INDEX

Acidithiobacillus, 132
Amazon Craton
 biostratigraphy of, 102–4, 103f, 105f
 cap carbonate in southern, 98
 contact between glacial deposits and cap carbonate in, 94, 97f
Cryogenian–Ediacaran boundary in southern, 89–108, 90f, 92f, 95f–97f, 98f, 100f, 103f, 105f, 106f
 geological-structural setting of southern, 95f
 geologic map of southwestern, 90f
 global correlations with, 104–7, 105f, 106f
 lithostratigraphy and major geologic events of, 92f
Marinoan cap carbonate in southern
 cap carbonate, 98–102, 98f, 100f
 cap dolostone, 99–101, 100f
 cap limestone cementstone, 101–2
 Marinoan glacial deposits, 93–94, 95f, 96f
 paleobiology of, 102–4, 103f, 105f
 paleogeographic map for, 74f
 representative fossils of, 103f
 simplified stratigraphic section of glacial deposits with, 96f
Ammonoids, 166
Angara Craton, 74f
Anomaly, 29
Anticosti Island, 147f
Argillaceous red, nodular, bioturbated wackestone, 166, 167f, 171f
Aspidella, 131f
Astartekloft, 192
Asteroid impact event, 224–25
Atar Group
 carbon isotope chemostratigraphy of, 80f
 paleogeographic map for, 74f
Atmospheric oxygenation
 Archean-Proterozoic boundary with, 35–43, 42f
 geochemical proxies for, 41–42, 42f
 geological evidence of, 36f
Australia, 56
 carbon isotope data for carbonate sequences of, 58f
 chronostratigraphic framework of, 51f
 plot of ε_{180} versus age of concordant detrital zircons, 64f
 stratigraphic sections for, 58f
Avalon Assemblage, 127
Avalonia, 74f
BACE. See Basal Cambrian Excursion
Background value, 29
Baltica (Russian craton), 74f
Baltica Paleoplate, 53–54
 chronostratigraphic framework of, 51f
Banded iron formation (BIF)
 Archean-Proterozoic boundary with, 42f
 chemostratigraphic curves with, 42f
 of Dales Gorge Member of Brockman Iron Formation, 43
 evidence of oxygenation in Archean-Proterozoic boundary from, 35, 36f
 isotopic fractionation with, 10–11
 $\delta^{53}Cr$ values for, 39–40
 Basal Cambrian Excursion (BACE), 122–23
 Bastar Craton, 54–55, 54f
 Beggiatoa, 132
 BIF. See Banded iron formation
 Birkhill Shale, 147–48
 Bocaina Formation, insertion of post-Marinoan carbonates of, 106f
 Bootstrap sample test, 173, 173f
 Boron isotopes, 9–10
 Brasilia Deform Belt, marine sedimentary record studied in, 76
 Bristol Channel Basin at St. Audries Bay, 189
 Brockman Iron Formation, 43
 Bylot Supergroup
 carbon isotope chemostratigraphy of, 80f, 81f
 chemostratigraphic pathways of, 79
 iron speciation data from, 83
 lithostratigraphy of, 81f
 paleogeographic map for, 74f
Calcario Tangará quarry, 98f
Calcium isotopes, 9–10
Calymmian period, 48, 51f, 52–53, 59, 64
depositional age for Dongchuan Group, 56
deposition of large red beds during, 61
sedimentary rocks of, 63
Calymmian rift, 47
Cambrian explosion, 123–24
CAMP. See Central Atlantic magmatic province
Canada
Ordovician paleogeographic position in, 147f
Truro Island, Arctic in, 147f, 150–51, 152f
Carbonate–associated sulfate (CAS)
analyses in transitional Ediacaran to Cambrian
successions, 123
composition of, 60
isotopic compositions of, 121–22
measurements of sulfur isotopes on, 8
Carbonate microfacies
argillaceous red, nodular, bioturbated wackestone, 166,
167f, 171f
gray/yellow nodular sponge wackestone, 166, 168f, 171f
laminated bindstone, 166, 169f, 171f, 172f
oncoid wackestone/floatstone, 166, 168, 170f, 172f
Carbon isotopes, 5–6. See also Jurassic-Cretaceous carbon
isotope geochemistry
analysis and sampling strategies with, 165–66
Araras Group in chemostratigraphy with, 105f
carbonate sequences data for, 58f, 59, 59f, 60
chemostratigraphy, 75f, 76f, 79f, 80f, 81f, 105f, 193,
194f–95f
composition analysis results with, 172–74, 173f, 173t
compositions in Mesoproterozoic–Neoproterozoic transition
of, 81, 82f
curves coupled with ^{60}Cr, 10, 12
Ediacaran-Cambrian transition, trends leading up to, 122
Permian-Triassic boundary with composition of,
160–62, 161f
sampling strategies with, 162–64, 163f
signature of carbonate sections in NCC, 60
stratigraphy for Triassic-Jurassic chemostratigraphy, 193,
194f–95f
terminal Ediacaran stage trend in composition of, 119f
Turukhansk Group with chemostratigraphy of, 75f
within-bed variability for, 174–75
Carbon isotope stratigraphy
Jurassic-Cretaceous boundary, 216–18, 217f
Jurassic-Cretaceous carbon isotope geochemistry with,
214–15
as paleoceanography tool, 216
Paleocene-Eocene Thermal Maximum with, 14
terminology, 215–16
Triassic-Jurassic chemostratigraphy with, 193, 194f–95f
CAS. See Carbonate–associated sulfate
Cenozoic era
chemostratigraphy, 261–72, 268f
chemostratigraphic markers in, 269–71, 270f
introduction to, 261–62
chronostratigraphy of, 262–63
geological events impacting spatial and temporal scales in
biotic events, 264–66
climatic events, 266–67
relative sea-level trends, 267–68, 267f
tectonic events, 263–64
hydrophere-atmosphere-biosphere changes in, 261
isotopes of, 270f
Mesozoic era trends continued in, 271–72
temperature of, 270f
Central Atlantic magmatic province (CAMP)
basalt emplacement, 197f
basalt flows, 196, 198
carbon cycle change with emplacement of, 201
composition of, 187
Eiberg Basin associated with, 189
end-Triassic mass extinction correlation with
eplacement of, 196
environmental changes triggered by, 185
evolution of, 185
global change events from emplacement of, 200
magmatic records of Morocco and North America, 189
palaeogeographic map associated with, 186f
rocks of, 186f
siliciclastic stratigraphic unit from, 188
start of activity from, 188
volcanism, 185, 187–89, 201
weathering, 200
Changcheng system, 50, 50f, 51f, 52, 55, 59–61
Charniodiscus spinosus, 131f
Chemical stratigraphy, 28
Chemochron, 29
Chemostratigraphic index, 29
Chemostratigraphy
Cenozoic, 261–72, 268f, 270f
chronostratigraphic boundaries, 14
^{60}Cr, 145–56, 146f–49f, 151f–53f, 155f
defined, 29
detrital zircon record in, 48, 61–64, 62f, 64f
development of, 4–14
Ediacaran-Cambrian transition in, 117–24, 119f, 120f
elemental, 3, 12–14
as formal stratigraphic method, 14–15
glossary of, 27–30, 28f
interdisciplinary nature of, 27
isotope stratigraphic markers in, 163–64, 163f
isotope systems (See Isotope systems)
Paleoproterozoic-Mesoproterozoic transition, 47–65,
49f–51f, 54f, 58f–60f, 62f, 64f
across Permian-Triassic boundary, 159–77, 161f, 163f,
167f–73f, 173t
popularity of, 27
Precambrian, 3, 5
publications, 27–28, 28f
sampling strategies with, 162–64, 163f
Triassic-Jurassic boundary, 193–200, 194f–95f, 199f
Chemozone, 29
Chhattisgarh basin, geological map showing, 54f
China
Jixian System, 55
Meishan in south, 161f
North China Craton, 48, 50, 51f, 52, 55, 59f, 61, 64f
South China Craton, 56
Wangjiwan, Yangtze platform, 147f, 150, 151f

Chromium isotopes, 10–11
Evidence of oxygenation in Archean-Proterozoic boundary from, 39–40, 39f
evolution of seawater in Precambrian era, 39f
mass-independent fractionation, 11
Neoproterozoic carbonates with, 40
oxidation states of, 39
ratios, 39
terminal Ediacaran stage with, 123

Chupinguaia region, 98f

Climate
Carbon isotope geochemistry as paleoclimatic tool, 212–13
Cenozoic era, 266–67
Ediacaran-Cambrian transition with, 124–27, 125f
perspective on, 115

Coats Land-Maudheim-Grunehogna province of East Antarctica (CMG), 74f

Columbia supercontinent
blocks of, 49f
evolution of, 48
Paleoproterozoic-Mesoproterozoic transition, 52–53
Congo Craton, 74f
Congo-São Francisco craton, 52–53, 63
chronostratigraphic framework of, 51f
intracratonic and rift-related basins of, 52
plot of $e^{(180)}$ versus age of concordant detrital zircons, 64f
zircon grains deposited in, 61

Correlation, 29
50Cr, 39
52Cr, 39, 84
53Cr, 39, 39f. See also δ^{53}Cr
Craig, Harmon, 211

Cratons
Amazonian, 74f
Angara, 74f
Aravalli-Bundelkhand, 54–55, 54f, 59–60
Bastar, 54–55, 54f
Congo, 74f
Congo-São Francisco, 51f, 52–53, 61, 63, 64f
Dharwar, 54–55, 54f
distribution of, 49f
East European, 53–54
Fennoscandia, 53–54
Indian, 54–55, 54f
Kalahari, 74f
Laurentia, 56
Mesoproterozoic cratonic basins, 48
Mesoproterozoic-Neoproterozoic marine sedimentary records of, 74
North Australian, 50
North China, 48, 50, 51f, 52, 55, 59f, 61, 64f
Pilbara, 40
Rio de la Plata, 74f
Russian, 74f
São Francisco, 74f, 77, 79f, 81, 85
Sarmatia, 53
Singhbhum, 54–55, 54f
South China, 56
stabilization of, 47
Volgo-Uralia, 53–54
West African, 74f

Cretaceous-Paleogene (K-Pg) boundary
GSSP for, 6
introduction to, 223–24
massive extinction cause at
asteroid impact event, 224–25
Deccan phase 2 eruption, 226–27
Deccan Province eruptions, 225–26
high-temperature/pressure, 224–25
volcanism, 225–27

Cryogenian-Ediacaran boundary
Amazon Craton, 89–108, 90f, 92f, 95f–97f, 98f, 100f, 103f, 105f, 106f
biostratigraphy of, 102–4, 103f, 105f
contact between glacial deposits and cap carbonate in, 94, 97f
geological setting of, 91–93, 92f
global correlations with, 104–7, 105f, 106f
GSSP with, 90, 107
introduction to, 89–91, 90f
lithostratigraphy and major geologic events of, 92f
Marinoan cap carbonates exposure in, 90, 90f
Marinoan cap carbonate with
cap carbonate, 98–102, 98f, 100f
cap dolostone, 99–101, 100f
cap limestone cementstone, 101–2
Marinoan glacial deposits, 93–94, 95f, 96f
paleobiology of, 102–4, 103f, 105f
recognition of, 90
simplified stratigraphic section of glacial deposits with, 96f
time scale of cap carbonate deposition at, 107–8

Cryogenian glaciations, 124
Cryogenian glaciogenic deposits, 93

Cryogenian period
environmental changes recorded for, 102
global glaciations in, 89
δ^{53}Cr, 39f, 42, 61, 63, 75f, 76f
carbon isotope curves coupled with, 10, 12
chronostratigraphic curves near Archean-Proterozoic boundary, 42f
Mesoproterozoic seawater with, 73, 82, 82f, 84–85
values for Precambrian BIFs, 39–40
Csővár Section in Transdanubian Range Unit, 190
Cuddapah Basin, geological map showing, 54f
Cuiabá Group, 93–94
Culpeper Basin, 186f
Cyrtoceras procerus, 131f
Cycle, 29
δ¹³C chemostratigraphy
ecustacy, relations between, 153–54
extinction events, relations between, 154–55, 155f
Hirnantian carbon isotopic excursion in, 145, 148–55, 148f, 151f–53f
introduction to, 145–47, 146f, 147f
isotope curves from shales in, 146
model of inferred relations between faunal extinction intervals and, 155f
Ordovician-Silurian boundary interval in, 145–56, 146f–49f, 151f–53f, 155f

Danish Basin, 186f
Death mask hypothesis, 127
Deccan Province eruptions, 225–26
phase 2, 226–27
Detrital zircon record, Paleoproterozoic-Mesoproterozoic transition with, 48, 61–64, 62f, 64f
Dharwar Craton, 54–55, 54f
DIC. See Dissolved inorganic carbon
Dickinsonia costata, 131f
Dissolved inorganic carbon (DIC), 163
¹³C depletion and enrichment, controlled by, 175
global ocean reservoir with, 119
isotopic composition of, 6, 176, 212
marine pool with, 81
Neoproterozoic oceans with, 117
rock carbonate samples with, 162
sampling strategies with, 176–77
in seawater, 213
Dissolved organic carbon (DOC)
Neoproterozoic oceans with, 117
osmotrophy viable in, 116
sulfate reducers with, 120
Dob's Linn, Scotland
Birkhill Shale in, 147–48
δ¹³Corg curve through boundary interval at, 148f
Hirnantian carbon isotopic excursion with, 149, 151f, 154
Ordovician paleogeographic position in, 147f
Ordovician-Silurian boundary interval in, 147–49, 147f, 148f, 151f, 154
DOC. See Dissolved organic carbon
Dongchuan Group, depositional age between Statherian and Calymmian of, 56
DSDP. See Rio Grande Rise Deep Sea Drilling Project
Duitschland Formation, 37, 43
Duration, 29
East European Craton, 53–54
Echinoderms, 166
Ectasian period, 48, 52
Ediacaran biota
Acidithiobacillus, 132
Aspidella, 131f
Beggiatoa, 132
bioturbation with, 127–33, 128f, 129f, 131f
Charniodiscus spinosus, 131f
Cychrus procerus, 131f
death mask hypothesis with, 127
Dickinsonia costata, 131f
Erniettaville with, 127–33, 128f, 129f, 131f
formulation of, 127
Fractofusus misrai, 131f
Kimberichnus teruzzi, 131f
Metazoans, 133
mixing of sediments implicated in demise of, 116f
Neoproterozoic Oxidation Event with, 115, 121–22
Pseudomonas, 132
resource-based hypothesis of, 115–34, 116f, 119f, 120f, 125f, 128f, 129f, 131f
Sulfolobales, 132
terminal Ediacaran stage with, 117–18, 119f, 123, 126–27, 132–33
Thiomargarita, 133
Ediacaran-Cambrian transition
agronomic revolution with, 116f
Basal Cambrian Excursion with, 122–23
biogeochemical perspective on, 115–17, 116f
bioturbation with, 127–33, 128f, 129f, 131f
Cambrian explosion with, 123–24
carbon isotope trends leading up to, 122
chemostratigraphic studies for, 117–24, 119f, 120f
climatic perspective on, 115
Erniettaville with, 127–33, 128f, 129f, 131f
fossils of, 116
gerochronological perspective on, 115
Neoproterozoic Oxidation Event with, 115, 121–22
paleontological perspective on, 115
resource-based hypothesis of, 115–34, 116f, 119f, 120f, 125f, 128f, 129f, 131f
Shuram excursion with, 115, 118–21, 119f, 120f, 124
terminal Ediacaran stage with, 117–18, 119f, 123, 126–27, 132–33
Ediacaran period
environmental changes recorded for, 102
global glaciations in, 89
oceans of, 115
Eiberg Basin, 188
Elemental chemostratigraphy, 3, 12–14
Ellsworth-Whitmore Mountains block, 74f
Ernietta, 127, 129f, 130
Erniettaville, 127–33, 128f, 129f, 131f
Espigão d’Oeste formation, insertion of post-Marinoan carbonates of, 106f
Espigão d’Oeste region, 97f
Eustacy, isotope chemostratigraphy related to, 153–54
Excursions. See also Hirnantian carbon isotopic excursion
Basal Cambrian, 122–23
boron isotope, 10
carbon isotope, 5–6
in carbon isotope geochemistry, 213–14
defined, 29
lithium isotope, 11
magnesium isotope, 10
nitrogen isotope, 7
Shuram, 115, 117, 124
strontium isotope, 11
Extinction events
- end-Triassic mass extinction with, 187–88, 196
- isotope chemostratigraphy related to, 154–55, 155f
 at K-Pg boundary
 - asteroid impact event, 224–25
 - Deccan phase 2 eruption, 226–27
 - Deccan Province eruptions, 225–26
 - high-temperature/pressure, 224–25
 - volcanism, 225–27

Falkland-Malvinas Plateau (F/MP), 74f
Farm Aar, 127, 128f, 129f, 130
Fennoscandia Craton, 53–54
Fingerprinting, 29
Fligner-Killeen test, 172
Fluctuation, 29
F/MP. See Falkland-Malvinas Plateau
Fortunian stage, 115, 117, 119f, 120f, 122
Fractofusus misrai, 131f
Fundy Basin, 186f

Gaskiers, 126
 - biogeochemical anomaly with, 118
 - diamictites, 106, 108–19, 124, 125f
 - Ediacaran sedimentary rocks in Newfoundland with, 121
 - glaciation, 91, 104, 105f, 106f, 108, 124
 - regional ice sheets development with, 115
 - Serra Azul Formation with, 91, 104
Geochemical curve, 29
Geochemical marker, 29
Geochemical signature, 29
Geological Society of America, publications, 28
Geological Society of London, publications, 28
GeoScienceWorld, publications, 28
Global Stratotype Section and Point (GSSP), 42–43
 - Archean-Proterozoic boundary with, 42f, 43
 - Cambrian, 124
 - chronostratigraphic boundaries for, 14
 - Cretaceous-Paleogene boundary, 6, 223
 - Cryogenian-Ediacaran boundary, 90, 107
 - Dob’s Linn, 147, 148f
 - Hirnantian, 150, 153
 - Holocene, 5
 - Kuhjoch succession, 188–89
 - Meishan in South China, 161f
 - Ordovician-Silurian boundary interval, 147, 148f, 150, 151f, 153
 - Paleoproterozoic-Mesoproterozoic boundary, 50–52
 - Triassic-Jurassic boundary, 185, 188–89, 192, 195f, 218
GOE. See Great Oxidation Event
Gray/yellow nodular sponge wackestone, 166, 168f, 171f
Great Oxidation Event (GOE)
 - Archean-Proterozoic boundary in, 9, 35–43, 36f, 38f, 39f, 41f, 42f
 - chromium isotopes evolution of seawater in Precambrian era with, 39f
 - geological evidence of, 36f
 - large red beds during Statherian and Calymmian after, 61
 - mass-independent fractionation with, 8
 - Paleoproterozoic era, 47
 - timing of, 36
GSSP. See Global Stratotype Section and Point
GSSP Kuhjoch succession, 188–89
Guia Formation, insertion of post-Marinoan carbonates of, 106f
Hartford Basin, 186f
HICE. See Hirnantian carbon isotopic excursion
High Atlas Basin, 186f
High-temperature/pressure (HTP), 224
Hirnantian carbon isotopic excursion (HICE)
 - beginning of, 148, 153, 154
 - δ13Corg isotope values are reached after, 148
 - development in Lindegård Mudstone of, 149
 - Dob’s Linn succession after, 149, 151f, 154
 - falling post-peak values of, 145
 - global stratigraphic significance of, 153
 - isotope curve with, 151, 151f
 - Ordovician-Silurian boundary interval with, 145, 148–55, 148f, 151f–53f
 - peak values of, 152
 - timings of δ7Li and, 13
Holser, William T., 3
HTP. See High-temperature/pressure
Hydrogen isotopes, 5
ICS. See International Commission on Stratigraphy
India
 - carbon isotope data for carbonate sequences of, 59f
 - chronostratigraphic framework of, 51f
 - four main cratonic domains of, 54–55, 54f
 - plot of εHf(t) versus age of concordant detrital zircons, 64f
 - Indian Shield, 54–55, 54f
Indravati basin, geological map showing, 54f
International Commission on Stratigraphy (ICS), 14, 215, 224
International Union of Geological Sciences (IUGS), 3
Iron isotopes, 10–11
Isotope stratigraphy, 28
 - carbon, 14, 193, 194f–95f, 214–18, 217f
 - osmium, 200
 - oxygen, 196–200, 199f
 - strontium, 200
Isotope systems, 3–15
 - boron isotopes, 9–10
 - calcium isotopes, 9–10
 - carbon isotopes, 5–6, 10, 12, 14, 58f, 59, 59f, 60, 75f, 76f, 79f, 80f, 81, 81f, 82f, 105f, 119f, 122, 148, 151, 151f, 160–66, 161f, 163f, 172–75, 173f, 173t, 193, 194f–95f, 211–18, 217f
 - Cenozoic era, 270f
 - chromium isotopes, 10–11, 39–40, 39f, 123
 - hydrogen isotopes, 5
 - iron isotopes, 10–11
 - lithium isotopes, 12–13
 - magnesium isotopes, 9–10
 - mercury, 248–49, 248t, 249f
 - molybdenum isotopes, 10–11, 40–41, 41f, 83–85, 84t
 - neodymium isotopes, 11–12
Isotope systems (cont’d)
nitrogen isotopes, 6–7
osmium isotopes, 12–13, 200
oxygen isotopes, 3, 7–8, 165–66, 172–75, 173f, 173t, 196–200, 199f
strontium isotopes, 11–12, 61, 123, 200
sulfur isotopes, 8–9, 11, 36–38, 38f, 40–43, 48
thallium isotopes, 10–11

IUGS. See International Union of Geological Sciences

Jixian Basin, carbon isotope data for carbonate sequences of, 50f, 60
Jixian system, 50, 50f, 51f, 52, 55, 59–60
Jurassic-Cretaceous boundary, carbon isotope stratigraphy with, 216–18, 217f
Jurassic-Cretaceous carbon isotope geochemistry
carbonate carbon and organic carbon isotope stratigraphy, 214–15
excursions in, 213–14
introduction to, 211–12
as paleoclimatic tool, 212–13
spikes in, 213–14
as stratigraphic tool, 212–13
terminology, 215–16
wiggles in, 213–14

Kaladgi-Bhima basin, geological map showing, 54f
Kalahari Craton, 74f
Kallholn Formation, 149, 149f
Kennecott Point in Haida Gwaii, 190–91
Kimberichnus teruzzi, 131f
K-Pg boundary. See Cretaceous-Paleogene boundary
Kroopnick, Peter, 212
Kruskal-Wallis H test, 172
Kuruman Formation, 42

Laminated bindstone, 166, 169f, 171f, 172f
Laurentia
carbon isotope data for carbonate sequences of, 58f
chronostratigraphic framework of, 51f
cratons of, 56
stratigraphic sections for, 58f
Lithium isotopes, 12–13
Lomagundi anomaly, present atmospheric level with, 61
Lower Cretaceous Maiolica Formation, 217f

Magnesium isotopes, 9–10
Magnitude, 29
Marie Byrd Land (MBL), 74f
Marine oxygen levels, geochemical evidence of Mesoproterozoic-Neoproterozoic transition, 81–83, 81f, 82f
Marine sedimentary records, for Mesoproterozoic-Neoproterozoic transition, 74, 74f, 76, 78, 85
Marinoan glacial deposits
Amazon Craton, 93–94, 95f, 96f
cap carbonate, 98–102, 98f, 100f
cap dolostone, 99–101, 100f
cap limestone cementstone, 101–2
contact between cap carbonate and, 94, 97f
simplified stratigraphic section of, 96f
Marwar basin, geological map showning, 54f
Mass dependent fractionation (MDF), 248, 248t, 249f
Mass-independent fractionation (MIF)
chromium isotopes, 11
GOE with, 8
mercury isotopes, 248–49, 248t, 249f
O, S, and Hg, linked to photochemical reactions with, 8
sulfur isotopes, 11, 37, 38f, 40–43, 48
MBL. See Marie Byrd Land
McArthur basin, 57
MDF. See Mass dependent fractionation
Mercury chemostratigraphy, 196
Mercury isotopes
MDF, 248, 248t, 249f
MIF, 248–49, 248t, 249f
Mesoarchean Oxygen Whiff, 39f
Mesoproterozoic Atar Group, iron speciation data from, 83
Mesoproterozoic era, 47–48, 51f
cratonic basins, 48
oxic atmospheric conditions in early, 48
Mesoproterozoic-Neoproterozoic transition
carbon isotope chemostratigraphy for, 75f, 76f
carbon isotope compositions of, 81, 82f
chemostratigraphic information on, 74–81, 74f–81f
cratons for, 74
geochemical evidence of marine oxygen levels for, 81–83, 82f
textbook of, 73–74
textbook of, 73–74
isotope chemostratigraphic framework for, 74
marine sedimentary records for, 74, 74f, 76, 78, 85
methods in study of, 85
molybdenum isotope evidence of ocean oxygenation in, 83–85, 84f
paleogeographic map for, 74f
Mesozoic era
Jurassic-Cretaceous carbon isotope geochemistry in,
K-Pg boundary in, 223–30, 228f, 231t–34t, 235f, 236f,
239t–42t, 243f–45f, 246f, 247f, 248t, 249f
Triassic-Jurassic boundary in, 185–201, 186f, 194f, 195f, 197f, 199f
Metazoans, 133
Microbially induced sedimentary structures (MISS), 130
Microbial sulfate reduction (MSR), 124, 133
34S-enhanced pyrites with, 122
anaerobic, 127
continental fluxes with, 120
non-photosynthetic sulfide oxidizers with, 132
reoxidized to elemental sulfur produced through, 121
MISS. See Microbially induced sedimentary structures
Molybdenum isotopes, 10–11
compositions of carbonates from Vazante groups, 83, 84f
evidence of oxygenation in Archean-Proterozoic boundary from, 40–41, 41f
evolution in Transvaal Supergroup of, 41f
ocean oxygenation evidence with, 83–85, 84t
ratio used with, 40
Monitor Range, Nevada, 147f
Morocco, CAMP magmatic records of, 189
Morro do Calcário Formation
carbon pathways displayed by carbonates from, 76
inorganic marine cements from, 83
marine sedimentary record studied in, 76
of Vazante groups, 82–83
δ98/95Mo values of, 84
Morro do Puga outcrop, 93
Mount Isa basin, 57
Mount McRae Shale, 42–43
Δ98/95Mo, 40–43, 73, 76f, 82f, 83–85
MSR. See Microbial sulfate reduction
Nama Group, research of lower, 127
NCC. See North China Craton
Neoarchean Oxygen Whiff, 39f
Neodymium isotopes, 11–12
Neoproterozoic carbonates, chromium isotopes with, 40
Neoproterozoic era, 48
Neoproterozoic Oxidation Event, 39f
Ediacaran-Cambrian transition with, 115, 121–22
Newark Basin, 186f
New Guinea, paleogeographic map of, 74f
New York Canyon Section, 186f, 191–92
Nitrogen isotopes, 6–7
Nobres Formation
insertion of post-Marinoan carbonates of, 106f
microbial laminates in, 103
Normal value, 29
North America, CAMP magmatic records of, 189
North Australian Craton, 50
North China Craton (NCC), 48, 50
carbon isotope data for carbonate sequences of, 59f
carbon isotope signature of carbonate sections in, 60
Changcheng System of, 55
chronostratigraphic framework of, 51f
composition of, 55
dike swarms and rift associated with, 55
intracratonic and rift-related basins of, 52
Jixian System of, 55
plot of εHf(t) versus age of concordant detrital zircons, 64f
zircon grains deposited in, 61
Northern Calcareous Alps, 186f
Oceanic anoxic events (OAEs)
carbon Isotopes in study of, 6
Oncoid wackestone/floatstone, 166, 168, 170f, 172f
Order of cycle, 29

Ordovician-Silurian boundary interval
Anticosti Island in, 147f
Canada in, 147f
δ13C chemostratigraphy of, 145–56, 146f–49f, 151f–53f, 155f
Dob’s Linn, Scotland in, 147–49, 147f, 148f, 151f, 154
Hirnantian carbon isotopic excursion with, 145, 148–55, 148f, 151f–53f
introduction to, 145–47, 146f, 147f
Late Ordovician paleogeographic position in, 147f
Mirny Creek, eastern Siberia in, 147f, 152, 153f
model of relations between chemostratigraphy and extinction intervals in, 155f
Monitor Range, Nevada in, 147f
relations between δ13C chemostratigraphy and eustacy with, 153–54
relations between δ13C chemostratigraphy and extinction events with, 154–55, 155f
Röstanga, Sweden in, 147f, 148–50, 149f
stratigraphic gaps in, 146f
Truro Island, Canadian Arctic in, 147f, 150–51, 152f
Wangjiwan, Yangtze platform, China in, 147f, 150, 151f
Orogen
Columbia/Nuna supercontinent configuration with, 50f
detrital zircon contribution with, 63
distribution of, 48, 49f
Laurentia with, 56
Osmium isotopes, 12–13, 200
Osmium isotope stratigraphy, 200
Ostracod valves, 166
Otavi Group, carbon isotope chemostratigraphy for, 105f
Oxygen isotopes, 3, 7–8
analysis and sampling strategies with, 165–66
composition analysis results with, 172–74, 173f, 173t
stratigraphy for Triassic-Jurassic chemostratigraphy, 196–200, 199f
within-bed variability for, 175
Oxygen isotope stratigraphy, 196–200, 199f
PAL. See Present atmospheric level
Paleocene-Eocene Thermal Maximum (PETM)
carbon isotope chemostratigraphy with, 14
carbon isotope excursion with, 10
Cenozoic climatic events with, 266–68
Cenozoic era trends with, 271
OAE event with, 6
P-E boundary with, 269
volcanic activity with, 13
Paleoproterozoic era, 51f
Great Oxidation Event in, 47
oxic atmosphere record after, 47–48
Paleoproterozoic-Mesoproterozoic boundary, present atmospheric level with, 61
Paleoproterozoic-Mesoproterozoic transition
Australia, 51f, 56, 58f, 64f
Baltica Paleoplate, 51f, 53–54
chronostratigraphy of, 47–65, 49f–51f, 54f, 58f–60f, 62f, 64f
chronostratigraphic framework of, 51f
chronostratigraphic correlations from, 53–56, 54f
Columbia supercontinent, 52–53
Paleoproterozoic-Mesoproterozoic transition (cont’d)
Congo-São Francisco craton, 51f, 52–53, 61, 63, 64f
detrital zircon record in, 48, 61–64, 62f, 64f
India and Indian Shield, 51f, 54–55, 54f, 64f
Laurentia, 51f, 56, 58f
North China Craton, 48, 50, 51f, 52, 55, 59f, 61, 64f
Siberian platform, 51f, 53
Yangtze block, 51f, 56, 64f
Paleozoic era
Ordovician-Silurian boundary interval in, 145–56, 146f–49f,
151f–53f, 155f
Permian-Triassic boundary in, 159–77, 161f, 163f,
167f–73f, 173t
Paraguay Belt
geological-structural setting of northern, 95f
Paranoá groups
carbon isotope chemostratigraphy of, 79f
glaciogenic deposits underlying, 79f, 85
Pelagic Maiolica Formation, 217f
Pelso Unit, Hungary, 186f
Penge Formation, 42
Permian-Triassic boundary
bulk rock carbon isotope composition with, 160–62, 161f
carbon and oxygen isotope results in study of, 172–74,
173f, 173t
carbonate microfacies with, 166–70, 167f–72f
chemostratigraphy across, 159–77, 161f, 163f, 167f–73f, 173t
effect of sampling strategies on chemostratigraphy of, 176
fossil assemblages change with, 159
future sampling strategies recommendations for study of, 176–77
geological setting for, 164–65
introduction to, 159–64, 161f, 163f
isotope stratigraphic markers in, 163–64, 163f
limestone formation controls in study of, 174
materials and methods in study of
carbonate carbon and oxygen isotope analysis, 165–66
petrographic analysis, 165
sample selection, 165
model for carbonate diagenesis and isotope signal retention
in, 175–76
within-bed carbon isotope variability in study of, 174–75
within-bed oxygen isotope variability in study of, 175
Perturbation, 29
Peru, Utcubamba Valley, 186f
PETM. See Paleocene-Eocene Thermal Maximum
Petrographic analysis, 165
Pilbara Craton, 40
Pleistocene-Holocene transition, 212
Poço Verde Formation, δ^{34}S values of, 84
Polish Trough, 186f
Pranhita-Godavari basin, geological map showing, 54f
Precambrian chemostratigraphy, 3
Precambrian era
Archean-Proterozoic boundary in, 35–43, 36f, 38f, 39f,
41f, 42f
carbon and oxygen isotope results with, 160–62, 161f
chemostratigraphy across, 159–77, 161f, 163f, 167f–73f, 173t
ekronite isotopes evolution of seawater in, 39f
Cryogenian-Ediacaran boundary in Southern Amazon
Craton in, 89–108, 90f, 92f, 95f–97f, 98f, 100f, 103f, 105f, 106f
Ediacaran-Cambrian transition in, 115–34, 116f, 119f, 120f,
125f, 128f, 129f, 131f
fossil assemblages, 89
Mesoproterozoic-Neoproterozoic transition in, 73–85
Paleoproterozoic-Mesoproterozoic transition in, 47–65,
49f–51f, 54f, 58f–60f, 62f, 64f
Present atmospheric level (PAL)
Archean-Proterozoic boundary exceeding, 35, 37, 40–43
Lomagundi anomaly, 61
Paleoproterozoic-Mesoproterozoic boundary, 61
Proterozoic basins, geological map showing, 54f
Proxy, 30
Pseudomonas, 132
Pteridinium, 127, 128f, 130
Puga Formation
geological-structural setting of, 95f
glaciogenic deposits of, 93–94
insertion of post-Marinoan carbonates of, 106f
Queen Charlotte Islands, 186f
Raizama Formation, 95f
insertion of post-Marinoan carbonates of, 106f
Rangea, 127, 129f, 130
Rate, 30
Resolution, 30
Rhaetian Kössen Formation, 188
Rio de la Plata Craton, 74f
Rio Grande Rise Deep Sea Drilling Project (DSDP), 212
RMC. See Rondonia Mineral Company
Rockall Plateau with adjacent northwest Scotland and
northwest Ireland, 74f
Rondonia Mineral Company (RMC), 96f, 98f
Röstånga, Sweden, 147f, 148–50, 149f
Russian craton, 74f
δ^{32}S, 36–37, 73, 85
δ^{33}S, 36–38, 38f
δ^{34}S, 5, 8–9, 11, 36–37, 38f, 40, 42, 60, 63, 81, 121–22, 145,
162, 191
δ^{36}S, 36–37
Sampling resolution/interval, 30
Sampling strategies
bulk rock carbon isotope composition with, 160–62, 161f
carbon and oxygen isotope results with, 172–74, 173f, 173t
carbonate microfacies with, 166–70, 167f–72f
carbon isotope trends with, 162–64, 163f
chemostratigraphy across Permian-Triassic boundary, 159–60
glacial setting for, 164–65
isotope stratigraphic markers in, 163–64, 163f
limestone formation controls with, 174
materials and methods in study of
carbonate carbon and oxygen isotope analysis, 165–66
petrographic analysis, 165
sample selection, 165
within-bed carbon isotope variability in study of, 174–75
within-bed oxygen isotope variability in study of, 175
model for isotope signal retention with, 175–76
Perma-Triassic chemostratigraphy effected by, 176
recommendations for future, 176–77
within-bed carbon isotope variability with, 174–75
within-bed oxygen isotope variability with, 175
São Caetano Complex
carbon isotope chemostratigraphy of, 80f
paleogeographic map for, 74f
São Francisco Basin
carbon isotope chemostratigraphy for, 76f
marine sedimentary records for, 76
marine sedimentary record studied in, 76
São Francisco Craton, 74f, 77, 79f, 81, 85. See also Congo-São Francisco craton
Sarmatia Craton, 53
Scotland
Dob’s Linn, 147–49, 147f, 148f, 151f, 154
Rockall Plateau with adjacent northwest, 74f
Secular value, 30
Sedimentary sulfates, isotopic compositions of, 121–22
Sensitive High-Resolution Ion Microprobe (SHRIMP)
on ash bed zircon, 42–43
Deonar Porcellanite ages from, 55–57
Ediacaran-Cambrian boundary proximity confirmed with, 107
Serra Azul Formation, 95f
Gaskiers with, 91, 104
Serra do Poço Verde Formation
carbon pathways displayed by carbonates from, 76
inorganic marine cements from, 83
Serra do Quilombo Formation, insertion of post-Marinoan carbonates of, 106f
Shapiro-Wilk test, 172
Shell fragments, 166
Shift, 30
SHRIMP. See Sensitive High-Resolution Ion Microprobe
Shuram excursion, 117–21, 119f, 120f
carbon cycle anomaly known as, 115
gaskiers glaciation with, 124
Siberia (Angara Craton), 74f
Siberian platform, 53
chronostratigraphic framework of, 51f
Sinemurian Csővár Limestone Formation, 190
Singhbum Craton, 54–55, 54f
South China Craton, 56. See also Yangtze block
Spatial scale, 30
Spikes, 213–14
Stage, 30
Statherian period, 48, 51f, 52, 59, 64
depositional age for Dongchuan Group, 56
deposition of large red beds during, 61
sedimentary rocks of, 63
Statherian rift, 47
Stratigraphy, 30
Strontium isotopes, 11–12
stratigraphy for Triassic-Jurassic chemostratigraphy, 200
terminal Ediacaran stage with, 123
Vindhyan Basin, 61
Strontium isotope stratigraphy, 200
Sulfolobales, 132
Sulfur isotopes, 8–9
evidence of oxygenation in Archean-Proterozoic boundary from, 36–38, 38f
mass-independent fractionation, 11, 37, 38f, 40–43, 48
ratios, 36
Svalbard block, 74f
Sweden, Röstånga, 147f, 148–50, 149f
δ34S, 5, 8–9, 11, 36–37, 38f, 40, 42, 60, 81, 122, 146, 162, 191
Tamengo Formation
Ediacaran biota found in, 104
insertion of post-Marinoan carbonates of, 106f
Tappan, Helen, 211, 212
Temporal scale, 30
Term, 30
Terminal Ediacaran stage (TES)
carbon isotope composition trend with, 119f
colder temperatures associated with, 126
geochemical studies of, 123
ocean anoxia spread in, 127
prokaryotic sulfideoxidizing communities in, 132
Shuram excursion with, 117–18
Sr and Cr isotope measurements of, 123
vertical perforations of matgrounds, 133
Tethyan shelf, 190
Thallium isotopes, 10–11
Thiomargarita, 133
Total organic carbon (TOC)
Triassic-Jurassic chemostratigraphy with, 193, 194f-95f
Transvaal Supergroup
Duitschland Formation of, 37, 43
molybdenum chemostratigraphy of, 40–41, 41f
molybdenum isotopes evolution in, 41f
termination of MIF sulfur signal in, 38f
Trend, 30
Trendline, 30
Triassic-Jurassic boundary
CAMP with, 185, 186f, 187–89, 196, 197f, 198, 200, 201
chemostratigraphy
carbon isotope stratigraphy, 193, 194f-95f
mercury chemostratigraphy, 196
osmium isotope stratigraphy, 200
oxygen isotope stratigraphy, 196–200, 199f
redox changes across Triassic-Jurassic transition, 200
strontium isotope stratigraphy, 200
total organic carbon variation, 193, 194f-95f
end-Triassic mass extinction with, 187–88, 196
Global Stratotype Section and Point with, 185, 188–89, 192, 195f, 218
introduction to, 185–87, 186f
ocean and atmosphere geochemistry changes with, 186
palaeogeographic map associated with, 186f
studies
Astartekloft, 192
Bristol Channel Basin at St. Audries Bay, 189
Csővár Section in Transdanubian Range Unit, 190
Triassic-Jurassic boundary (cont’d)
 GSSP Kuhjoch succession, 188–89
 Kennecott Point in Haida Gwaii, 190–91
 New York Canyon Section, 191–92
 Truro Island, Canadian Arctic, 147f, 150–51, 152f
 Turukhansk basin, 50f
 Turukhansk Group, 76, 81
 carbon isotope chemostratigraphy of, 75f, 79f
 paleogeographic map for, 74f
 Utubamba Valley, Peru, 186f

Vazante Group
 carbon isotope chemostratigraphy for, 76f, 79f
 glaciogenic deposits underlying, 79f, 85
 marine sedimentary records for, 76
 marine sedimentary record studied in, 76
 molybdenum isotope compositions of carbonates from, 83, 84f
 Morro do Calcário Formation of, 82–83
 paleogeographic map for, 74f
 Victor Bay Formation, iron speciation data from, 83

Vindhyan Basin, 54
 carbonate platforms of, 57
 carbon isotope data for carbonate sequences of, 59, 59f
 chronostratigraphic framework of, 51f
 geological map showing, 54f
 strontium isotopes in, 61

Vindhyan Supergroup, 54, 59f

Volcanism
 CAMP, 185, 187–89, 201
 Cretaceous-Paleogene boundary with extinction from, 225–27
 Paleocene-Eocene Thermal Maximum with, 13
 Volgo-Uralia Craton, 53–54

Wangjiwan, Yangtze platform, China, 147f, 150, 151f

West African Craton, 74f

Yangtze block, 56
 chronostratigraphic framework of, 51f
 plot of ϵ_{Hf} versus age of concordant detrital zircons, 64f

Yangtze platform, 147f, 150, 151f