I

ac (alternating current) signal, see waveforms
Across variable (voltage), 8
ADC, see Analog-to-digital converter
Active circuit, 151
Active device:
 dependent source, 151
 OP AMP, 171
 transistor, 168
 transducer, 203
Active filters:
 second-order BP 730, BS 732
 basics, 720
 Butterworth, LP 745, HP 763
 Chebyshev, LP 751, HP 769
 design, 721
 First-Order Cascade, LP 741, HP 762
 Sallen-Key, LP 721, HP 726
Adapter, 300Ω to 75Ω, photo, 129
Additive property (sinusoids), 250
Additivity property (superposition), 98, 102
Admittance (Y):
 Laplace, 503
 matrix [Y], WC6
 parallel connection, 400, 509
 parameters, WC5
 phasors, 391
 transfer, 558
 two-port y-parameters, WC6
Aliasing, 712
Ampere (A) (unit), 5
Ampère, André-Marie, 1
Amplifier:
 differential, 187, 192
 ideal OP AMP model, 173
 inverting, 181
 inverting summer, 184
 instrumentation, 192, 212
 logarithmic, 224
 noninverting, 175
 noninverting summer, 185
 real OP AMPs (GBW), 628
 subtractor-double, 190
 subtractor-single, 187
 transistor, 168
 voltage follower, 179
Amplitude:
 descriptors, 260
 functions, 235, 240, 245
 spectrum, 695
 computer, 294
 Analog-to-digital converter: flash, 216, photo 217
 full-scale input, 216
 resolution, 216
 sample-hold, 281, photo 281
 Analysis, definition, 2
 Angular or radian frequency (ω), 247
 Aperiodic waveform, 250
 Apparent power, 815
 Applications:
 300Ω to 75Ω adapter, 127
 analog-to-digital converter (ADC), 280
 attenuation pad, 130
 Add-value:
 of a signal (V<avg>), 260
 of a periodic signal (a<0>), 688
 of sinusoidal signal, 262
B (susceptance) (S), 400
B (bandwidth) (Hz, rad/s), 644, 650, 710, 731, 734, 773
Balanced three-phase:
 basics, 825, 828
 Δ-Δ connection, 828
 Δ-Y connection, 828
 Y-Δ connection, 828
 Y-Y connection, 828
Ballantine, Stuart, WC1
Bandpass filter:
 basics, 637
 cascade design, 637, 773
 narrow band, see tuned parallel RLC
 second order, 730
 series RLC, 643
 tuned, 643, 649, 731, 735
 using first-order circuits, 637
 using phasor analysis, 429
 wide band, 644, 773
Bandstop filter:
 basics, 637, 732, 774
 narrow band, see notch parallel RLC
 second order, 647, 733, 735
 series RLC, 647
 using first-order circuits, 641
Bandwidth, 644, 650, 731, 773
Battery, 20, 48
Bell, Alexander Graham, footnote 620
Bessel filter, 782
Bilateral, 17
Bipolar power, 813
Biquad filter, 784
Black, Harold S, 150
Block diagrams:
 differential amplifier, 187
 differentiator, 289
 integrator, 289
 instrumentation system, 202
 gain, 98, 151, 175, 181
 network function, 555
 of sinusoidal steady-state response, 578
 proportionality constant (K), 98

881
Block diagrams: (Continued)

 summary table basic, 188, 290, inside front cover
 summing point, 102, 184
 Blocking capacitor, 574

Bode, Hendrik, 554, 616

Bode diagram:
 basics, 619
 complex poles and zeros, 661, 665
 first order, LP 622, HP 630
 real poles and zeros, 652
 straight-line approximation (SL), 654, 659
 using Multisim, 658, Web App D
 using MATLAB, 634, 656, Web App D

Bridge circuits:
 basic, 100
 bridge-T, 130, 146
 impedance, 399, 418
 Maxwell, 399
 reference bridge, 208, 210, 211
 Wheatstone, 100, 135, 137, 144

Bromwich, Thomas John, 453, 498

Brune, Otto, 554

Budak, Aram, footnote 752

Butterworth, Stephen, 740

Butterworth:
 discussion of poles, 497, Web App B
 high-pass response, 763
 low-pass response, 745
 overview, 739
 pole-zero diagram, 758
 polynomials, 747, inside rear cover
 step response, 758
 third-order filter, 783

C (capacitor), 275

Capacitance (C) definition, 275

Campbell, George A, 719

Capacitive load, 816

Capacitive reactance (Xc), 395

 power-factor correction, 823

Capacitor (C):
 average power, 437
 basics, 275
 blocking, 574
 bypass (for BJT), 553
 dc response, 299
 energy (w(t)), 276, 436
 photos, 275, 276
 impedance, 391, 502
 i-v relationships, 275
 parallel connection, 296
 power (p(t)), 276, 436
 series connection, 297
 standard values, see inside rear cover
 super capacitor, 307, 378, footnote 596
 two-wire feed through, 305

Cascade connection, 189, 566, 590, 720

Cascade design:
 dc OP AMP, 193

 transfer function, 590
 first-order filters, 637, 741, 762
 multiple-order filters, 720
 Cauer, Wilhelm, 554, 740
 Cauer or Elliptic filter, 739
 Causal waveform, 260, footnote 584
 Center frequency (ω0), 643, 650, 731
 Chain rule, 188, 566
 Chapter Learning Objectives (CLOs), 3
 Characteristic equation:
 first order, 313
 second order, series 346, parallel 354
 Charge (q(t)), 5, 276
 Charging exponential, see exponential rise

Chebyshev Type 1:
 discussion of poles, Web App B
 high-pass response, 769
 low-pass response, 751
 overview, 739
 pole-zero diagram, 758
 polynomials, 754, inside rear cover
 step response, 758

Chebyshev Type 2, 739

Chen, Wai Kai, footnote 731

Chebyshev Type 2, 739:
 first-order voltage divider, 590
 second-order, series 346, parallel 354
 Circuit (definition), 2, 17, 22
 Circuit analysis:
 combined constraints (dc), 28
 computer aided, 11, 54, Web App D
 definition, 2
 dependent sources, 152
 phasor domain, 416
 using Multisim 404
 using Fourier series, 699
 using Fourier transforms, Web App C
 Circuit design:
 ac voltage divider (phasor), 395
 bandpass filter, 429, 637, 639, 731, 773
 bandstop filter, 638, 734, 774
 Bode plot, 656
 Butterworth, LP 745, HP 763
 concepts, 122
 Chebyshev, LP 751, HP 769
 comparator, 214
 complex poles, 529
 DAC, 200, 201
 dc voltage divider, 42
 differential equation, 293, 294
 discussion, 2, 193
 First-Order Cascade, LP 741, HP 762
 first-order step response, 333, 574, 602
 first-order voltage divider, 590
 high-pass filters, 632, 761
 input-output relationship, 197, 293
 low-pass filters, 413, 624, 628, 739
 interface circuits (dc), 122 to 132
 interface circuit (ac) (phasors), 421
 inverting OP AMP network, 594

 network function, 590, 592, 594, 598, 595, 599
 OP AMP inverter, 182, 594
 OP AMP interface circuit, 202, 208
 OP AMP non-inverter, 178
 OP AMP subtractor (difference amp), 187, 190
 OP AMP summer, 184, 185
 OP AMP transducer interface, 205, 208, 210, 212
 passive notch filter, 648
 phasor load design, 416
 poles and zeros, 466, 529, 538
 power factor correction, 824

RC circuit, 333

RLC circuits, 366, 367, 598, 599, 602, 646, 648

sample-hold, 378

second-order active filters, 637, 723, 727
 second-order step response, 366, 600

second-order network function, 593, 595, 599

transfer function, 563

 transistor inverter, 171
 transformer maximum power transfer, 798
 using MATLAB, 602, 666, 734, Web App D
 using Multisim, 645, 666, 734, Web App D

voltage divider and OP AMP, 592

 Circuit determinant, 434, 526, 529, 537, 539
 Circuit reduction, 50, 409, 508

 Circuit theorems:
 maximum power transfer, 119, 438
 maximum signal transfer, 118
 proportionality, 98, 409, 513
 superposition, 102, 410, 514
 Thévenin/Norton, 107, 415, 520

 Circuit variables, 5

 Clock waveform, 263

 Common mode rejection ratio (CMRR), 212

 Combined constraints, 28, 499

 Comparator:
 basics, 214
 flash ADC, 216
 zero-crossing detector, 215

 Complex frequency (s = α ± jβ), 350, also footnote 351

 Complex frequency variable s (Laplace), 454

 Complex numbers:
 Arithmetic operations, App A
 conjugate, App A
 exponential form, App A
 imaginary part, App A
 real part, App A

 Complex poles, 471

 Complex power:
 and load impedance, 816
 basics, 814
 conservation of, 817
Composite waveforms:
- basics, 252
- damped ramp, 254
- damped sinusoid, 255
- double exponential, 257
- double-sided exponential, 254
- exponential rise, 253
- signal’s fundamental frequency, 259
- signal’s harmonic frequencies, 259
- signum function, 253

Computer tools:
- basics, 11, 54, Web App D
- comparison between tools, 58
- Excel, 241, 342, 528, 706
- MATLAB, 11, Web App D
- Multisim, 56, Web App D
- Conductance \((G)\), 17, 400, 503
- Conjugate match (max power), 439
- Connections models, 22
- Connection constraints:
 - definition, 22
 - using phasors, 389
 - using Laplace transforms, 499
 - using Fourier transforms, Web App C

Continuity:
- capacitor voltage, 277, 330
- inductor current, 284, 330

Convolution:
- applications of, 589
- basics, 583
- equivalence between \(t\)- and \(s\)-domains, 586
- graphical approach, 587
- integral, 584
- using MATLAB, 585, Web App D

Corner frequency, 622

Coulomb (unit), 5

Coupled inductors:
- basics, 786
- energy, 790
- \(i-v\) relationships, 788
- mutual inductance, 786
- self-inductance, 786
- Coupling coefficient \((k)\), 791, 800

Course learning objectives (CLOs):
- basics, 2
- intro to each chapter
- with each problem set

Cover-up algorithm, 470

Cramer’s rule, 79, Web App A

Critical frequencies \((\omega_C)\), 466

Critically damped, 352

Crystal filters, 784

Current:
- definition, 5
- lag, lead, 390, 391
- line, 830
- mesh, 89
- Norton, 107
- phase, 833
- short circuit, 108

Current division:
- basics, 46, 400, 509
- binary, 49
- phasor, 400
- two path, 47

Current gain \((\beta)\), 151, two-port \(T_I\), WC15

Current source:
- dependent, 151, 501
- Fourier representation of, Web App C
- ideal, 20, 500

Damped sinusoid, 255

Damping:
- cases \((RLC)\), series 352, parallel 355
- Damping ratio \((\zeta)\), 352, 359, 529, 541, 644, 721

Darlington, Sidney, 554

D’Arsonval meter, 71

DC (direct current):
- current source, 20
- voltage source, 20
- dc equivalent circuits, \(C\) and \(L\), 299
- dc steady-state response, 572

Decade, 619

Decibel, 619

Defibrillation waveform, 264

Delay time, 575

Delyannis-Friend circuit, footnote 731

Dependent source:
- analysis, 152
- basics, 151
- CCCS, 151
- CCVS, 151
- Laplace representation of, 501
- parameters, \(\mu, \beta, g, r\), 151
- Thévenin/Norton, 166
- VCVS, 151
- VCVS, 151

Design, introduction, 2, see also Circuit design

Determinant, Web App A

Differential amplifier:
- basics, 173
- one-stage, 187
- two-stage, 190
- instrumentation, 192, 212

Differential equation:
- classical solution first order, 310
- classical solution second order, 344, 353
- solution by Laplace transforms, 480
- solution by Fourier transforms, Web App C

Differentiator:
- band-limited, 295
- definition, 289

Differentiation property:
- Laplace, 461
- Fourier, Web App C

Digital-to-analog converter:
- discussion of, 199
- full-scale output, 200
- photos, 200
- \(R-2R\) ladder, 201
- resolution, 200
- weighted summer, 200

Digital Multimeter (DMM), 108, 180

Dirac, Paul, footnote 237

Dirichlet, P.G.L., 687

Dirichlet conditions, 697

Dot convention, 788

Double exponential, 257

Double-sided exponential, 254

Driving function, 20

Driving-point impedance, 558

Duality:
- definition, 288
- examples: footnote 36, 47, 288, 311, 354, 650
- Duality property, Web App C
- Dynamic OP AMP circuits, 288

ECG waveform, 264

Edison, Thomas, 811

Effective value, see Root-mean-square

Electric field \((\varepsilon)\) \((\text{V/m})\), 275

Element, 17

Element constraints:
- basics, 17
- using phasors, 391
- using Laplace transforms, 500
- using Fourier transforms, Web App C

Elliptic or Cauer filter, 739

Energy \((w)\):
- capacitor, 276
- coupled inductors, 790
- definition, 6
- inductor, 283
- phasors, 436
- signal, Web App C

Energy spectral density, Web App C

Equal-capacitor method, BP 731, BR 733

Equal-element method, LP 723, HP 727

Equal-ripple filters, 740

Equivalent circuits:
- admittance, 503
- capacitance, 296
- definition, 34
- of \(C\) and \(L\) at \(dc\), 299
- impedance, 508
- inductance, 298
Equivalent circuits: (Continued)
resistance, 35
sources, 38
summary of, 40, (Table) 41
Thévenin/Norton, 107, 415, 520, 809
transformer, 810
Evaluation:
bandpass circuits, 646
bandstop circuits, 641, 737
basic design concepts, 126
cascade connections, 567, 568, 768, 770
design evaluation, 600
eliminate 60 Hz hum, 579
high-pass filters, 428, 634
high quality filter, 759
interface circuits (active), 191, 193, 196,
197, 205
interface circuits (passive), 125,
127, 132
introduction, 2
loading, 567
low-pass filters, 413, 757, 759
notch filter, 670
pressure transducers, 672
RC circuits, 334
Residential power distribution, 820
RLC bandpass filter circuit, 646
second-order LP filter, 723
step response designs, 334, 600
transfer function designs, 567, 600, 601
Even symmetry, 697
Exponential order (Laplace), 455
Exponential waveform:
basics, 240
double, 257
double-sided, 254
properties of, 242
rise, 253
Laplace transform of, 456
Fan-out, 614
Farad (F) (unit), 275
Faraday, Michael, 274, 309, 785
Feedback, 181
Filter:
60 Hz notch, 452, 734, 737
active, 720
active LP filter overview, 739
bandpass, 429, 638, 773
bandstop, 638, 732, 774
basics, 617
Bessel, 782
biquad, 784
Butterworth, LP 745, HP 763
Chebyshev, LP 751, HP 769
crystal, 784
First-Order Cascade, LP 741, HP 762
high pass, 428, 630, 726, 761, 762,
763, 769
low pass, 408, 413, 621, 721, 739, 741,
745, 751
notch, 648, 733, 735
passive, 720
summary of second-order filters, 721
tuned, see notch
using MATLAB, 413, 429, 668, 743,
765, Web App D
using Multisim, 645, 658, 737, 748, 760,
768, Web App D
Final conditions, 329
Final-value property, 488
First-order circuit:
basics, 311
design with (bandpass), 637
design with (bandstop), 638, 642
design with (high pass), 632
design with (low pass), 624, 628
differential equation, RC 311, RL 311
exponential input transient
response, 336
frequency response (high pass), 630
frequency response (low pass), 621
network function design, 590
RC and RL circuits, 310, 312, 321,
329, 336
sinusoidal input transient response, 336
step response, 321
zero-input response, 312, 515
zero-state response, 327, 515
First-Order Cascade filters, LP 741,
HP 762
pole-zero diagram, 758
step response, 758
Flash converter (ADC), 217, photo 217
Flux (), 287, 786, 793
Flux linkage ():
basics, 282
coupled coils, 786
transformers, 793
Follower (see also OP AMP circuits), 179
Forced pole, 526, 555
Forced response, 321, 506, 516, 539
Forcing function, 20
Foster, Ronald M, 554
Fourier, Jean Baptiste, 686
Fourier series:
alternative form, 695
amplitude spectrum, 695
average power, 706
coefficients, 687, 688
composite waveforms, 259
fundamental frequency, 687
in circuit analysis, 699
line spectra, 695
overview, 687
phase spectrum, 695
rms value, 706
symmetries, 697
table of common waveforms, 694
using MATLAB, 689, Web App D
Fourier transforms (F(ω)), Web App C
Frequency:
angular, 247
center (f0, ω0), 643, 650, 731
complex (s), 350
corner (f0, ω0), 622
critical (f0, ω0), 466
cutoff (f0, ω0), 617, 644, 648
cyclic (f), 247
damped natural (β), 350
fundamental, 258, 687
harmonic, 258, 687
natural, 350
negative, Web App C
neper (α), 350
notch, 648, 733
radian (β, α), 350
resonant (ω0), 391, 643, 650,
spectrum, 688
undamped natural (ω0), 359
Frequency response:
and step response, 667
Bode diagrams, 619
definition, 617
descriptors, 617
first-order bandpass, 539
first-order bandstop, 641
first-order high pass, 630
first-order low pass, 621
of four basic gain responses, 618
RLC circuits bandpass, 429, 643, 649
RLC circuits bandstop, 647
Fundamental frequency, 258, 687
Full-scale output (DAC), 200
G(s) (step response transform), 572
g(t) (step response), 572
Gain (K):
current, 151
follower, 179
inverter, 181
non-inverter, 174
proportionality constant, 98, 409, 513
two-port V0 or T0, WC15
voltage, 151
Gain-bandwidth product (GBW), 626
Gain function, 617
Gauland, Lucien, 785
Gate function, 239
Gibbs, Josiah, 785
Grapher View (Multisim), 58
Ground, 9
Ground loop, 804
H(s) (impulse response transform), 569
h(t) (impulse response), 569
Half-wave symmetry, 697
Harmonic frequency, 258, 687
Heaviside, Oliver, footnote 335, 382,
453, 498
Henry, Joseph, 274, 785
Henry (H) (unit), 282
Hertz (Hz) (unit), 247
Hidden symmetry, 698
High-pass filter:
basics, 630, 761
Butterworth, 763
Chebyshev, 769
index

average power, 436
basics, 282
chokes, footnote 596
coupled, 786
dc equivalence, 299
energy (w(t)), 283, 436
photos, 282, 283
impedance (Fourier transform), Web App C
impedance (Laplace transform), 502
impedance (phasor domain), 391
i-v relationships, 282
parallel connection, 298
power (p(t)), 283, 436
series connection, 298
standard values, 596, see inside rear cover
Initial conditions, 329, 502, 503
Initial-value property, 488
Input, 98
Input impedance, 558
In phase, 390
Instantaneous power (p(t)): basics, 435, 812
three-phase, 840
Instantaneous value, 259
Instrumentation systems: active transducers, 203
basics, 201
passive transducers (photos), 207
Instrumentation amplifier, 193, 212
Integration property:
Laplace, 459
Fourier, Web App C
Integrator:
description, 288
time-limited, 295
Interface, 2
Interface circuit design, 121, 196, 201
Inverse Laplace transforms:
complex poles, 471
definition, 457, 469
improper rational function, 474
multiple poles, 476
simple poles, 469
sum of residues, 473
table, 464, see table inside rear cover
using MATLAB, 479, Web App D
Inverting amplifier, 181
Isolation transformer, 804, photo 804
Joule (J) (unit), 5
K (proportionality constant for gain), see Gain (K)
K (scale factor in pole-zero diagrams), 466
k1, k2, k3, k4 (proportionality constants for inductors), 282, 786
k (coupling coefficient), 791
Kirchhoff, Gustav, 22
Kirchhoff’s laws:
basics, 22
current (KCL), 23
phasor domain, 389
in Laplace transforms, 499
in Fourier transforms, Web App C
voltage (KVL), 24
L (inductor), 282, 787
L-pad, 121, photo 121
Ladder circuit, 50
Lagging power factor, 815
Laplace, Pierre Simon, 453
Laplace transforms (F(s)):
basics, 454
circuit response using Laplace, 480
complex differentiation property, 497
definition, 455
differentiation property, 461
inverse, 457, 469
integration property, 459
linearity, 458
poles and zeros, 466
properties and pairs, 458
relationship to Fourier transforms, Web App C
solving differential/integrodifferential eq. 480
table of pairs, 464, inside back cover
table of properties, 464, inside back cover
translation properties, 462
uniqueness property, 457
using MATLAB, 466, Web App D
Leading power factor, 815
Linear:
circuit, 2,
definition, 17
element, 17
Linearity properties:
additivity, 97
Fourier, Web App C
homogeneity, 97
Laplace, 458
proportionality, 98
superposition, 98
Line current, 825
Line spectra, 695
Line voltage, 826
Load-flow problem:
single-phase, 821
three-phase, 836, 841
Loading:
definition, 130, 182
follower used to avoid, 179
OP AMP, 178, 189
s domain, 590
Logarithmic amplifier, 224
Lookback impedance, 417
Lookback resistance (Rl), 114
Loop (definition), 22
Low-pass filter:
basics, 621, 739
Butterworth, 745
Chebyshev, 751
comparisons, 757
average power, 436
basics, 282
chokes, footnote 596
coupled, 786
dc equivalence, 299
energy (w(t)), 283, 436
photos, 282, 283
impedance (Fourier transform), Web App C
impedance (Laplace transform), 502
impedance (phasor domain), 391
i-v relationships, 282
parallel connection, 298
power (p(t)), 283, 436
series connection, 298
standard values, 596, see inside rear cover
Initial conditions, 329, 502, 503
Initial-value property, 488
Input, 98
Input impedance, 558
In phase, 390
Instantaneous power (p(t)): basics, 435, 812
three-phase, 840
Instantaneous value, 259
Instrumentation systems: active transducers, 203
basics, 201
passive transducers (photos), 207
Instrumentation amplifier, 193, 212
Integration property:
Laplace, 459
Fourier, Web App C
Integrator:
description, 288
time-limited, 295
Interface, 2
Interface circuit design, 121, 196, 201
Inverse Laplace transforms:
complex poles, 471
definition, 457, 469
improper rational function, 474
multiple poles, 476
simple poles, 469
sum of residues, 473
table, 464, see table inside rear cover
using MATLAB, 479, Web App D
Inverting amplifier, 181
Isolation transformer, 804, photo 804
Joule (J) (unit), 5
K (proportionality constant for gain), see Gain (K)
K (scale factor in pole-zero diagrams), 466
k1, k2, k3, k4 (proportionality constants for inductors), 282, 786
k (coupling coefficient), 791
Kirchhoff, Gustav, 22
Kirchhoff’s laws:
basics, 22
current (KCL), 23
phasor domain, 389
in Laplace transforms, 499
in Fourier transforms, Web App C
voltage (KVL), 24
L (inductor), 282, 787
L-pad, 121, photo 121
Ladder circuit, 50
Lagging power factor, 815
Laplace, Pierre Simon, 453
Laplace transforms (F(s)):
basics, 454
circuit response using Laplace, 480
complex differentiation property, 497
definition, 455
differentiation property, 461
inverse, 457, 469
integration property, 459
linearity, 458
poles and zeros, 466
properties and pairs, 458
relationship to Fourier transforms, Web App C
solving differential/integrodifferential eq. 480
table of pairs, 464, inside back cover
table of properties, 464, inside back cover
translation properties, 462
uniqueness property, 457
using MATLAB, 466, Web App D
Leading power factor, 815
Linear:
circuit, 2,
definition, 17
element, 17
Linearity properties:
additivity, 97
Fourier, Web App C
homogeneity, 97
Laplace, 458
proportionality, 98
superposition, 98
Line current, 825
Line spectra, 695
Line voltage, 826
Load-flow problem:
single-phase, 821
three-phase, 836, 841
Loading:
definition, 130, 182
follower used to avoid, 179
OP AMP, 178, 189
s domain, 590
Logarithmic amplifier, 224
Lookback impedance, 417
Lookback resistance (Rl), 114
Loop (definition), 22
Low-pass filter:
basics, 621, 739
Butterworth, 745
Chebyshev, 751
comparisons, 757

Index

Low-pass filter: (Continued)
first order, 621
First-Order Cascade, 741
second order equal element, 723
second order unity gain, 723

M (mutual inductance), 787
Magnitude scaling, 596
Matrix:
- admittance or $[y]$ matrix, WC6
- basics, 76, 89, Web App A
- hybrid or $[h]$ matrix, WC8
- impedance or $[z]$ matrix, WC3
- mesh-current analysis, 89
- node-voltage analysis, 76
- s-domain analysis, 525, 533
- symmetrical, 76
- transmission or $[t]$ matrix, WC10
- using MATLAB, Web App D
- using complex numbers (phasors), 433

Matched condition
dc, 119
conjugate, 439

MATLAB:
- applications, throughout text, Web App D
- discussion, 11, 54
- Maximally flat filters, 740
- Maximum signal transfer:
 - basics, 118
 - current, 119
 - graph, (120)
 - power, 119, 438
 - theorem (power), 119
 - voltage, 118

Maxwell bridge, 399
Maxwell, James Clerk, 233

Mesh-current analysis:
- basics, 89
- by inspection, 92
- fundamental property, 90
- using Fourier transform analysis, Web App C
- using Laplace transform analysis, 532
- using MATLAB, 91, 534, Web App D
- using phasor analysis, 423
- summary of, 97
- supernode, 83
- symmetrical matrix $Ax=b$, 93
- with current sources, 94
- with dependent sources, 163

Mho (Ω) (unit), 17

Multiple poles, 476, filters 740

Multisim:
- applications, throughout text, Web App D
- discussion, 11, 54

Mutual inductance (M), 787, and the dot convention 788

N (coil turns), 282, 786
n (turns ratio) 793,

Napier, John, footnote 351

Narrow band, 644
Natural frequencies (s, α, β), 352
Natural pole, 526, 555
Natural response, 321, 506, 539
Neper frequency (s^1), 350, also footnote 351
Netlist, 55
Network function:
- and phasors, 582
- definition, 514, 555
- design and evaluation of, 589
- design comparison, 567, 600
determining, 555
- driving-point impedance ($Z(s)$), 558
- importance of cascade connection, 590
- impulse response, 569
- sinusoidal steady-state response, 576
- step response, 572
- transfer function ($T(s)$), 558
- with current/voltage dividers, 559, 590
- with OP Amps, 559, 592
Node (definition), 22
Node voltage, 73

Node-voltage analysis:
- basics, 73
- by inspection, 76
- fundamental property, 73
- using Excel, 525
- using Fourier transform analysis, Web App C
- using Laplace transform analysis, 523
- using MATLAB, 86, Web App D
- using Multisim, 82, 159, Web App D
- using phasor analysis, 422
- summary of, 89
- supernode, 83
- symmetrical matrix $Ax=b$, 76
- with dependent sources, 154
- with OP Amps, 191
- with voltage sources, 82
- Non-causal waveform, 260, Web App C
- Noninverting amplifier, 178
Nonlinear:
- analysis, 115
- characteristics, 69
- element, 17
- Nonreciprocal network, WC3
- Norton equivalent circuit:
 - applications, 109
 - basics, 107
 - phasor domain, 415
 - s domain, 520
- Notch bandwidth, 734
- Notch filter, 638, 648, 732, 735
- Notch frequency, 648, 734
- Nyquist, Harry, footnote 711
- Nyquist rate, 711
- Octave, 619
- Odd symmetry, footnote 17, 697
- Ohm (Ω) (unit), 17
- Ohm’s law, 17
- Ohm, Simon Georg, 16
- O-pad, 132
- OP AMP:
 - basics, 171
 - closed-loop gain, 175
 - dependent source model, 173
 - effect of finite gain, 176
 - photos, 172
 - ideal model, 173, 174
 - in the s domain, 501
 - notation, 172
 - open-loop gain (A), footnote 174
 - operating modes, 173
 - transfer characteristics, 172
- OP AMP circuits:
 - analog-to-digital (ADC) circuit, 216
 - applications, 199
 - bandpass filter, 639, 634, 646, 730, 735, 773
 - bandstop filter, 641, 732, 735, 774
 - buffer, 179
 - cascading observation, 189
 - comparator circuits, 214
 - design, 193
 - differential amplifier, 187
differentiator, 289
digital-to-analog circuits, 199, 200, 201
follower, 179
-high-pass filter, 633, 636, 726, 762, 763, 769
-integrator, 289
-instrumentation systems, 201
-inverting amplifier, 181
-log-amp, 224
-low-pass filter, 624, 722, 741, 745, 751
-noninverting amplifier, 175
-Sallen-Key realization, LP 721, HP 726
-subtractor (one-stage), 187
-subtractor (two-stage), 190
-summary of (Table), 188, 290
-summing amplifier (inverting), 184
-summing amplifier (non-inverting), 185
-voltage follower, 179
-Open circuit, 19
-Open-circuit voltage (V_{oc}), 108
-Open Loop gain (A) or (μ), footnote 173
-Operational amplifier, see OP AMP
-Oscilloscope probe, 552
-Out of phase, 390
-Output, 98
-Overdamped response, 352
-Overshoot, 575

p (the power variable) (W), 6

Parallel connection:
- admittances, 400, 509
- capacitors, 296
- current sources, 41
- definition, 26
- impedances, 400
- inductors, 298
- resistors, 35

Parseval’s theorem, Web App C

Partial fraction expansion:
- of complex poles, 471
- of improper rational functions, 474
Index

of multiple poles, 476
of simple poles, 469
Passband, 617, 740
Passive sign convention, 8, 9
Passive filter, 720
Peak-to-peak value of a signal, 260
Peak value of a signal, 260
Perfect coupling, 791, 793
Period (T0), 245
Periodic waveform, 250, 687
average value of, 260
Fourier series of, rms value of, 261, 706
Permittivity (ε), 275
Phase angle (θ), 247
Phase converter, 849
Phase current, 833
Phase function, 617
Phase current, 833
Phase sequence, 826
Phase spectrum, 695
Phase voltage, 826
Phasor:
and network functions, 582
definition, 383
diagram, 383
domain, 394
properties, 384
rotating, 384
Phasor circuit analysis:
basics, 389, 394
device constraints, 389
connection constraints, 389
current division, 400
energy and power, 435
filters, 408, 413, 429
frequency vs. impedance, 391
general circuit analysis, 422
impedance concept, 391
in out of phase, lead, lag, 391
phasor domain, 395
propionality, 409
source transformation, 416
superposition, 410
Thévenin and Norton equivalents, 415
voltage division, 395
Photoreisistor:
photo, 207
interfacing, 207
Piecewise continuous (Laplace), 455
Piezoelectric transducer, 306
Planar circuit, 90, 422, 532
Pole:
basics, 466
circuit determinant, 539
complex, 471, 538
double real, 538
forced, 526, 539
form of filter response, 758
multiple, 476
natural, 526, 539
number of, 541
simple, 469, 538
stable, 539
Pole-zero diagram:
and circuit response, 538
basics, 466
finding transforms from, 479
left hand plane, 539
of second-order filter types, 758
scale factor (K), 466
software applications, Web App D
Port, 121, 558, WC2
Potentiometer, 44, photos, 44, 45
Power (p(t)):
apparent, 815
average (P), 437, 706, 812
complex, 814
definition, 6
flow, single phase 821
gain, 153
instantaneous, 435, 812
maximum, 119, 438
phasors, 435
reactive (Q), 813
three phase, 836, 840, 841
Power factor (pf):
angle, 815
basics, 815
correction, 823
Power triangle, 815
Practical sources
current, 21
voltage, 21
Primary winding, 792
Proper rational function, 469
Proportionality property
dc circuits, 98
phasor domain, 409
s domain, 513
Prototype, 596
Quality factor (Q), 644, 650, 731
Quantities, table of, 4, 644, 650, 731
Quiescent or Q-point, 117
R (resistor), 17
Radians per second (rad/s) (Unit), 247
Ramp function (r(t)), 238
Range of practical components, 597, see inside rear cover
Quiescent or Q-point, 117
R(t) (resistor), 17
Radians per second (rad/s) (Unit), 247
Ramp function (r(t)), 238
Range of practical components, 597, see inside rear cover
Rational function, 469, 513
Reactance (X), 395
Reactive power (Q), 813
Reciprocal network, WC3
Reciprocal spreading, 668, Web App C
Reference marks, 8
Relationships between responses in s and t domains, 573
Residue, 469
sums of, 473
Resistance (R):
basics, 17
lookback (R0), 114
real part of impedance, 391, 502
Resistor (R):
average power, 436
photos, 17, 18
i-v relationships, 17
impedance, 391, 502
linear, 17
parallel connection, 35
power, 18
series connection, 35
standard values, 596, see inside rear cover
Resolution (DAC), 200
Resonance (ω0), 391, 405, 644
Resonant frequency (ω0), 392, 405, 644, 651
Response: see also transient and frequency responses
ac steady state, 340
dc steady state, 340, 572
critically damped, 352
forced, 321, 539
frequency, 617
impulse, 569
narrow band, 644
natural, 321, 539
overdamped, 352
sinusoidal steady state, 340, 576
step, 321, 359, 572
underdamped, 352
wide band, 644
zero frequency (dc), 340
zero input, 312, 345, 515
zero state, 327, 515
Reversal property, Web App C
Ringing, 670, 759
Rise time, 575
RC and RL circuits:
characteristic equations, RC 313, RL 313
frequency response, 621, 624, 631, 634
initial and final conditions, 329
step response, 321
zero-input response, 312
zero-state response, 327
RLC circuits:
basics, 344
characteristic equation, series 346,
parallel 354
frequency response, 643, 647
design, 366, 367, 646, 648, 702
parallel, 353, 647
series, 344, 646
zero-input response: series 345, 348
Root-mean-square (Vrms) value, 261, 707
Rotating phasor, 384
s-plane geometry relationships, 529
Sallen-Key, footnote 729, table 730, LP 721, HP 726
Sample-and-hold circuit, 280, 378
Sampling:
aliasing, 712
anti-aliasing, 712
Nyquist rate, footnote 711
strictly band-limited, 711
theorem, 711
thermocouples, 207, photo 207
thermocouples, 205, curves, 228
Transfer characteristics
BJT, 171
OP AMP, 172
Transfer function:
admittance or y-parameters, WC2, WC5
conversion table, WC13
current gain, WC15, table WC16
definition, WC2
hybrid or h-parameters, WC2, WC7
impedance or z-parameters,
WC2, WC3
network, WC2
parameters, WC2
transfer function, 558
two-port connections or
conversions, WC12
voltage gain, WC13, table WC16
Undamped natural frequency (\(\omega_0\)), 359,
529, 541
Under-damped response, 352
Unilateral two-port network, WC20
Unipolar power, 813
Uniqueness property:
Fourier transform, Web App C
Laplace transform, 547
Unit output method, 100, 409
Units, table of, 4, inside front cover
unity gain method, LP 723, HP 727
Unstable circuit, 539
Voltage (V) (unit), 5
Virtual keyboard, 718
Voltage division, 42, 395, 508, 590, 592
Voltage follower, 179
Voltage gain (\(V_o\)), 151, two-port \(V_o\), WC15
Voltage source:
ac source symbol, 20
battery symbol, 20
dependent, 151
Fourier representation of, Web App C
i-v characteristics, 20
Laplace representation of, 500
phasor representation, 383
practical, 21
three-phase, 826
Wagner, K.W., 719
Wait (W) (unit), 6
Watt, James, footnote 6
Waveforms:
basics, 234
amplitude descriptors, 260
damped ramp, 254
damped sinusoid, 255
dc signals, 234
double exponential, 257
double-sided exponential, 254
exponentials \(e^{-\frac{t}{\tau_c}}\), 240
generation using MATLAB, Web
App D
generation using Multisim, Web
App D
impulse \((\delta(t))\), 236
instantaneous value, 259
partial descriptors, 259
ramp \((r(t))\), 238
signum function \((\text{sgn}(t))\), 253
sinc \((\text{sinc}(x/x))\), Web App C
singularity functions, 238
sinusoids \((\cos ot + \varphi)\), 245
step \((u(t))\), 235
temporal descriptors, 259
waveform-transform relationship,
454
Waveform symmetries, 697
Weber, Wilhelm, 282
Weber (Wb) (unit), 282, 786
Weber-turns \((\text{Wb}-\text{t})\) (unit), 282, 786
Westinghouse, George, 811
Wide band, 644
X (reactance), 395
Y (admittance), 395
Y-connection, 828
y-parameters, WC5
Z (impedance):
Fourier, Web App C
Laplace, 503
phasors, 391
z-parameters, WC3
Zero, 466, 721
Zero crossing detector, 215
Zero-input response, 312, 327, 345,
348, 515
Zero power loss, 795
Zero-state response, 327, 515
Zeta (\(\zeta\)) damping ratio, 352, 359, 529, 534,
644, 721

Index