Acids, 219–220
Acoustic cavitation, 20
Aesthetic aromatherapy, 298
African citrus essential oils, volatile components of, 50–57
African citrus fruits
Burundian, 67–68
compositional analysis of, 47–69
Ethiopian, 68–69
Kenyan, 48–64
Rwandan, 66–67
Ugandan, 64–66
Albedo, 29, 30
Albedo extracts, inhibitory activities of, 243
Alchemy, 9
Alcohols, 57–58, 218–219
in American lemon essential oils, 71–74
in American lime essential oils, 84
in American mandarin essential oils, 79–80
in American orange essential oils, 75
in Anliu oranges, 92
in Hongjian oranges, 92
in Japanese citrus essential oils, 109, 113, 118–119, 122–123
in Kenyan mandarins, 60–61
in mandarin oil, 334
in Venezuelan orange oil, 74
in Vietnamese citrus fruits, 133, 140, 142
in Washington navel oranges, 93

Aldehydes, 218. See also Aliphatic aldehydes
in American lemon essential oils, 71
in American lime essential oils, 83–84
in American mandarin essential oils, 78–79
in American orange essential oils, 75
antimicrobial activities of, 287–288
in European citrus fruits, 146
in Japanese citrus essential oils, 109, 113, 118, 120–122
mandarin flavor and, 77
in Venezuelan orange oil, 74
in Vietnamese citrus fruits, 133, 140, 142
Aliphatic aldehydes, 49–56, 59, 63–64, 68, 218
in Chinese sweet oranges, 94
in mandarin oil, 331
in Uruguayan mandarins, 77
in Vietnamese citrus fruits, 142
in Washington navel oranges, 93
Aliphatic hydrocarbons, 217. See also Aliphatics
Aliphatics, in Vietnamese citrus essential oils, 134
American citrus fruits
compositional analysis of, 70–85
lemons, 70–74
American citrus fruits (cont’d)
 limes, 83–85
 sweet oranges, 74–76
American lime essential oils, volatile components of, 83–85
American orange essential oils, volatile components in, 75–76, 78–82
Analysis of variance (ANOVA), 307
Analytical methods, 38–46
Animal-derived aroma substances, 346
Anliu oranges, 86, 92
Antibacterial activity, of volatile terpenes, 286
Antifungal activities
 of lemon oil, 282–283
 of mandarin oil, 283–284
Anti-inflammatory activity, of essential oils, 300
Antimicrobial activities
 of citrus oils, 264–277, 278–279
 of essential oils, 301
 of volatile compounds, 271–277
Antimicrobial effects, assessment methods for, 277–278
Antimicrobials, 230
Antimicrobiology, 264–277
Antioxidant activity, 231–244
Antioxidant compounds, 231. See also Antioxidants
Antioxidants, 4–5, 103, 230
effectiveness of, 231–232
Antioxidative compounds, natural, 5
Antioxidative studies, alternative, 243–244
AQUAWAX column, 42
Aroma-active compounds
 identification of, 210
 in Pontianak citrus peel oil, 99, 100
Aroma attributes, 354
Aroma component analysis, 357
Aroma components, in Korean Shiranui, 131
Aroma compounds, 3–4, 37
antimicrobial activities of, 279
Aroma Extract Dilution Analysis (AEDA) techniques, 99, 203, 204–206, 209, 212, 213, 214
Aromagrams, 205, 206
Aroma materials
 for flavor/fragrance formulation, 345–351
 natural, 349
Aroma models, of citrus essential oils, 216–217
Aroma research, 3
Aroma-resource plants, 38
Aroma substances, synthetic, 349–350
Aroma systems, analyzing the constituents of, 38–39
Aromatherapeutic effect, 4
Aromatherapy, 5, 297–337
 basic fields of, 298
 history of, 298–300
 importance of, 299–300
 symptoms and disorders affected by, 298
 therapeutic uses of essential oils in, 304–306
Aromatic baths, therapeutic use of, 305
Aromatic plants, functional properties of, 229–231
Aromatic substances, industrial view of, 343, 344
Ascorbic acid, 246
effect on NDMA formation, 259
Asian citrus fruits
 compositional analysis of, 86–145
 Indonesian, 96–105
 Japanese, 105–124
 Korean, 124–132
 Vietnamese, 132–145
Atomic emission detector (AED), 43
Atomic mass unit measurement, by GC-TOFMS, 177
Aucuba japonica, 252
Authentic compounds, effect on NDMA formation, 249–251
Authentic flavor compounds, antioxidative activities of, 239–240
Authenticity control, 192
Autonomic nerve activity, citrus essential oils and, 306–311
Bacteria, foodborne, 277. See also Antibacterial activity; Antimicrobial entries
Baked confectionery flavors, 355
Banhakuyu, 115
Base note of flavors, 356
Base peaks, isotope ratio values for, 194
Beauty (aesthetic) aromatherapy, 298
Bergamot, 32
 European, 148–149
Bergamot aroma model, 216–217
 See also Bergamot oils
Bergamot oil extractor, 32–33
Bergamot oils. See also Bergamot essential oil
 antimicrobial activities of, 266, 280–282
 compositional changes under differing storage conditions, 324–325
 comprehensive changes under storage conditions, 329–330
Bergapten, 311–314
Beverage flavors, 355
Beverages, yuzu flavor formulations for, 363
Biologically active compounds, 230
Bitter orange oils, antimicrobial activities of, 270
Bitter oranges, European, 150
Bitter/sour oranges, Japanese, 111
Body temperature, effect of olfactory stimulation on, 307–308
Brazilian lime essential oils, 83–85
Brazilian mandarins, 76–77
 volatile components in, 78–82
Brown adipose tissue (BAT), 306–311
Brown adipose tissue sympathetic nerve activity (BAT-SNA), 306–311
Brown juice extractor, 31
Buntan, antimicrobial activities of, 270
Burundian citrus essential oils, volatile components of, 51–57
Burundian mandarin peel oil, 68
Burundian mandarins, 67–68
Cai mandarin oils, 77
Calabrian Machine, The, 33
Californian lemon oils, 70, 71–73
Capillary column, 39
Carbon, photosynthetic fixation of, 168
Carbonyl compounds, 69
Carbonyl volatile compounds, 49
Carcinogenic factors, types of, 244–245
Carcinogens
 foodstuffs that inhibit, 246
 inhibitory formation of, 244–263
 strong, 252
Carvacrol, 285
Carvone, 141, 219, 327
 (E)-Carvone, 59–60
 (Z)-Carvone, 56–57, 59–60
Character-impact compounds, 201
Charm value, 206. See also Combined
 Hedonic Aroma Response
 Measurements analysis
 (CharmAnalysis)
Chemat, Farid, xi, 9, 11, 14, 20
Chemical microcapsulization methods, 365
Chemical structure, aroma characteristics and, 343
Chemistry, development of, 299
Chewing gum flavors, 355
Chinese citrus fruits
 compositional analysis of, 86–96
 cultivation area and production of, 87
 mandarins, 89–91, 94–96
 sweet oranges, 89–91
Chiral compounds, 167
Chiral flavor/fragrance components, 166
Chiral fruit flavor compounds, 166
Choi, Hyang-Sook, xi, 229, 231
Citral, 285, 350
Citrange oil, antimicrobial activities of, 270
Citron, European, 152
Citronellal, 102
 separating chiral isomers of, 46
Citronellol, antimicrobial activities of, 273
Citrus ampullacea, 111
Citrus aroma substances, synthetic, 350–351
Citrus aurantium, 88, 111, 211, 216, 243, 358
Citrus bergamia, 32, 216–217
Citrus clementine, 76–83
Citrus components, pharmaceutical activities of, 5
Citrus deliciosa, 65, 76–83
Citrus depressa, 124
Citrus essential oil(s), ix, 3. See also Citrus oil(s); Essential oil(s)
antioxidative activities of, 240–241
aroma models of, 216–217
autonomic nerve activity and, 306–311
bergapten in, 312–313
chemical composition of, 19
Chinese, 86
chiral compounds of, 167
discrimination among, 192–196
effect on NDMA formation, 248–251
European, 146
flavor and odor/aroma impact compounds in, 208–217
information about, 6
inhibition of NDMA, 246
isotope fingerprint of, 186–190
isotope ratio of monoterpenes hydrocarbons in, 171–174
Japanese, 314
oxidation of, 102–103
properties of, ix
relative antioxidative activities of, 238, 239
reports on, 37–38
scavenging effects of, 235, 236
storage conditions and analysis of, 315–316
tocopherol contents in, 242
types of, 5
volatile chemical compounds of, 48
volatile components of, 249–251
Citrus essential oil analysis, types of columns used in, 39–42
Citrus essential oil based on modified isotope ratio, isotope fingerprint of, 188–190
Citrus essential oil profiles, 304–305
Citrus extracts, inhibitory effects of, 238–239
Citrus flaviculpus, 217
Citrus flavor activity, functional groups related to, 217–220
Citrus flavor quality, evaluation of, 197
Citrus flavors. See also Flavors in food products, 97
manufacturing and formulation of, 358–361
Citrus fruit(s), ix
African, 47–69
alternative antioxidative studies of, 243–244
American, 70–85
Asian, 86–145
cold-pressed oil from, 30–33
European, 145–152
Indonesian, 96–105
industrial view of, 344–345
major, 37
popularity of, ix, 3
production of, 2–3
spread of, 37
structure of, 29
Citrus funadoko, 111
Citrus genus, 3
samples of, 247
Citrus glaberrima, 116
Citrus grandis, 64, 115–116, 141–143, 180, 187, 218
Citrus hanaju, 107, 186
Citrus hybrid oils, flavor and odor/aroma impact compounds in, 215–216
Citrus hystrix, 101–105
Citrus hystrix oil, odor profiles of, 105
Citrus ichangensis, 106–107, 214–215, 249, 367
Citrus indica, 94, 124
Citrus inflata, 107, 217
Citrus iyo, 111
Citrus junos, 31, 252, 306, 360, 367
Citrus kawachinesis, 116
Citrus kinokuni, 111
Citrus latifolia, 107
Citrus limon, 70–74, 107, 186, 214, 249, 282–283
Citrus limonia, 143–145
Citrus lumia, 243
Citrus materials, industrial view of, 343–378
Citrus maxima, 284
Citrus medioglobosa, 116
Citrus natsudaidai, 116, 186
Citrus nobilis, 65, 98–101, 213
Citrus note, 353
Citrus obovoidea, 116
Citrus oil(s). See also Citrus essential oil(s)
anti-fungal activity of, 264, 278–279
antimicrobial activities of, 264–277, 278–279, 288–289
cold-pressed, 33
effect on fungal growth, 283
as flavor/fragrance aroma materials, 346–347
industrial view of, 345
processing method of, 349
weight percent of, 34
Citrus oil monoterpene hydrocarbons, MS fragment isotope ratio of, 184
Citrus otachibana, 116
Citrus ozu, 116–124
Citrus paradisi, 58, 62, 63, 116, 211–212, 284, 348
Citrus peel essential oils, 368
antioxidative activities of, 238–241
radical-scavenging activities of, 232–238
tocopherol analysis of, 241–243
Citrus peel tissues, 20
Citrus peel wastes, eco-conscious oil extraction from, 367–378
Citrus recovery essence, 348–349
Citrus sphaerocarpa, 107, 216
Citrus sudachi, 107, 215
Citrus sulcata, 116, 216
Citrus tachibana, 59, 106
Citrus taguma-sudachi, 107
Citrus tamurana, 111, 216
Citrus tangerina, 58
Citrus taxonomies, 1
Citrus tengu, 116
Citrus tree valorization, 10
Citrus ujukitsu, 111
Citrus unshiu, 76–83, 95, 105, 111, 116–124, 130, 186, 212, 283–284
Citrus varieties
propagation of, 1
spread of, 1
Citrus yamabuki, 116

Citrus yuko, 107, 124
Clementine mandarin oils, 77–83
flavor and odor/ aroma impact compounds in, 212–213
Clementine mandarins, 76, 94
European, 151
Cluster analysis, 192, 193, 195, 196
Coefficient of variation (CV), 173–174
Cold-pressed (CP) citrus essential oils, adulteration of, 165
Cold-pressed essential oils, 148
Cold-pressed lime peel oil (CPO), 176
Cold-pressed oil(s) (CPO), 346, 359, 369, 374
from Chinese mandarins, 95
from Chinese oranges, 88–92
from citrus fruits, 30–33
extraction of, 28–34
quantitative determination of, 33–34
Cold-pressed peel oil (CPO), 171–172
Cold-pressing (CP), 11, 19
of Chinese sweet oranges, 34
technique for, 9
Colombian lemon oils, 71–73, 74
Colombian mandarin oils, 77
Colombian mandarins, 76–77
volatile components in, 78–82
Colombian orange essential oils, volatile composition of, 74–76
Columns
in citrus essential oil analysis, 39–42
principal groups of, 40–41
Combined Hedonic Aroma Response Measurements analysis
(CharmAnalysis), 203, 204, 206, 210
Component identification, 44
Components, isotope content of, 170
Compositional analysis, 37–152
of African citrus fruits, 47–69
of American citrus fruits, 70–85
analytical methods in, 38–46
of Asian citrus fruits, 86–145
of European citrus fruits, 145–152
Compound stereochemistry, antimicrobial activities and, 288
Compresses, therapeutic use of, 306
Comune mandarins, volatile components in, 78–82
 Constituents, isotope values of, 168
Conventional solvent extraction, 21
Conventional steam-distilled oil (CSDO), 370–374
Correspondence analysis, 210
Cost of extraction, for MHG method, 20
Coumarins, 149, 150
Cross-matching test, 210, 215
Cyclodextrins (CDs), 166–167
p-Cymene, 327
 interconversion of, 329–330

Daidai, 211. See also Kiyookadaidai
Daidai aroma model, 216
Dairy product flavors, 355
DB-WAX, 41, 42
Deans switch, 45
trans-4-Decenal, 350
Dekopon, 215. See also Hallabong
Dessert flavors, 355
Detection frequency technique, 203, 207
Detector response, 43
Detector types, 42–43
8,9-Didehydronootkatone, 350
Diffuser, therapeutic use of, 306
Dihydromyrcenol, 351
Dihydromyrcenyl acetate, 351
Dilution analysis, 203, 204
Dilution techniques, 204
Dilution-to-threshold method, 203
Diospyros kaki, 252
Diphenyl groups, 42
Direct steam distillation, 12
Distillation column, 38
Distillation methods, 11–13
Distillation residue, treatment of, 374–377
Distillation technique, 9
Distillation technologies, 13
Distilled oil, 359
trans-2-Dodecenal, 350
DPPH method, 232–236
DPPH radical, 235, 237
Dressing flavors, 355
Dry distillation, 11, 12

Eco-conscious oil extraction, from citrus peel wastes, 367–378
Egg-box model, 376
Egyptian medicine, aromatic plants used in, 298–299

Electrical theory, 20
Electrolytic conductivity detector (ELCD), 43
Electron capture detector (ECD), 42
Emulsified flavors, 354, 364
Enantiomeric analysis, 165, 166–168
Enantiomeric component distribution, GC analysis of, 45
Enantiomeric distribution, 167–168
Enantiomeric excess, 167
Enantiomeric purity, 167
Enantioselective capillary gas chromatography (enantio-cGC), 166
Environmental burden, 15
Environmental impact
 of MHG method, 20
 of soxhlet versus ultrasound-accelerated extraction, 23–24
Epoxides, 58, 220
“The era of fragrance,” 3
Essential oil(s), 5, 9, 106. See also Citrus essential oil(s)
 ageing of, 315–323
 antimicrobial activities of, 279, 288
 in aromatherapy, 297
 authenticity control of, 165–166
 bergamot, 32, 148–149
 biologically active compounds in, 230–231
 bitter orange, 150
 “character-impact odorants” in, 201
 citron, 152
 composition of, 37
 compositional changes in, 337
 defined, 11
 as functional ingredients, 38
 mandarin, 150–151
 mechanism of action of, 279
 occurrence of, 29–30
 organoleptic properties of, 19–20
 pharmacological effects of, 300–304
 processing technologies of, 349
 separations of, 38–39
 sweet orange, 149–150
 therapeutic uses of, 304–306
 of Vietnamese citrus fruits, 133
 Essential oil compounds, chemotaxonomic value of, 62
Essential oil constituents, pharmacological properties of, 301–303
Essential oil industry, gas chromatograph impact on, 39
Essential oil origins, authenticity control of, 179–196
Essential oil safety, 311–314
Essential oil spray, therapeutic use of, 306
Esters, 58, 219
 in American lemon essential oils, 72–73
 in American lime essential oils, 84
 in American mandarin essential oils, 81
 in American orange essential oils, 76
 in Japanese citrus essential oils, 110, 114, 119, 122–123
 in Kenyan mandarins, 61
 odor-active, 209
 in Vietnamese citrus fruits, 140–141, 142–143
Ethiopian citrus essential oils, volatile components of, 51–57
Ethiopian citrus fruits, 58–69
Ethyl anthranilate, 351
Eureka lemon oil,
European citrus fruits, 145–152
 bergamot, 148–149
 bitter orange, 150
 citron, 152
 grapefruit, 151–152
 lemon, 146–148
 sweet orange, 149–150
European Union regulations, 6
Extract, 346
Extraction techniques, drawbacks of, 12
Extraction technologies, 13
 in European countries, 148
“Fantastico” bergamot variety, 33
FD factors, 99–101
Fiber, selectivity of, 26
Fiber assembly, 25
Flame ionization detector (FID), 42
Flame ionization detector scheme, 43, 44
Flame photometric detector (FPD), 43
Flavedo, 29, 30
 bergamot, 149
 lemon, 148
 mechanical pressing of, 369
Flavedo extract, inhibitory activities of, 243
Flavor, analyzing volatile compounds in, 171. See also Flavors
Flavor creation, 355–356
Flavor design, 354
Flavor dilution factors (FD-factors), 206, 213, 216, 217
Flavor evaluation, 356–357
Flavor formulation, 353–367
 aroma component analysis for, 357
 aroma materials for, 345–351
Flavor materials, 356
Flavor recipes, 353
Flavor research, 3–4, 166
 flowchart of, 4
Flavors. See also Citrus flavors
 application of, 354–355
 authenticity control of, 165–166
 classifying by form, 361–365
 industrial view of, 344
 verifying the origin of, 169
Florentine flask, 12, 18
Floridian lime essential oils, 83–85
FMC in-line juice extractor, 30–31
Food
 analyzing volatile compounds in, 171
 antioxidative activity of, 231–244
 Food antioxidants, 230
 Foodborne bacteria, 277
 Food constituents, isotope analysis of, 6
 Food flavors, microcapsulization of, 365
 Food safety/reliability concerns, 6
Formulation. See also Fragrance formulation
 of essential oils for processed foods, 345–367
 process of, 344
Fortunella, 243
Fortunella japonica, 124, 216
Fragrance formulation, 352
 aroma materials for, 345–351
Fragrance research, 166
Fragrances
 industrial view of, 344
 verifying the origin of, 169
Frankincense, 299
Free-fatty acid (FFA) levels, 306, 307, 309, 311
Free radicals, 231, 238
Frozen food flavors, 355
Fruiting position, effects on isotope ratio values, 175
Fruit maturity, effects on isotope ratio, 175
Fruit types, major, 2–3
Functional properties, 229–289
Fungi, citrus oil effect on, 283. See also Antifungal activities
Fungitoxicity, of orange oil, 279–280
Furanocoumarin, 314
Gas chromatograms, 27, 205
Gas chromatographic separation, 211
Gas chromatography (GC), 24, 33, 34, 38–39. See also Enantioselective capillary gas chromatography (enantio-cGC); GC detector types; High-resolution gas chromatography (HRGC); Multidimensional GC analysis; Two-dimensional GC (GC x GC)
Gas chromatography and flame ionization detection (GC-FID), 42–44
Gas chromatography–isotope ratio mass spectrometry (GC-IRMS), 169–170. See also Isotope ratio mass spectrometry (IRMS)
Gas chromatography–mass spectrometry (GC-MS), 44–45, 166, 172. See also Isotope ratio analysis by GC-MS isotope ratio accuracy by, 178–179 isotope ratio of monoterpenes hydrocarbons by, 171–174, 180–182 isotope ratio of oxygenated compounds by, 178
Gas chromatography–olfactometry (GC-O), 3–4, 99, 201–203, 209. See also GC-O entries performance of, 202 prospects for, 220–221
Gas chromatography–time-of-flight mass spectrometry (GC-TOFMS), isotope analysis by, 176–177
Gas–liquid chromatograph, 38
Gattefossé, René Maurice, 297, 299
GC detector types, 42–43. See also Gas chromatography entries
GC-O analysis, factors affecting, 202–203. See also Gas chromatography–olfactometry (GC-O)
GC-O techniques, 203–204
Germacrene D, 49
Hydrodiffusion, 16–18
Hydrodistillation, 12
Hydrodistilled (HD) essential oil, 20
Hyuganatsu, 111
Hyuganatsu aroma model, 216
Hyuganatsu oil, 218, 219
flavor and odor/aroma impact compounds in, 216
Ichang-papeda, 106–107
Ichang-papeda oil, flavor and odor/aroma impact compounds in, 214–215
Incremental dilution techniques, 204
Indirect steam distillation, 12
Indonesian citrus families, odor-active compounds of, 105
Indonesian citrus fruits, 96–105
Indonesian lime, 101–105
Infrared detector (IRD), 43
Inhalation, therapeutic use of, 304
In-line juice extractor, 30–31
Inside-needle technique, 28
International Fragrance Association (IFRA), 314
Ion-trap mass spectrometer chemical sensor, 211
Ir discrimination, 192. See also Isotope ratio entries
Ir values, 173–174, 179, 190–191. See also Isotope ratio values
Isotope analysis, by gas chromatography–time-of-flight mass spectrometry, 176–177
Isotope dilution assays, 209
“Isotope effect,” 6, 168
Isotope fingerprint, of citrus essential oil, 186–190
Isotope ratio(s). See also Ir entries
accuracy of, 178–179
determination of, 172
effects of fruit maturity on, 175
effects of variable factors on, 175–176
influence of storage on, 175–176
of linalool, 178, 190–191
of monoterpenic hydrocarbons, 180–182
multivariate analysis of, 192–195
of oxygenated compounds, 178
Isotope ratio analysis, 165, 168–179
Isotope ratio analysis by GC-MS. See also
Gas chromatography–mass spectrometry (GC-MS)
accuracy of, 173–174
repeatability and precision of, 172–173
Isotope ratio mass spectrometry (IRMS), 166, 169–170
Isotope ratio values, 173–174. See also
Ir values
effects on, 175–176, 191
Isotopic fingerprint, 169
Italian citrus essential oils, volatile components of, 147
Italy, citrus production in, 145
Iwabuchi, Hisakatsu, xi, 343
Japanese Agricultural Standard (JAS), 6
Japanese citrus essential oils, 314. See also
Japanese yuzu essential oils
MS fragment isotope ratio analysis of monoterpenic hydrocarbons in, 183
Japanese citrus fruits, 105–124
bitter/sour orange, 111
hybrids and unidentified species, 116–124
ichang-papeda, 106–107
kumquat, 124
lemon, 107
lime, 107
mandarins, 111–115
pummelo, 115–116
sweet orange, 111
tachibana, 106
Japanese Washington navel oil, 93
Japanese yuzu essential oils, isotope ratio analysis of monoterpenic hydrocarbons in, 180–182
Jeruk keprok, 96–97, 98
Jeruk pontianak, 98–101
Jeruk purut, 97, 98, 101–105
oxidized, 103
Jeruk purut flavor powder, 103–105
Jeruk purut leaves, 101–102
Jeruk purut oil, 102–103
Jeruk siam, 98
Juice-extraction methods, yuzu, 125
Kabosu, 107
Kabosu aroma model, 216
Kaffir lime, 101–105
Kaffir lime oil, oxidized, 102, 104
Kara mandarins, 58–61
volatile components of, 56
Kashiwagi, Takehiro, xi, 367
Kenyan citrus essential oils, volatile components of, 50–57
Kenyan citrus fruits
compositional analysis of, 48–64
grapefruit, 61–64
mandarins, 58–61
pummelo, 63–64
Kenyan sweet orange oils
monoterpane hydrocarbons in, 48–49
oxygenated compounds in, 49–58
sesquiterpene hydrocarbons in, 49
volatile components of, 58
Ketones, 219–220
in American lemon essential oils, 72
in American lime essential oils, 84
in American mandarin essential oils, 80–81
in American orange essential oils, 75
in Japanese citrus essential oils, 110, 114, 119
Key lime oil, volatile components of, 83–85
Kiyomi, Korean, 132
Kiyookadaidai, 116–124. See also Daidai
Korean citrus essential oils, 125
volatile flavor components of, 126–127
volatile profile characteristics of, 128–129
Korean citrus fruits, 124–132
Kiyomi, 132
kumquat, 131
satsuma mandarin, 130
Setoka, 132
Shiranui, 130–131
yuzu, 125–130
Kumagai, Chizu, xi, 297, 298
Kumquat
Japanese, 124
Korean, 131
Kumquat oil, flavor and odor/aroma impact compounds in, 216
Laboratory cold-pressed oil (CPO) extraction, 30
Lan-Phi, Nguyen Thi, xi, 105, 132, 201
Latin American citrus fruits, 70
Lavandula angustifolia, 307–308
Lemon essential oil(s)
ageing of, 316–323
compositional changes under differing storage conditions, 316–322
volatile components in, 71–73
Lemon flavors, manufacturing and formulation of, 358–359
Lemon oil(s). See also Californian lemon oils; Colombian lemon oils; Eureka lemon oil; Uruguayan lemon oils; Venezuelan lemon oils antimicrobial activities of, 267–268, 282–283 antioxidative activities of, 240–241 flavor and odor/aroma impact compounds in, 214 SPME assay for, 26–28 Lemon production, 347–348 Lemons. See also Lisbon lemon American, 70–74 European, 146–148 Japanese, 107 Lime essential oils, isotope fingerprint of, 188 Lime extract, antimicrobial activities of, 282 Lime flavors, manufacturing and formulation of, 359 Lime oil(s). See also American lime essential oils; Brazilian lime essential oils; Cold-pressed lime peel oil (CPO); Floridian lime essential oils; Key lime oil; Mexican lime essential oils; Persian lime oil antimicrobial activities of, 266–267 flavor and odor/aroma impact compounds in, 213–214 Limes. See also Indonesian lime; Kaffir lime; Persa lime; Tahiti lime American, 83–85 Japanese, 107 Vietnamese, 143–145
Limonene, 10, 48, 59, 62, 64–65, 74, 106, 107, 144, 146, 217
antimicrobial activities of, 271
as a dilution solvent, 208
in Japanese citrus essential oils, 124
in mandarin oil, 331
Linalool, 95, 149, 350
antimicrobial activities of, 272
in bergamot oil, 326, 329–330
as a dilution solvent, 208
effects of, 311
isotope ratios of, 178, 179, 190–191
Linalyl acetate, 149, 326, 328, 350
in bergamot oil, 329–330
Linoleic acid peroxidation, antioxidative activities against, 238–241
Liquid chromatography (LC), 28. See also High-performance liquid chromatography (HPLC)
Liquid chromatography–mass spectrometry (LC-MS), 253
Liquid flavor preparation, extraction methods in, 103
Liquid fragrance formulations, 353
Lisbon cold-pressed oil, 319
Lisbon lemon, 107 241
Lisbon lemon oil, 241
Mandarin essential oil(s)
ageing of, 330–337
compositional changes under differing storage conditions, 331–336
composition of, 330–331
comprehensive changes under storage conditions, 336–337
isotope fingerprint of, 189
Mandarin hybrids, volatile components of, 51–57
Mandarin oils(s). See also Cai mandarin oils
antimicrobial activities of, 268–269, 283–284
flavor and odor/aroma impact compounds in, 212–213
Mandarins. See also Brazilian mandarins;
Clementine mandarins; Colombian mandarins; Comune mandarins; Kara mandarins; Minneola mandarins;
Miyagawa-wase mandarins;
Miyamoto mandarins; Nova mandarins; Nules mandarins; Okitsu-wase mandarins; Oranges; Ponkan mandarins; Sabine mandarins; Satsuma mandarin(s); Shatang mandarins; Unshiu mandarins; Uruguayan mandarins
American, 76–83
Burundian, 67–68
Chinese, 86, 94–96
European, 150–151
Japanese, 111–115
Kenyan, 58–61
Korean, 130
Mediterranean, 94
Ugandan, 64–66
Vietnamese, 139–141
volatle components of, 51–57, 89–91
Massage oils, therapeutic use of, 305
Mass selective detector (MSD), 43
Mass spectrometry (MS). See MS fragment entries
Mediterranean mandarins, 94
1-p-Menthen-8-thiol, 351
Methyl dihydrojasmonate, 351
Methyl N-methlanthranilate, 77
Methyltrisulfide, 220
Mexican lime essential oils, 83–85
Microcapsulization, of food flavors, 365–366
Microextraction, solid-phase, 24–28
Microextraction in a packed syringe (MEPS) technique, 28
Microorganisms, antimicrobial activities of citrus oils on, 264277
Microwave-assisted extraction (MAE), 18. See also Microwave extraction
Microwave Assisted Process (MAP), 14
Microwave-assisted solvent extraction (MASE), 14
Microwave dielectric heating, 14
Microwave extraction, 14–20
Microwave hydrodiffusion, 18
Microwave hydrodiffusion and gravity (MHG), 15–20
Middle note of flavors, 356
Minh-Tu, Nguyen Thi, xi, 38
Minimum detectable level (MDL), 43
Minneola mandarins, volatile components of, 50–56
Minneola tangelo, 58–61
Miyagawa-wase mandarins, 212
Miyamoto mandarins, 212
Monoterpene alcohols, 285–287
Monoterpene aldehydes, 56
Monoterpene hydrocarbons, 28, 67–68, 69, 70. See also Monoterpenes
in American lemon essential oils, 71
in American lime essential oils, 83
in American mandarin essential oils, 78
in Anliu oranges, 92
in Chinese sweet oranges, 96
in citrus essential oils, 179
in clementine oils, 77
determination of, 46
in European citrus fruits, 151
in Hongjian oranges, 88
isotope ratio by GC-MS, 171–174
isotope ratio in citrus essential oils, 171–174
isotope ratios of, 175–176, 177, 180–182
in Japanese citrus essential oils, 124
in Kenyan sweet orange oils, 48–49
in mandarin oils, 59, 336
MS fragment isotope ratio analysis of, 182–186, 194–195
multivariate analysis of, 192–195
in pummelo, 63
in Ugandan mandarins, 64–65
in Ugandan sweet oranges, 66
in Venezuelan orange oil, 74
in Vietnamese citrus fruits, 142, 144
in Washington navel oranges, 93
in yuzu oil, 371–374
Monoterpene hydrocarbon standards, isotope ratio values of, 173
Monoterpenes, 19, 217
in American orange essential oils, 75
composition analysis of, 41–42
difference in the isotope ratio values among, 183–186
in Vietnamese citrus essential oils, 134
in Vietnamese citrus fruits, 139
MS fragment isotope ratio analysis, of monoterpane hydrocarbons, 182–186
MS fragment ratio, 45
Multidimensional GC analysis, 203. See also Gas chromatography (GC)
Multidimensional HPLC/GC, 46. See also High-performance liquid chromatography (HPLC)
Multivariate analysis, 45
of isotope ratio, 192–195
Myrctene, 48–49, 63, 177, 217, 331
effect on NDMA formation, 249
inhibition of NDMA formation, 249
Myrtenol, 327
Naoshichi, 107
Nasal impact frequency (NIF), 207
Natural antioxidants, 5
Natural aroma materials, processing technologies of, 349
NDMA assay, 246–248, 253. See also N-Nitrosodimethylamine (NDMA)
NDMA formation
effect of ascorbic acid, nitrite, nitrate, and saliva on, 259–260
effect of terpene hydrocarbons on, 260–263
effects of vegetable extracts on, 253–257
effects of vegetable extracts with yuzu oil and saliva on, 255–256, 257–258
NDMA formation chromatograms, 262
Neroli essential oil, 47
Nitrate(s), 252
effect on NDMA formation, 260
Nitrate content, determination of, 253
Nitrite(s), 252
effect on NDMA formation, 259
Nitrite content, determination of, 253
Nitrogen isotope fractionation, 169
Nitrogen phosphorus detector (NPD), 42
Nitrosoamines, 246, 252
Nitroso compounds, inhibition of, 252
N-Nitroso compounds, 252
carcinogenesis and, 244
N-Nitrosodialkylamine, metabolic activation of, 245
N-Nitrosodimethylamine (NDMA), 246. See also NDMA entries
inhibitory effects on, 248–253
Njoroge, Simon Muhoho, xi, 47
Nonvolatile compounds, under storage conditions, 322–323
Nootkatone, 60, 62, 64, 69, 151, 152, 211, 350
detection of, 94
in Vietnamese citrus fruits, 143
Nova mandarin oils, 77
Nova mandarins, 76
volatile components in, 78–82
Nuclear magnetic resonance (NMR), 170–171
Nules mandarins, volatile components in, 78–82
Nutraceuticals, 229
Octyl acetate, 219
Odor-active compounds, 221
Odor-active volatiles, 221
Odor-activity value (OAV), 101
Odor/aroma key compounds, 201
Odor cluster, 220
Odor detection threshold, 204
Odor peaks, 206–207
Odor spectrum values (OSV), 212
Oil extraction. See also Citrus essential oil(s); Essential oil(s)
eco-conscious, 367–378
techniques for, 9–36
Oil-soluble liquid flavors, 364
Oily flavor preparations, 355
Okitsu-wase mandarins, 95
Oleoresin, 346
Olfactory stimulation
with grapefruit scent, 311
with yuzu scent, 307–311
Omission test, 207–208
On-column injection, 39
Open tubular capillary columns, 39–40
Oral-care product flavors, 355
Orange essential oils, isotope fingerprint of, 188. See also American orange essential oils; Colombian orange essential oils
Orange flavors, manufacturing and formulation of, 358
Orange juices, antioxidant efficiency of, 243
Orange oil(s). See also Kenyan sweet orange oils; Pera orange oil; Pontianak orange oil; Sour orange oil; Venezuelan orange oil
antimicrobial activities of, 265–266, 278, 279–280
inhibition effect on spore germination, 280
Oranges. See also Anliu oranges; Bitter oranges; Hongjian oranges; Mandarins; Rwandan sweet oranges; Salustiana oranges; Sihui oranges; Sweet oranges; Ugandan sweet oranges; Valencia oranges; Washington navel oranges
production of, 347
volatile components of, 51–57
Organoleptic effects, 4
Orlando tangelo, 68–69
OSME time-intensity technique, 203, 206–207
Oxidation reactions, 230
Oxides, 58, 220
in American lemon essential oils, 72
in American lime essential oils, 84
in American mandarin essential oils, 80–81
in Japanese citrus essential oils, 110, 114, 119, 122–123
Oxygenated compounds, 15, 19
in American mandarin essential oils, 77
in Ethiopian citrus fruits, 69
isotope ratio of, 178
in Kenyan mandarins, 59–61
in Kenyan sweet orange oils, 49–58
in Ugandan mandarins, 65–66
Oxygenated monoterpenes, 285
Oyu essential oil, 249
Packed columns, 39–40
Peel oil(s)
lime, 144
pummelo, 143
Pelatrice system, 33
Pera orange oil, Charm values of, 210
Perfumery, 9
Perillene, 63, 64
Persa lime, 143
Persian lime oil, volatile components of, 83–85
Pharmaceutical activities, of citrus components, 5
Pharmacological effects, of essential oils, 300–304
Pharmacologically active compounds, 229
Pharmacological properties, of essential oil constituents, 301–303
Phase separation method, 366
Phenolic compounds, 232
Phenolic content, influence on antioxidant effectiveness, 243
Photoionization detector (PID), 43
Photosynthesis, 168–169
Physical microcapsulization methods, 366
Physicochemical microcapsulization methods, 365–366
Phytochemicals, 229
antioxidant activity of, 231
Piper hispidinervum, 66
Plant-derived aroma substances, 345–346
Plant essential oils, antimicrobial activity of, 278
Plants, functional properties of, 229
Plasma FFA levels, effect of olfactory stimulation of, 308–309
Poiana, Marco, xi, 145
Polyethylene glycol (PEG), 41
Polygonum longisetum, 252
Poncirus, 243
Ponkan essential oil, 96
Ponkan mandarins, 94, 95, 96
Pontianak orange oil, flavor and odor/aroma impact compounds in, 213
Posterior-intensity technique, 203, 207
Postharvest pathogens, 264
Potent odorants, 201
Powdered flavors, 354, 364–365
Power ultrasound, 20
Pummelo, 61
Japanese, 115–116
Kenyan, 63–64
Vietnamese, 141–143
volatile components of, 51–57
Pummelo essential oils, isotope fingerprint of, 189
Pummelo oil(s), antimicrobial activities of, 270, 284
Quinta essentia, 9
Radical-scavenging activities/effects, 233
Citrus genus samples for, 234
of citrus peel essential oils, 232–238
Recovery essence, 346, 359
Redblush grapefruit
Kenyan, 61, 62
volatile components of, 51–57
Regulations, food safety, 6
Relative antioxidative activities, 238, 239
Relative flavor activity (RFA), 101, 213, 216
Relative lipid peroxidation rate (RLPR), 238, 239–241, 242
Rwandan citrus essential oils, 51–57
Rwandan sweet oranges, 66–67
S-1 storage condition
for bergamot oil, 326–327
for lemon oil, 320–321
for mandarin essential oil, 331–334
S-2 storage condition
for bergamot oil, 328
for lemon oil, 321–322
for mandarin essential oil, 334–335
S-3 storage condition
for bergamot oil, 328
for lemon oil, 322
for mandarin essential oil, 336
S-4 storage condition
for bergamot oil, 328–329
for lemon oil, 322
for mandarin essential oil, 336
Sabine mandarins, 58–61
volatile components of, 50–56
Saliva, NDMA formation in the presence of, 258, 260
Salustiana oranges, volatile components of, 50–56
Salustian navel fruits, 48–58
Sanbokan, 116
Sanbokan oil, flavor and odor/aroma impact compounds in, 216
Satake, Atsushi, xi, 168
Satsuma mandarin(s), 76, 77, 94, 95, 105, 111, 130
effect on NDMA formation, 250
volatile components in, 78–82
INDEX

Satsuma mandarin oil(s)
 flavor and odor/aroma impact compounds in, 212
Korean, 140
Sawamura, Masayoshi, ix, xii, 1, 24, 28, 37, 47, 86, 105, 315, 367
Scanning electron microscopy, 21
Seafood product flavors, 355
Selected ion monitoring (SIM) acquisition mode, 171, 172, 175, 180
Selective detection, limited, 44–45
Sensory analysis, 24, 202, 203
Separation techniques, 13
Sesquiterpene alcohols, 58
Sesquiterpene hydrocarbons. See also Sesquiterpenes
 in American lemon essential oils, 73
 in American lime essential oils, 85
 in American mandarin essential oils, 81–82
 in Kenyan mandarins, 59
 in Kenyan sweet orange oils, 49
 in Ugandan mandarins, 65
 in Ugandan sweet oranges, 66
 in Vietnamese citrus fruits, 142
Sesquiterpenes, 19, 217–218
 in American orange essential oils, 75
 in Vietnamese citrus essential oils, 134–138
 in Vietnamese citrus fruits, 139
 in yuzu oil, 374
Setoka, Korean, 132
Shaddock, Japanese, 115–116
Shatang mandarins, 96
Shimada, Masaki, xii, 345
Shiranui, 116
 Korean, 130–131
Signal-to-noise ratio, 45
Silhui oranges, 86, 93
α-Sinensal, 56
β-Sinensal, 56
Sinensals, 93
Site-specific natural isotope fractionation (SNIF-NMR), 170–171
Skin disease microorganisms, growth inhibition of, 284
Slanted-soil-chamber system, 376–377
Smell, sense of, 300. See also Olfactory stimulation
Softer ionization energy, 179
Solid-phase dynamic extraction (SPDE) technique, 28
Solid-phase microextraction (SPME), 24–28, 99. See also Headspace-SPME analysis method; SPME entries features of, 24
 principle of, 25–26
Solvent, selection of, 21–22
Solvent-extracted oil (SEO), 131
Solvent extraction, 368–369
 ultrasound-accelerated, 20–24
 method of, 125
Solvent-free microwave extraction (SFME), 14, 15, 17, 18
Son, U-Sun, xii, 315
Song, Hee-Sun, xii, 124, 264
Sono-extraction, 22
Sour citrus fruit, 3, 31, 111
Sour orange oil, flavor and odor/aroma impact compounds in, 211–212
Soxhlet, 22, 23
Spain, citrus production in, 145
Spanish clementine oil, 212
Spikenard, 299
Spirit, 9
Split injection, 39
SPME assay procedure, 26
SPME extraction, 24. See also Solid-phase microextraction (SPME)
SPME sampling equipment, 25
Spray-drying method, 366
Static headspace aroma (SHA) dilution analysis, 213
Stationary phases, 40
Steam distillation, 9–10, 12
 of yuzu, 369–370
Stored citrus oils, antioxidative activities of, 241
Sudachi, 107
Sudachi oil, flavor and odor/aroma impact compounds in, 215
Sulfur-containing compounds, 220
Surface of nasal impact frequency (SNIF), 207
Sustainable growth, 13
Sweet citrus fruit, 3
Sweet orange oil, flavor and odor/aroma impact compounds in, 208–211
Sweet oranges
 African, 47
 American, 74–76
 Chinese, 86–94
 European, 149–150
 Japanese, 111
 Kenyan, 48–58
 Rwandan, 66–67
 Ugandan, 66
 Vietnamese, 133–139
Synthetic antioxidants, 5, 232
Synthetic aroma substances, 349–350
Synthetic citrus aroma substances, 350–351
Tachibana, 106
Tahiti lime, 107
Tangerines. See Mandarins
Temple tangor, 68–69
Terpene aldehydes, 59, 62, 65, 66
Terpene component, antimicrobial activities of, 285–289
Terpene hydrocarbons
 in chemoprevention of cancers, 250, 252
 effect on NDMA formation, 260–263
 in mandarin oil, 334
Terpenes, 5
 radical-scavenging activity and, 236–237
Terpene thiols, 220
Terpenoids, antioxidant activity of, 288
α-Terpine, 261–263
 antimicrobial activities of, 271
α-Terpine derivative, 261, 263
γ-Terpine, 77, 96, 115–116, 124, 236, 239, 241, 320
 interconversion of, 329–330
Tetradecane, 93
Thao, Nguyen Thi, xii, 70, 165, 166, 168, 179
Thermal conductivity detector (TCD), 42
Thin-layer chromatography (TLC), 165
Thymol, 285
 antimicrobial activities of, 274
Time-intensity techniques, 203, 206–207
Tisserand, Robert, 299–300
Tocopherol analysis, of citrus peel essential oils, 241–243
 Tocopherols, 246
 Top note of flavors, 356
 Tosa-buntan, 115
 Total ion chromatogram (TIC), 360–361
 Treated wastewater, qualities of, 378
 Triacetin, 326
 Trolox, antioxidant activity of, 233
 Turbodistillation, 12, 13
 Two-dimensional GC (GC×GC), 45–46
 Ugandan citrus essential oils, volatile components of, 51–57
 Ugandan citrus fruits, compositional analysis of, 64–66
 Ugandan sweet oranges, 66
 Ujikitsu oil, 111
 Ultrasonic cleaning bath, 22
 Ultrasonic distillation, 370
 Ultrasonic irradiation, 370
 Ultrasonic reactors, 22, 23
 Ultrasonic steam-distilled oil (USDO), 370–374
 Ultrasound-accelerated extraction (UAE), 21, 22–24
 Ultrasound-accelerated solvent extraction, 20–24
 Ultrasound cavitation, 21
 Unidentified citrus species, Japanese, 116–124
 Unshiu mandarins, 95
 “Upside-down” microwave alembic, 15, 18
 Uruguayan clementine mandarins, volatile components in, 78–82
 Uruguayan lemon oils, 70, 71–73, 77–83
 Uruguayan mandarins, 76, 77
 volatile components in, 78–82
 Vacuum microwave hydro distillation (VMHD), 15
 Valencene, 88–92, 133, 150, 211
 Valencia navel fruits, 48–58
 Valencia orange oil, Charm values of, 210
 Valencia oranges
 sabinene content of, 88
 volatile components of, 50–56
 Vegetable essential oils, 5
 Vegetable extracts, effects on NDMA formation, 253–257
Vegetable extracts with yuzu oil and saliva, effects on NDMA formation, 255–256, 257–258
Vegetables, inhibition of NDMA formation in, 252–253
Vegetable samples for NDMA assay, 253
Venezuelan lemon oils, 70, 71–73
Venezuelan mandarins, 76
Venezuelan orange oil, volatile composition of, 74
Vietnamese citrus essential oil(s) analyzing, 44
Vietnamese citrus fruits, 132–145
Volatile aroma component, antimicrobial activities of, 285–289
Volatile chemical compounds, 48
Volatile components. See also Volatile aroma component; Volatile compounds; Volatile flavor components
Volatile terpenes, antibacterial activity of, 286
Washington navel fruits, 48–58
Washington navel oranges Chinese, 86, 93–94 volatile components of, 50–56
White adipose tissue, 306–311
White adipose tissue sympathetic nerve activity (WAT-SNA), 307–311
Yeast capsules, 366–367
Yeasts, use in microbial assay, 264–277
Yu, Xiaolin, xii, 86
Yukawa, Chiyoki, xii, 345
Yuko, 107
Yuko oil, 240
Yuzu, 31
Yuzu buri, 378
Yuzu essential oil(s), 5, 125, 368
 effect on NDMA Formation in Vegetables, 252–253
 effects of isotope ratio values in, 175
 isotope fingerprint of, 186–187
 isotope ratio of, 195–196
 isotope ratios of linalool in, 190–191
 products of, 378
Yuzu flavor formulations, for beverages, 363
Yuzu flavors, manufacturing and formulation of, 360–361
Yuzu fruit juice extractor, 31–32
Yuzu juice, 368
Yuzunone, 215

Yuzu oil
 autonomic nerve activity and, 306–311
 extraction of, 368–374
 flavor and odor/aroma impact compounds in, 214–215
 NDMA formation and, 253–257, 258
Yuzu peel, 125–130, 368
Yuzu peel cold-pressed oil, components identified in, 362
Yuzu peel oil, 106
Yuzu residue, treatment of, 374–377
Yuzu samples, linalool content of, 179
Yuzu scent, olfactory stimulation with, 307–311
Yuzu waste residue, practical uses of, 377–378
Yuzu wastewater treatment, post-distilled, 375–377