Contents

Foreword V
Preface VII
List of Contributors XIX

Part I: Introduction

1 The Role of Pharmacokinetics and Pharmacodynamics in the Development of Biotech Drugs 3
 Bernd Meibohm
 1.1 Introduction 3
 1.2 Biotech Drugs and the Pharmaceutical Industry 4
 1.3 Pharmacokinetics and Pharmacodynamics in Drug Development 6
 1.4 PK and PK/PD Pitfalls for Biotech Drugs 9
 1.5 Regulatory Guidance 10
 1.6 Future 10
 1.7 References 12

Part II: The Basics

2 Pharmacokinetics of Peptides and Proteins 17
 Lisa Tang and Bernd Meibohm
 2.1 Introduction 17
 2.2 Administration Pathways 18
 2.2.1 Administration by Injection or Infusion 18
 2.2.2 Inhalational Administration 23
 2.2.3 Intranasal Administration 24
 2.2.4 Transdermal Administration 25
 2.2.5 Peroral Administration 25
 2.3 Administration Route and Immunogenicity 27
 2.4 Distribution 28
3 Pharmacokinetics of Monoclonal Antibodies 45

Katharina Kuester and Charlotte Kloft

3.1 Introduction 45
3.2 The Human Immune System 46
3.2.1 The Cellular Immune Response 47
3.2.2 The Humoral Immune Response 47
3.3 Physiological Antibodies 48
3.3.1 Classes of Antibodies 48
3.3.1.1 Immunoglobulin G 48
3.3.1.2 Immunoglobulins A, D, M, and E 49
3.3.2 Chemical Structure of Antibodies 50
3.4 Therapeutic Antibodies 52
3.4.1 Therapeutic Polyclonal Antibodies 52
3.4.2 Therapeutic mAbs 53
3.4.2.1 Murine mAbs 53
3.4.2.2 Chimeric mAbs 55
3.4.2.3 Humanized mAbs 55
3.4.2.4 Human mAbs 55
3.4.2.5 Further Species of mAbs 56
3.5 Effector Functions and Modes of Action of Antibodies 58
3.5.1 Biological Effector Functions of mAbs 58
3.5.2 Modes of Action of mAbs 59
3.5.2.1 Antibody-Dependent Cellular Cytotoxicity (ADCC) 59
3.5.2.2 Complement-Dependent Cytotoxicity 60
3.5.2.3 Blockage of Interaction between (Patho)Physiological Substance and Antigen 61
3.5.2.4 Conjugated Unlabeled mAbs 61
3.5.2.5 Radioactively Labeled mAbs 61
3.6 Prerequisites for mAb Therapy 62
3.6.1 The Patient 62
3.6.2 The Antibody 63
3.6.3 The Target Cell 63
3.6.4 The Antigen 63
3.7 Issues in the Bioanalysis of Antibodies 64
3.8 Catabolism of Antibodies 65
3.8.1 Proteolytic Degradation 65
3.8.2 Neonatal Fc Receptor (Fc-Rn) 65
3.9 Pharmacokinetic Characteristics of mAbs 68
3.9.1 Absorption 68
3.9.2 Distribution 71
3.9.2.1 Transport 71
3.9.2.2 Volume of Distribution 72
3.9.2.3 Types of Binding 74
3.9.3 Elimination 76
3.9.3.1 Clearance 76
3.9.3.2 Proteolysis 76
3.9.3.3 Binding to Antigen 77
3.9.3.4 Binding to Anti-Idiotype Antibodies 77
3.9.3.5 Drug Interaction Studies 78
3.9.4 Comparison of Pharmacokinetics of mAbs and Traditional Small-Molecule Drugs 78
3.10 Pharmacokinetic Modeling of mAbs 79
3.10.1 Noncompartmental Pharmacokinetic Analysis 79
3.10.2 Individual Compartmental Pharmacokinetic Analysis 80
3.10.3 Population Pharmacokinetic Analysis 81
3.10.3.1 Structural Submodel 82
3.10.3.2 Statistical Submodel 85
3.10.3.3 Covariate Submodel 85
3.11 Pharmacodynamics of mAbs 86
3.12 Conclusions 90
3.13 References 91

4 Pharmacokinetics and Pharmacodynamics of Antisense Oligonucleotides 93
Rosie Z. Yu, Richard S. Geary, and Arthur A. Levin

4.1 Introduction 93
4.2 Pharmacokinetics 96
4.2.1 Plasma Pharmacokinetics Across Species 97
4.2.2 Tissue Distribution 100
4.2.3 Metabolism 102
4.2.4 Elimination and Excretion 105
4.3 Pharmacodynamics 108
4.3.1 Pharmacological Endpoint: Reduction of Target mRNA and Protein 109
4.3.2 Pharmacological Endpoint: Downstream Effects 113
4.3.3 Relationship between ASO Pharmacokinetics and Clinical Outcome 113
4.4 Summary 115
4.5 References 115
Part III: Challenges and Opportunities

6 Bioanalytical Methods Used for Pharmacokinetic Evaluations of Biotech Macromolecule Drugs: Issues, Assay Approaches, and Limitations 147

Jean W. Lee

6.1 Introduction 147
6.2 Bioanalytical Methods for Macromolecule Drug Analysis: Common Considerations 148
 6.2.1 Sample Integrity and Analyte Stability 148
 6.2.2 Surface Adsorption 149
 6.2.3 Process of Method Development and Validation of Bioanalytical Methods for Macromolecule Drug Analysis 150
 6.2.4 Reference Standards 151
 6.2.5 Drug Compounds that Exist Endogenously 152
 6.2.6 Validation Samples, Quality Controls, and Assay Range 153
 6.2.7 Protein Binding Problems 153
6.3 The Bioanalytical Method Workhorses 154
 6.3.1 Ligand-Binding Assays: Immunoassays 157
 6.3.1.1 Common Method Approach 157
 6.3.1.2 Advantages of Immunoassays 158
 6.3.1.3 Issues and Limitations of Immunoassays 158
 6.3.2 HPLC-ESI-MS/MS Methods 162
9 Biopharmaceutical Challenges: Pulmonary Delivery of Proteins and Peptides 209

Kun Cheng and Ram I. Mahato

9.1 Introduction 209
9.2 Structure and Physiology of the Pulmonary System 211
9.2.1 Airway Epithelium 212
9.2.2 Alveolar Epithelium 214
9.3 Barriers to Pulmonary Absorption of Peptides and Proteins 214
9.4 Strategies for Pulmonary Delivery 215
9.4.1 Intratracheal Instillation 215
9.4.2 Aerosol Inhalation 215
9.4.2.1 Aerosol Deposition Mechanisms 216
9.4.2.2 Devices for Pulmonary Drug Delivery 216
9.5 Experimental Models 220
9.5.1 Isolated Perfused Lung Model 220
9.5.2 Cell Culture Models 220
9.6 Pulmonary Delivery of Peptides and Proteins 221
9.6.1 Mechanisms of Peptide Absorption after Pulmonary Delivery 221
9.6.2 Mechanisms of Protein Absorption after Pulmonary Delivery 222
9.6.3 Pulmonary Delivery of Peptides and Proteins 223
9.6.3.1 Insulin 223
9.6.3.2 Salmon Calcitonin 227
9.6.3.3 Luteinizing Hormone-Releasing Hormone (LHRH) Agonists/ Antagonists 229
9.6.3.4 Vasopressin 230
9.6.3.5 Granulocyte Colony-Stimulating Factor (G-CSF) 231
9.6.3.6 Interferons 232
9.6.3.7 TSH, FSH, and HCG 233
9.6.3.8 Elastase Inhibitors 233
9.7 Limitations of Aerosol Delivery 234
9.8 Summary 235
9.9 References 235

10 Biopharmaceutical Challenges: Delivery of Oligonucleotides 243

Lloyd G. Tillman and Gregory E. Hardee

10.1 Introduction 243
10.2 ASOs: The Physico-Chemical Properties 244
10.3 Local Administration 246
10.3.1 Ocular Delivery 246
10.3.2 Local Gastrointestinal Delivery 247
10.3.2.1 Rectal Dosing 247
10.3.2.2 Oral Dosing 248
10.3.3 Pulmonary Delivery 249
10.3.3.1 Formulation Considerations 251
10.3.3 Deposition and Uptake 251
10.3.4 Delivery to the Brain 253
10.3.5 Topical Delivery 253
10.3.6 Other Local Delivery Approaches 254
10.4 Systemic Delivery 255
10.4.1 Parenteral Routes 255
10.4.1.1 Sustained-Release Subcutaneous Formulations 256
10.4.2 Oral Delivery 257
10.4.2.1 Permeability 258
10.4.2.2 Systemic Bioavailability 260
10.5 Conclusions 265
10.6 References 266

11 Custom-Tailored Pharmacokinetics and Pharmacodynamics via Chemical Modifications of Biotech Drugs 271

Francesco M. Veronese and Paolo Caliceti

11.1 Introduction 271
11.2 Polymers Used in Biotechnological Drug PEGylation 272
11.3 Advantages of PEG as Drug Carrier 273
11.4 Chemical Aspects Critical for the Pharmacokinetics of Drug Conjugates 274
11.5 Insulin 279
11.6 Interferons 282
11.7 Avidin 285
11.8 Non-Peptide Drug Conjugation 288
11.8.1 Amphotericin B 289
11.8.2 Camptothecins 290
11.8.3 Cytosine Arabinoside (Ara-C) 291
11.9 Concluding Remarks 292
11.10 References 292

12 Exposure–Response Relationships for Therapeutic Biologic Products 295

Mohammad Tabrizi and Lorin K. Roskos

12.1 Introduction 295
12.2 Overview of Pharmacokinetics and Pharmacodynamics 295
12.2.1 Pharmacokinetics 295
12.2.1.1 Absorption 296
12.2.1.2 Distribution 296
12.2.1.3 Elimination 296
12.2.1.4 Immunogenicity 298
12.2.2 Pharmacodynamics 298
12.3 Hormones 300
12.3.1 Insulin 301
12.3.2 Parathyroid Hormone 302
12.4 Cytokines 303
12.4.1 Interleukin-2 305
12.5 Growth Factors 306
12.5.1 Epoetin-α 307
12.6 Soluble Receptors 308
12.6.1 Etanercept 308
12.7 Monoclonal Antibodies (mAbs) 310
12.7.1 Therapeutic Antibodies in Inflammatory Diseases 311
12.7.1.1 Anti-TNF-α Antibodies 314
12.7.1.2 Efalizumab 316
12.7.1.3 Omalizumab 317
12.7.2 Therapeutic Antibodies in Oncology 317
12.7.2.1 Rituximab 318
12.7.2.2 Bevacizumab 319
12.7.2.3 Trastuzumab 320
12.8 Conclusions 321
12.9 References 321

Part IV: Examples for the Integration of Pharmacokinetic and Pharmacodynamic Concepts Into the Biotech Drug Development Plan

13 Preclinical and Clinical Drug Development of Tasidotin, a Depsi-Pentapeptide Oncolytic Agent 331
Peter L. Bonate, Larry Arthaud, and Katherine Stephenson

13.1 Introduction 331
13.2 The Dolastatins 331
13.3 Discovery and Preclinical Pharmacokinetics of Tasidotin 333
13.4 Preclinical Pharmacology of Tasidotin and ILX651-C-Carboxylate 334
13.5 Toxicology of Tasidotin 334
13.6 Clinical Pharmacology and Studies of Tasidotin in Patients with Solid Tumors 335
13.7 Clinical Pharmacology of ILX651-C-Carboxylate 341
13.8 Exposure–Response Relationships 342
13.9 Discussion 343
13.10 Summary 349
13.11 References 349
14 **Clinical Drug Development of Cetuximab, a Monoclonal Antibody** 353

Arno Nolting, Floyd E. Fox, and Andreas Kovar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>353</td>
</tr>
<tr>
<td>14.2 Specific Considerations in Oncologic Drug Development</td>
<td>354</td>
</tr>
<tr>
<td>14.3 Introduction to the Clinical Pharmacokinetics of Cetuximab</td>
<td>356</td>
</tr>
<tr>
<td>14.4 Early Attempts to Characterize the PK of Cetuximab</td>
<td>356</td>
</tr>
<tr>
<td>14.5 PK of Cetuximab Following Pooling of Data Across All Studies</td>
<td>357</td>
</tr>
<tr>
<td>14.5.1 Comparison of Single-Dose PK Parameters at Various Dose Levels</td>
<td>357</td>
</tr>
<tr>
<td>14.5.1.1 Maximum Serum Concentration</td>
<td>357</td>
</tr>
<tr>
<td>14.5.1.2 Area Under the Concentration-Time Curve</td>
<td>359</td>
</tr>
<tr>
<td>14.5.1.3 Clearance</td>
<td>360</td>
</tr>
<tr>
<td>14.5.1.4 Elimination Half-Life</td>
<td>361</td>
</tr>
<tr>
<td>14.5.1.5 Volume of Distribution</td>
<td>361</td>
</tr>
<tr>
<td>14.5.2 Drug Metabolism and in-vitro Drug–Drug Interaction Studies</td>
<td>362</td>
</tr>
<tr>
<td>14.5.3 Comparison of Single- and Multiple-Dose PK at the Approved Dosing Regimen</td>
<td>362</td>
</tr>
<tr>
<td>14.6 Characterization of Cetuximab PK by a Population PK Approach</td>
<td>364</td>
</tr>
<tr>
<td>14.7 Drug–Drug Interaction Studies</td>
<td>366</td>
</tr>
<tr>
<td>14.8 Conclusions</td>
<td>369</td>
</tr>
<tr>
<td>14.9 References</td>
<td>370</td>
</tr>
</tbody>
</table>

15 **Integration of Pharmacokinetics and Pharmacodynamics Into the Drug Development of Pegfilgrastim, a Pegylated Protein** 373

Bing-Bing Yang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>373</td>
</tr>
<tr>
<td>15.2 Overview of Filgrastim Pharmacokinetics</td>
<td>374</td>
</tr>
<tr>
<td>15.3 The Making of Pegfilgrastim</td>
<td>375</td>
</tr>
<tr>
<td>15.4 Preclinical Pharmacokinetics and Pharmacodynamics of Pegfilgrastim</td>
<td>376</td>
</tr>
<tr>
<td>15.5 Pharmacokinetic and Pharmacodynamic Modeling</td>
<td>379</td>
</tr>
<tr>
<td>15.6 Clinical Pharmacokinetics and Pharmacodynamics of Pegfilgrastim</td>
<td>381</td>
</tr>
<tr>
<td>15.7 Basis for the Fixed-Dose Rationale</td>
<td>385</td>
</tr>
<tr>
<td>15.8 Clinical Evaluation of the Fixed Dose</td>
<td>389</td>
</tr>
<tr>
<td>15.9 Summary</td>
<td>391</td>
</tr>
<tr>
<td>15.10 References</td>
<td>391</td>
</tr>
</tbody>
</table>

Subject Index 395