Contents

Acknowledgements xiii
List of Acronyms xv
Series Preface xix

1 Introduction 1
 1.1 Review of Fuel Systems Issues 2
 1.1.1 Basic Fuel System Characteristics and Functions 2
 1.1.2 Fuel Quantity Measurement 6
 1.1.3 Fuel Properties and Environmental Issues 8
 1.2 The Fuel System Design and Development Process 11
 1.2.1 Program Management 12
 1.2.2 Design and Development Support Tools 13
 1.2.3 Functional Maturity 14
 1.2.4 Testing and Certification 14
 1.3 Fuel System Examples and Future Technologies 15
 1.4 Terminology 15

2 Fuel System Design Drivers 19
 2.1 Design Drivers 21
 2.1.1 Intended Aircraft Mission 21
 2.1.2 Dispatch Reliability Goals 21
 2.1.3 Fuel Tank Boundaries and Tank Location Issues 22
 2.1.4 Measurement and Management System Functional Requirements 26
 2.1.5 Electrical Power Management Architecture and Capacity 26
 2.2 Identification and Mitigation of Safety Risks 27
 2.2.1 Fuel System Risks 28

3 Fuel Storage 31
 3.1 Tank Geometry and Location Issues for Commercial Aircraft 32
 3.2 Operational Considerations 36
3.2.1 CG Shift due to Fuel Storage 36
3.2.2 Unusable Fuel 39
3.3 Fuel Tank Venting 41
 3.3.1 Vent System Sizing 45
3.4 Military Aircraft Fuel Storage Issues 45
 3.4.1 Drop Tanks and Conformal Tanks 48
 3.4.2 Closed Vent Systems 48
3.5 Maintenance Considerations 49
 3.5.1 Access 49
 3.5.2 Contamination 50

4 Fuel System Functions of Commercial Aircraft 53
 4.1 Refueling and Defueling 54
 4.1.1 Pressure Refueling 54
 4.1.2 Defueling 58
 4.2 Engine and APU Feed 59
 4.2.1 Feed Tank and Engine Location Effects 59
 4.2.2 Feed Pumping Systems 60
 4.2.3 Feed Tank Scavenging 65
 4.2.4 Negative g Considerations 65
 4.2.5 Crossfeed 66
 4.2.6 Integrated Feed System Solution 67
 4.2.7 Feed System Design Practices 69
 4.3 Fuel Transfer 70
 4.3.1 Fuel Burn Scheduling 70
 4.3.2 Wing Load Alleviation 72
 4.3.3 Fuel Transfer System Design Requirements 72
 4.4 Fuel Jettison 73
 4.4.1 Jettison System Example 74
 4.5 Fuel Quantity Gauging 76
 4.5.1 Architectural Considerations 78
 4.5.2 Fuel Load Planning 82
 4.5.3 Leak Detection 83
 4.6 Fuel Management and Control 84
 4.6.1 Refuel Distribution 86
 4.6.2 In-flight Fuel Management 88
 4.6.3 Fuel Management System Architecture Considerations 91
 4.6.4 Flight Deck Displays, Warnings and Advisories 91
 4.7 Ancillary Systems 93

5 Fuel System Functions of Military Aircraft and Helicopters 97
 5.1 Refueling and Defueling 98
 5.1.1 Pressure Refueling 98
 5.1.2 Defueling 102
 5.2 Engine and APU Feed 103
 5.3 Fuel Transfer 104
5.4 Aerial Refueling 106
 5.4.1 Design and Operational Issues Associated with Aerial Refueling 108
 5.4.2 Flying Boom System 109
 5.4.3 Probe and Drogue Systems 111
5.5 Fuel Measurement and Management Systems in Military Applications 112
 5.5.1 KC-135 Aerial Refueling Tanker Fuel Measurement and Management System 112
5.6 Helicopter Fuel Systems 116

6 Fluid Mechanical Equipment 119
 6.1 Ground Refueling and Defueling Equipment 120
 6.1.1 Refueling and Defueling Adaptors 120
 6.1.2 Refuel Shut-off Valves 121
 6.1.3 Fuel Transfer Valves 131
 6.2 Fuel Tank Venting and Pressurization Equipment 133
 6.3 Aerial Refueling Equipment 137
 6.3.1 The Flying Boom System Equipment 137
 6.3.2 The Probe and Drogue System Equipment 139
 6.4 Equipment Sizing 142
 6.4.1 Valve Configuration and Pressure Drop Estimation 142
 6.5 Fuel Pumps 143
 6.5.1 Ejector Pumps 143
 6.5.2 Motor-driven pumps 145

7 Fuel Measurement and Management Equipment 157
 7.1 Fuel Gauging Sensor Technology 158
 7.1.1 Capacitance Gauging 158
 7.1.2 Ultrasonic Gauging 177
 7.1.3 Density Sensor Technology 186
 7.1.4 Level Sensing 191
 7.1.5 Secondary Gauging 193
 7.2 Harnesses 195
 7.2.1 In-Tank Harnesses 195
 7.2.2 Out-Tank Harnesses 197
 7.3 Avionics Equipment 197
 7.3.1 Requirements 197
 7.3.2 Data Concentration 198
 7.3.3 Avionics Integration 198
 7.3.4 Integration of Fuel Management 199
 7.3.5 Fuel Quantity Display 200

8 Fuel Properties 203
 8.1 The Refinement Process 203
 8.2 Fuel Specification Properties of Interest 205
 8.2.1 Distillation Process Limits 205
 8.2.2 Flashpoint 205
8.2.3 Vapor Pressure 206
8.2.4 Viscosity 207
8.2.5 Freeze Point 208
8.2.6 Density 208
8.2.7 Thermal Stability 209

8.3 Operational Considerations 209
8.3.1 Fuel Temperature Considerations – Feed and Transfer 209
8.3.2 Fuel Property Issues Associated with Quantity Gauging 210

9 Intrinsic Safety, Electro Magnetics and Electrostatics 215
9.1 Intrinsic Safety 216
9.1.1 Threats from Energy Storage within the Signal Conditioning Avionics 217

9.2 Lightning 217
9.2.1 Threats from Induced Transients in Electronic Equipment 218
9.2.2 Protecting the Signal Conditioning Avionics from Lightning 221

9.3 EMI/HIRF 221
9.3.1 Threats from HIRF Energy Transfer 221
9.3.2 Protecting the Signal Conditioning Avionics from HIRF 222
9.3.3 Electrostatics 222

10 Fuel Tank Inerting 225
10.1 Early Military Inerting Systems 225
10.2 Current Technology Inerting Systems 229
 10.2.1 Military Aircraft Inerting Systems 229
 10.2.2 Commercial Aircraft Inerting Systems 231
10.3 Design Considerations for Open Vent Systems 235
10.4 Operational Issues with Permeable Membrane Inerting Systems 236
 10.4.1 Fiber In-service Performance 236
 10.4.2 Separator Performance Measurement 237
 10.4.3 NEA Distribution 237

11 Design Development and Certification 239
11.1 Evolution of the Design and Development Process 239
11.2 System Design and Development – a Disciplined Methodology 243
 11.2.1 The ‘V’ Diagram 245
 11.2.2 Software Development 246
11.3 Program Management 248
 11.3.1 Supplier Team Organization 249
 11.3.2 Risk Management 250
 11.3.3 Management Activities 252
11.4 Maturity Management 254
11.5 Installation Considerations 256
11.6 Modeling and Simulation 259
11.7 Certification 263
 11.7.1 Certification of Commercial Aircraft Fuel Systems 263
 11.7.2 Flight Test Considerations 264
 11.7.3 Certification of Military Aircraft Fuel Systems 266
11.8 Fuel System Icing Tests
 11.8.1 Icing Test Rigs
 11.8.2 Fuel Conditioning

12 Fuel System Design Examples
 12.1 The Bombardier Global Express™
 12.1.1 Fuel Storage
 12.1.2 Fluid Mechanical System Design
 12.1.3 Fuel Measurement and Management
 12.1.4 Flight Deck Equipment
 12.1.5 Operational Considerations
 12.2 Embraer 170/190 Regional Jet
 12.2.1 Fuel Storage and Venting
 12.2.2 The Refuel and Defuel System
 12.2.3 In-flight Operation
 12.2.4 System Architecture
 12.2.5 Fuel Quantity Gauging
 12.2.6 In-service Maturity
 12.3 The Boeing 777 Wide-Bodied Airliner
 12.3.1 Fuel Storage
 12.3.2 Fluid-Mechanical System
 12.3.3 Fuel Measurement and Management
 12.4 The Airbus A380 Wide-Bodied Airliner
 12.4.1 Fuel Storage
 12.4.2 Fluid-Mechanical System
 12.4.3 Fuel Measurement and Management System (FMMS)
 12.5 The Anglo-French Concorde
 12.5.1 Fuel System Operational and Thermal Design Issues
 12.5.2 Refuel System
 12.5.3 Fuel Transfer and Jettison
 12.5.4 Fuel Feed
 12.5.5 Vent System

13 New and Future Technologies
 13.1 Fuel Measurement and Management
 13.1.1 Fuel Measurement
 13.1.2 Fuel Management
 13.2 Fluid Mechanical Equipment Technology
 13.2.1 Fuel Valve Technology
 13.2.2 Revolutionary Fuel Pump and Valve Technology
 13.3 Aerial Refueling Operations

References

Index