Contents

About the author xi
Preface xii
About the companion website xiv

1 Crossover design – definitions, notes, and limitations 1
1.1 Unsuitability for acute or most infectious diseases 2
1.2 Inappropriateness for treatments with long-lasting effects 2
1.3 Loss of efficiency in the presence of carry-over effects 3
1.4 Concerns of treatment-by-period interaction 3
1.5 Flaw of the commonly used two-stage test procedure 4
1.6 Higher risk of dropping out or being lost to follow-up 4
1.7 More assumptions needed in use of a crossover design 5
1.8 General principle and conditional approach used in the book 5

2 AB/BA design in continuous data 7
2.1 Testing non-equality of treatments 10
2.2 Testing non-inferiority of an experimental treatment to an active control treatment 11
2.3 Testing equivalence between an experimental treatment and an active control treatment 12
2.4 Interval estimation of the mean difference 13
2.5 Sample size determination 16
 2.5.1 Sample size for testing non-equality 16
 2.5.2 Sample size for testing non-inferiority 17
 2.5.3 Sample size for testing equivalence 18
2.6 Hypothesis testing and estimation for the period effect 19
2.7 Estimation of the relative treatment effect in the presence of differential carry-over effects 21
2.8 Examples of SAS programs and results 22
Exercises 27
3 AB/BA design in dichotomous data

- 3.1 Testing non-equality of treatments: 34
- 3.2 Testing non-inferiority of an experimental treatment to an active control treatment: 36
- 3.3 Testing equivalence between an experimental treatment and an active control treatment: 39
- 3.4 Interval estimation of the odds ratio: 40
- 3.5 Sample size determination:
 - 3.5.1 Sample size for testing non-equality: 42
 - 3.5.2 Sample size for testing non-inferiority: 42
 - 3.5.3 Sample size for testing equivalence: 43
- 3.6 Hypothesis testing and estimation for the period effect: 45
- 3.7 Testing and estimation for carry-over effects: 47
- 3.8 SAS program codes and likelihood-based approach: 48
- Exercises: 51

4 AB/BA design in ordinal data

- 4.1 Testing non-equality of treatments: 62
- 4.2 Testing non-inferiority of an experimental treatment to an active control treatment: 64
- 4.3 Testing equivalence between an experimental treatment and an active control treatment: 65
- 4.4 Interval estimation of the generalized odds ratio: 66
- 4.5 Sample size determination:
 - 4.5.1 Sample size for testing non-equality: 67
 - 4.5.2 Sample size for testing non-inferiority: 68
 - 4.5.3 Sample size for testing equivalence: 68
- 4.6 Hypothesis testing and estimation for the period effect: 70
- 4.7 SAS codes for the proportional odds model with normal random effects: 72
- Exercises: 74

5 AB/BA design in frequency data

- 5.1 Testing non-equality of treatments: 78
- 5.2 Testing non-inferiority of an experimental treatment to an active control treatment: 81
- 5.3 Testing equivalence between an experimental treatment and an active control treatment: 83
- 5.4 Interval estimation of the ratio of mean frequencies: 84
- 5.5 Sample size determination:
 - 5.5.1 Sample size for testing non-equality: 86
 - 5.5.2 Sample size for testing non-inferiority: 87
 - 5.5.3 Sample size for testing equivalence: 88
- 5.6 Hypothesis testing and estimation for the period effect: 88
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>Estimation of the relative treatment effect in the presence of differential carry-over effects</td>
<td>90</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>Three-treatment three-period crossover design in continuous data</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>Testing non-equality between treatments and placebo</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>Testing non-inferiority of an experimental treatment to an active control treatment</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Testing equivalence between an experimental treatment and an active control treatment</td>
<td>104</td>
</tr>
<tr>
<td>6.4</td>
<td>Interval estimation of the mean difference</td>
<td>104</td>
</tr>
<tr>
<td>6.5</td>
<td>Hypothesis testing and estimation for period effects</td>
<td>105</td>
</tr>
<tr>
<td>6.6</td>
<td>Procedures for testing treatment-by-period interactions</td>
<td>107</td>
</tr>
<tr>
<td>6.7</td>
<td>SAS program codes and results for constant variance</td>
<td>109</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>Three-treatment three-period crossover design in dichotomous data</td>
<td>115</td>
</tr>
<tr>
<td>7.1</td>
<td>Testing non-equality of treatments</td>
<td>121</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Asymptotic test procedures</td>
<td>121</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Exact test procedures</td>
<td>123</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Procedures for simultaneously testing non-equality of two experimental treatments versus a placebo</td>
<td>124</td>
</tr>
<tr>
<td>7.2</td>
<td>Testing non-inferiority of an experimental treatment to an active control treatment</td>
<td>126</td>
</tr>
<tr>
<td>7.3</td>
<td>Testing equivalence between an experimental treatment and an active control treatment</td>
<td>127</td>
</tr>
<tr>
<td>7.4</td>
<td>Interval estimation of the odds ratio</td>
<td>129</td>
</tr>
<tr>
<td>7.5</td>
<td>Hypothesis testing and estimation for period effects</td>
<td>131</td>
</tr>
<tr>
<td>7.6</td>
<td>Procedures for testing treatment-by-period interactions</td>
<td>133</td>
</tr>
<tr>
<td>7.7</td>
<td>SAS program codes and results for a logistic regression model with normal random effects</td>
<td>136</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>8</td>
<td>Three-treatment three-period crossover design in ordinal data</td>
<td>141</td>
</tr>
<tr>
<td>8.1</td>
<td>Testing non-equality of treatments</td>
<td>150</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Asymptotic test procedures</td>
<td>150</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Exact test procedure</td>
<td>152</td>
</tr>
<tr>
<td>8.2</td>
<td>Testing non-inferiority of an experimental treatment to an active control treatment</td>
<td>153</td>
</tr>
<tr>
<td>8.3</td>
<td>Testing equivalence between an experimental treatment and an active control treatment</td>
<td>153</td>
</tr>
<tr>
<td>8.4</td>
<td>Interval estimation of the GOR</td>
<td>154</td>
</tr>
<tr>
<td>8.5</td>
<td>Hypothesis testing and estimation for period effects</td>
<td>156</td>
</tr>
</tbody>
</table>
8.6 Procedures for testing treatment-by-period interactions 159
8.7 SAS program codes and results for the proportional odds model with normal random effects 160
Exercises 162

9 Three-treatment three-period crossover design in frequency data 164
9.1 Testing non-equality between treatments and placebo 170
9.2 Testing non-inferiority of an experimental treatment to an active control treatment 173
9.3 Testing equivalence between an experimental treatment and an active control treatment 174
9.4 Interval estimation of the ratio of mean frequencies 175
9.5 Hypothesis testing and estimation for period effects 178
9.6 Procedures for testing treatment-by-period interactions 179
Exercises 181

10 Three-treatment (incomplete block) crossover design in continuous and dichotomous data 183
10.1 Continuous data 185
 10.1.1 Testing non-equality of treatments 188
 10.1.2 Testing non-equality between experimental treatments (or non-nullity of dose effects) 189
 10.1.3 Interval estimation of the mean difference 190
 10.1.4 SAS codes for fixed effects and mixed effects models 192
10.2 Dichotomous data 194
 10.2.1 Testing non-equality of treatments 197
 10.2.2 Testing non-equality between experimental treatments (or non-nullity of dose effects) 199
 10.2.3 Testing non-inferiority of either experimental treatment to an active control treatment 199
 10.2.4 Interval estimation of the odds ratio 200
 10.2.5 SAS codes for the likelihood-based approach 202
Exercises 203

References 208

Index 216