rearrangement, 235

Thio-Claissen rearrangement:
- asymmetric reactions, 81–82
- basic principles, 78–79
- synthetic utility, 79–81

Thionine compounds, Stevens rearrangement, 517–518

Thiouracil derivatives, Mitsunobu reaction, 678

microwave irradiation, 456

Thiopiperidine derivatives, Alder-Ene reaction, 21

Three product molecules, Grob fragmentation, 456–457

Thromboxane B2, Meerwein-Eschenmoser Claisen rearrangement, 65

Through-space pinacol rearrangements, 324

Thymidine synthesis inhibitors, Lossen rearrangements, 205–208

Tiffeneau-Demjanov rearrangement:
- basic principles, 293
- experimental compounds, 302–304
- historical perspective, 293–294
- mechanism, 294–295
- selectivity, 298–301

Tetrahedrane, 325

Tetrahedrane, synthetic utility, 302–303

variations and improvements, 301–302

Titanium-Binol catalysts:
- Alder-Ene reaction, asymmetric reactions, 25–27

Tetraallylation reaction:
- additives, 592–593
- asymmetric reactions, 595–597

mechanisms, 584–591

Titanium-chloride catalysts, Passerini reaction, 768–771

Toluene:
- Keck allylation reaction, Dowcoat-Santelli modification, 610

Wolff rearrangement, 269

Topopyrone inhibitors, Parham cyclization, 760

Tosylates,aza-Peayre rearrangement, 480–481

Tosyl hydrazones, Barnford-Stevens reaction:
- basic principles, 642
- natural product synthesis, 649–656
- synthetic utility, 645–650
- variations, 643–644

Tosylamine, Wolff rearrangement, 269

N-Tosylamines, pinacol rearrangement, 324

Tosylamines, Nebert rearrangement, 464–465

Trans-divinylcyclopropanes, cyclopropyl-Cope rearrangement, 95

Transition metal catalysts:
- Alder-Ene reaction:
 - historical perspective, 6–7
 - mechanisms, 10–11
 - selectivity, 17–18
- Grob fragmentations, 455–456
Mannich reactions, 665
Overman rearrangement, 212
Roush allylboronation, unsaturated aldehydes, 618-620
semipinacol rearrangements, 325-327, 326
Transition state (TS)
Alder-ene reaction, 7-9
Keck allylation reaction, stereochemistry, 589-591
Parham cyclization, 750-751
[2,3]-Wittig rearrangement, 244-245

Transmetalation
Brook rearrangement
retro-Brook-1,4-rearrangement, 431-432
silyl and ether formation, 414
Keck allylation reaction, 587
[2,3]-Wittig rearrangement, 247-254
"Trapped out" compounds, Bamford-Stevens reaction, 644, 647
Triaxofunctiones (TAD), Alder-ene reaction, enophile selectivity, 15-17
synthetic utility, 28-29
Tributylphosphine (TBP), Misunobu reaction, 674
reagent properties, 675-676
tributylstannyl azide, Curtius rearrangement, 143-144
Trichloroacetimidic esters, Overman rearrangement
mechanisms, 210-214
scope and limitation, 219-220
synthetic utility, 220-222
variations and improvements, 214-218
2,2,2-Trichloro-N-(18,68)-6(39,2-2-dimethyl-1,3-dioxolan-4-yl)-4-ethyl-1-
vinylenecyclohex-3-enylacetamide, Overman rearrangement, 223
2,2,2-Trichloro-3,7-dimethylocta-1,6-dien-3-
ylacetamide, Overman rearrangement, 222-223
2,2,2-Trichloro-N-(trans-2-cyanoacetamide, Overman rearrangement, 222
2,2,2-Trichloro-N-(1,6-dien-3-
yl)acetamide, Overman rearrangement, 224-225
1,5,2,2,2-Trichloro-N-(1-isobutylallyl)acetamide, Overman rearrangement, 224
Tricyclic amides, Beckmann rearrangement, 294-285
Trietary pyrones, Misunobu reaction, alcohol-amine conversion, 708-709
Triethylamine, Misunobu reaction, ether formation, 692-693
Triethyl methanetricarbonylate, Misunobu reaction, carbon–carbon bond formation, 724-725
Trifluoroacetate anion, Pummerer rearrangement, 339
Trifluoroacetic acid, Beckmann rearrangement, 284
Trifluoroborane, Keck allylation reaction, 585-586
crotylstannane stereoselectivity, 593-594
Trifluoromethane sulfonic acid, Lossen rearrangement, 202
Trifluoromethylated organic compounds, Evans aldol reaction, 548
Trihaloketones, Favorskii rearrangement, 444-445
Trimethylsilylimide, Curtius rearrangement, 142-143
2-(Trimethylsilyl)ethoxycarbonyl (Teoc) amines, Curtius rearrangement, Shiotani-Ninomiya-Yamada modification, 152-155
2-(Trimethylsilyl)ethyl-sulfonic (SES) boc amine, Misunobu reaction, alcohol-amine conversion, 702-703
Triphenylphosphine (TPP)
Misunobu reaction, 675-676
ether formation, 692-693
fluoros reagent, 677-678
supported reagents, 675-677
Misunobu reactions, mild conditions, 731
Triquinanes, Hajor-Weechert reaction, 574-575
Tris(2,4,6-trimethoxyphenyl)phosphate (TPP) catalyst, Brook 1,3-
rearrangement, 423-424
Tris(trimethylsilyl)methyl lithium, Brook 1,4-
rearrangement, 426
Triunsubstituted carbons, Overman rearrangement, 222
Triterpenoids, Wagner-Meerwein rearrangement, 379-380
Tropane alkaloids, Grieb fragmentation, 457
Tropinone, Mannich reaction, 655
Truce-Soles rearrangement: benzofuranones, 495-496
Truce-Smiths rearrangement (continued)
 diphenyl ether, 501
 pyrrolidobenzothiadiazine, 502, 503
 Smiles rearrangement, 489
Tumor necrosis-A inhibitors, Mitsunobu reaction, 691–692
“Twisted amides,” Schmidt reactions, 366
Twist selectivity, Alder-Ene reaction, 14–17
 transition metal catalysis, 24–25
Two-dimensional Pummerer rearrangement, 359

Ugi reaction:
 asymmetric variants, 800–801
 basic principles, 786
 classic four-component reaction, 802–803
 historical perspective, 786–787
 mechanisms, 787–790
 synthetic utility, 790–799
 chemical libraries, 794–795
 hetero-cyclic formation, 793–794
 natural product synthesis, 795–799
 tandem reactions, 790–792
Ugi-Smiths coupling reaction, 507
Ullmann coupling, Claissen rearrangements, 37–38
Ultrasound techniques, Mannich reaction, 661
Uni-valent nitrogen derivative, Curtius rearrangement, 138–141
α,β-Unsaturated acyl azides, Curtius rearrangement:
 migrating carbon stereochemistry, 139–140
 synthetic function, 146
α,β-Unsaturated aldehydes, Meyer-Schuster rearrangement, 309
α,β-Unsaturated carbonyl compounds, Meyer-Schuster rearrangement, basic principles, 305
α,β-Unsaturated carboxylic esters, Meyer-Schuster rearrangement, 310
α,β-Unsaturated ketones, Meyer-Schuster rearrangement:
 basic principles, 306
 gold catalysis, 315
 mechanism, 306–307
α,β-Unsaturated thioesters, Meyer-Schuster rearrangement, 307–315
Unsaturated aldehydes, Rosen allylation, metal-complexed allylations, 618–620
Unsaturated carboxylic acids, Favorovski rearrangement, 442–443
Urea-based HIV protease inhibitors, Mitsunobu reaction, ether formation, 694–695
Vapor-phase Beckmann rearrangement, cyclohexanone oxime, 276–278
Vapor-phase techniques, Alder-Ene reaction, thermally-promoted reactions, 19–21
(R,R)-Vermiculine intermediate, Mitsunobu reaction, 691
Veinucoul, Wagner-Meerwein rearrangement, 385
Victrage modification, Meyer-Schuster rearrangement, 310–311
(−)-Vindoline, Mitsunobu reactions, 733
Vingrol. Grob fragmentation, 459
Vinylcyclopropanes, Bamford-Stevens reaction, ethyl ether chlorovinylicyclopropanation, 650
 synthetic utility, 644–650
Vinylglycine, Neber rearrangement, 470–471
Vinyl isocyanates, Curtius rearrangement, Weinstock variant, 148–150
Vinyl nitrene pathway, Neber rearrangement, 465–466
Vinyllogous anionic effect, Ireland-Claissen rearrangement, 49
Vinyllogous Mannich reaction:
 basic principles, 662–663
 (+)-cramine, 667
Vinyllogous Pummerer pathway, 335–336
Vinyl silyl ethers, Brook 1,4-rearrangement, 426–427
(+)-Vitaminycin, Meyer-Schuster rearrangement, 308
Vitamin D analogs:
 Carroll rearrangement, 56
 Hajo-Woodlart reaction, 568–574
 Mitsunobu reaction, intermolecular alcohol inversion, 682
 Vitronectin receptor antagonist, Mitsunobu reaction, ether formation, 693–694
Wagner-Meerwein rearrangement:
 basic principles, 373
 classical-non classical ion controversy, 374–375
 experimental compounds, 391–392
 historical developments, 373–375
mechanism, 375–376
natural triterpenoid rearrangement, 379
palladium promotion, 378–379
radical promotion, 377
synthetic utility, 379–381
Wetherby amides. Parham cyclization. 752–753
Wenckebach conditions. Curtius rearrangement, 148–150
polymer compounds, 158–159
Wender synthesis. Cope rearrangement, 98–99
West rearrangement, retro-Brook-1,2-rearrangement, 429–430
(1-hydroxy-2-propoxy)trimethylsilane, 435
Witkold-Mitscher ketone. Hajos-Wiechert reaction, 559
experimental compounds, 577–580
vitamin D derivatives, 570
[1,2]-Wittig rearrangement: amines and sulfides, 235
basic principles, 226
enantioselectivity, 234
enolates, 231
experimental compounds, 238
historical perspective, 226–227
imino rearrangement, 234–235
mechanism, 227–228
scope and limitations, 230–231
stereochemistry, 228–229
synthetic utility, 235–238
tandem reactions, 231–234
[2,3]-Wittig rearrangement: aza-[2,3]-Wittig rearrangement, 254–255
basic principles, 241
historical perspective, 241
mechanism, 241–243
(3R,4R)-4-methylhept-5(6)-en-1-yn-3-ol, 254
synthetic utility, 246–254
variations, improvements, and modifications, 243–246
[2,3]-Wittig-Still rearrangement, 247–248
Wittig reaction: anionic oxy-Cope rearrangement and, 114
Brook rearrangement, silyl enol ether formation, 413–416
reverse aromatic-Cope rearrangement, 127
Wolff rearrangement: basic principles, 257
experimental compounds, 272
historical perspective, 258
mechanism, 258
synthetic utility, 270–272
variations and improvements, 258–269
Xestodecalactone B and C, Evans aldol reaction, 543
Xylene: Brook rearrangement, basic principles, 406–407
Overman rearrangement, 214–218
Ylides, Stevens rearrangement, 517
variations, 520–527
Ynamides. aza-Claisen rearrangement, 75
Ynones, Eschenmoser-Tambe fragmentation, 455
Yttria-zirconia catalysts. Mannich reaction, 660
(+)-Zaragozic acid C, Ireland-Claisen rearrangement, 48
Zeolites: Alder-Ene reaction, 29
liquid-phase Beckmann rearrangement, 278–279
Zimmerman-Traxler model, Evans aldol reaction, 533–535
Zinc catalysts:
Brook rearrangement, silyl enol ether formation, 414–415
Passerini reaction, 771–772
vapor-phase Beckmann rearrangement, 277
Zincophorin, Carroll rearrangement, 56
Zirconium binaphthol complexes, Keck allylation reaction, 597–598