Index

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

AA model see “African Ape” model
acetabulum (hip joint), 115
AC model see “Ape Convergence” model
acromion, 104
“African Ape” model, 102–103
amelogenesis
 circadian clock, 62
 cross striations, 61–62
eelamel, growth of see enamel
 “enamel clock,” function of see “enamel clock”
growth plan, 71
larger molars, 70–71
for *Paranthropus*, 70
androgen receptor gene, 88–90, 89, 92
animal model, 22
“Ape Convergence” model, 103
appendicular skeleton
 cis-regulatory polymorphism, 128–129
developmental models, 103
ENCODE Project, 128
last common ancestor, 102–103
limbs
 anatomy, 121
 comparative variation, 124–125
development, 122–124
developmental transformations, 126–127
evolutionary trajectories, 125–126
or girdle formation, 129–130
morphological changes, 128
morphospaces, 101–102
pan-genomic methods, 129
pelvis
 anatomy, 115
 comparative variation, 117
development, 115–117
developmental transformations, 119–121
evolutionary trajectories, 117–119
phenotypic variation in “morphospace,” 127
scapula
 anatomy, 104
 comparative variation, 108–110
development, 104–108
developmental transformations, 112–115
evolutionary trajectories, 110–112
assembly instructions
controversy, 313
development and evolution, 297–300
embryologic development, physical traits, 313
evo-devo see evolutionary developmental biology
evolution of development, perspectives, 312
fundamental principles of life, 302–306
gradualism, 313
phenotypic differences, 313–314
saltational evolution, 313
atavisms, 181
autism
“autism risk” allele, 214
connectivity difference, 220–221, 221
developmental heterochrony, 218, 219
psychotic-affective spectrum conditions, 212, 213
spectrum conditions, 210
Bayesian credibility support values, 167, 169
biological anthropology
morphological integration and modularity
developmental and functional interactions, 7–8
pleiotropy, 8
traits, phenotypic covariation, 7
vertebrate body structures, interconnectedness, 7
phenotypic evolvability, 8
bipedalism, origin of, 264
BMP see bone morphogenetic protein
bone morphogenetic protein, 104
bootstrap support values, 167, 169
brain development
bipedalism, origin of, 264
brain organization, changes in
average neuron number, 267–268, 274
brain convolutions, 267
evolution of sulcal patterns, 268
frontal lobes, 268–269
lunate sulcus, position of, 268
non-human anthropoid scaling pattern, 267
reorganization, issues, 268
brain size, evolutionary increase, 261–262, 262, 264
brain’s networks
cortical synaptic development, 272–273
delay of PFC maturation, 273
development of white matter, 273
internal organization, 272, 273
myelination, comparative studies, 273
plasticity of mammalian brains, 272
wiring pattern, postnatal internal changes of, 272
CT-based extraction of endocasts, advantages, 264
endocranial shape see endocranial shape changes, pattern of
heterochrony, framework of, 262–263
newborn crania of humans and chimpanzees, 262, 263
“obstetrical dilemma” hypothesis, 265
obstetric or energetic constraints, 265
parturition, process of, 265
prenatal and postnatal brain growth, 265–267, 266
protracted pattern, 267
“secondary altriciality,” pattern of, 265
brain evo-devo see neurogenesis
BSV see bootstrap support values
CBA see cranial base angle
chondrocranial growth, human skull
brain size and cranial base, 18
chondrocranial length, 30, 31
consequences of selection, 30
cranial base angle, 21
cranial growth plates, 19
craniofacial development, 17, 18, 31–32
genealogical relationships, 19
Generalized Procrustes Analysis, 20–21
genetic and phenotypic variation, patterns
covariance matrices, 26–27, 27
principal component analysis, 26, 27
genetic covariation structure, 29
geometric morphometric techniques, 20–21
landmark definitions, 20, 21
linear regression, cranial base angle, 25–26, 26
multivariate regression, 24–25, 25
Palimpsest Model, 18
Papps2 mutation, 30–31
phenotypic variation, 17–18
principal component analysis, 21
Procrustes shape coordinates, 21–22
quantitative genetic analysis, 22–23
response to selection see cranial base, selection
spatial packing hypothesis, 30
three‐dimensional coordinates, 20, 20
univariate heritabilities, 27
variation and covariation structure, 18
circadian clock in enamel
 CLOCK-BMAL complex, 64
 mRNA expression of Per2 and Bmal1, 64
 oscillations of Amelx and Nfya mRNA, 64–65
 peripheral clocks, 64
 positive‐negative transcriptional feedback loops, 64
 regulation of Amelx and Klk4, 64
 suprachiasmatic nucleus, 63–64
 located in SCN of brain, 62
Circadian Locomotor Output Cycles Kaput, 64
cis-regulatory elements, 4–5
CLOCK see Circadian Locomotor Output Cycles Kaput
Clone Model, 39
 activation zones, 41
 cranial neural crest cells, 42
 formation of presumptive dental tissues, 41–42
Inhibitory Cascade Model, 43
CNCC see cranial neural crest cells
cognition and disorders
 autism spectrum conditions, 210
 DAOA gene, 211, 212
 diometric brain hypothesis, 209
evo-neuro model, 212
 mental rotation performance, 211, 212
 negative correlations, social and non-social skills, 210, 210
 pedigree-based genetic risk, schizophrenia, 211
 psychotic-affective spectrum conditions, 212, 213
 verbal and visual-spatial abilities, 211
 verbal-perceptual-rotational model, 210
cortical column, 242
cortical layers, 237, 238, 244–245
cortical plate, 237, 238
cranial base angle, 21, 25–26, 26
cranial base, selection
 flexion of cranial base, 29, 30
 hypothetical shortening, 29, 29
 multivariate breeder's equation, 23
 Papps2 mutation, effect of, 23, 28, 28
 quantitative genetic model, 23–24
 selection gradients, 24, 29, 29
 cranial growth plates, 19
 cranial neural crest cells, 42
 CREs see cis-regulatory elements
cross striations, 61, 63
cry see cryptochrome
cryptochrome, 64
CSV see Bayesian credibility support values
daily secretion rates, 61–62, 62
defered adaptations, 218
The Descent of Man, Charles Darwin's, 6
developmental canalization, 308
developmental constraints, 184–185
developmental genetics
advances in, 77, 78
evolutionary developmental biology, 11
genetic engineering approaches, 9
homeotic changes, mechanisms of, 11
Homo sapiens, EDA contexts, 9
in vivo, in vitro, and in silico techniques, 10–11
mechanisms
dental homeobox gene expression patterns, 81
developmental evolution, mechanistic change, 79, 80
expression of *Bmp4*, 81
Hox genes function, 79, 80
morphological integration and coevolution, patterns of, 82
pelvic spine loss, 79–80
phenotypic variation, 81, 91
Pitx1 gene, 80–81
pleiotropic and co-evolutionary hypothesis, 83
primates, functional and phylogenetic analyses, 82
“toolkit” genes, 81
ontogeny in fossil primates, 10
organismal development processes, 8
perspective, 186
phenotypic variation, 9
phenotypic (co)variation patterns, 10
primates in evo-devo context, 10
rodent models, 8–9
developmental verbal dyspraxia, 285
development and evolution
causal symmetry, 299
comparative and descriptive morphology, 300
DNA sequencing, 298
evo-devo, 298, 300
evolution of development, 298
Hox genes, 299
life, principles of, 299
mineralization, evolution of, 298
polymerase chain reaction, 298
secretory calcium-binding phosphoprotein, 298–299
diametric brain hypothesis, 209
diametric disorders, neurodevelopment
allelic variation, 213
“autism risk” allele, 214
evo-neuro model, 214
genomic and epigenetic alteration forms, 214, 215, 216
phenotypic canalization, 215
digit loss/gain, 188–189
DNA sequencing methodologies, 298
DSR see daily secretion rates
EDA see evolutionary developmental anthropology
enamel
daily growth, 68–70
Au. afarensis and Kataboi/Lomekwi samples, 62–63, 71
crown development, 63
daily secretion rates, 61–62, 62
Paranthropus species, 61–62
portable confocal scanning optical microscope, 61
molar teeth, 61
molecular circadian clock see circadian clock
peripheral clocks, 62
prism or rod, 63
thickness, development of
amount of proteins secreted by cells, 61
lifespan of cells, 61
number of cells, 61
and tooth development
ameloblasts, 62, 62, 63
cross striations, 63
secretory stage, 62–63
“enamel clock” see also circadian clock
acid-base balance, changes in, 66–67
Amelx mRNA, 68
bicarbonate functions, 65
Ca$^{2+}$ influx, 68
carbonic anhydrase 6 (*Car6*), 66, 66
cross striations, development of, 67, 67–68
glucose homeostasis, 65
real time PCR of amelogenin, 65, 65–66
ENCODE Project, 128
endochondral ossification
condensation phase, 142
developmental model
 growth rate of long bone, 145–146
 phenotypic variation, 144
 proliferating and hypertrophic cell populations, 145–146
 regulation of longitudinal bone growth, 144
 embryonic phase, 142
 evolutionary developmental simulations cellular parameters, 147–148
 fitness and reproductive success, determination, 151, 151–152
 genotype-development-phenotype map, 148
 last common ancestor, 149
 production of genotypes, 150
 production of the adult phenotypes, 150
 recombination, reproduction, and mutation, 152–153
 steps for generations, 149, 149
 limb bone growth, 142
 process of, 85, 85
 rate parameters, 147, 148
 endocranial shape changes, pattern of, 264
 brain ontogenetic shape changes, 269
 eruption of the deciduous dentition, 269–270
 Homo sapiens, globular neurocranial shape, 269–270
 Neanderthal neonate, virtual reconstruction, 270, 271, 274
 tempo and mode of brain development, 271, 271–272
 evo-devo see evolutionary developmental biology
 evo-devo-anthro see evolutionary developmental anthropology
 evolutionary developmental anthropology
complex genetic causation and conservation
 individual variation, 309, 310
 patterns of difference, 310–311
 polygenic-multiple-gene-causation, 310
 evolutionary change, pace of developmental canalization, 308
 divergence, 307

 homeotic changes, 307
 “Mendelian” genes, 307
 morphological integration, 308
 pattern formation, 308
 saltational change, 307
 secondary structure, 308
 species, defining, 307
 variation, 307
 heterochronic shifts, 6–7
 hominoids, 6
 homology and heterochrony, 6
 organismal development process, 1
 phenotypic variation and variability, 1, 6
 primate fetuses, anatomy, 5
 saltation vs. gradualism canalization, 309
 repetitive traits, 309
 structural “program,” 309
evolutionary developmental biology, 11
 anthropological, 300
 cellular dynamics, 2
 cis-regulatory hypothesis, 4–5
 comparative embryology, 2–3, 301, 301
 diverging tree-like structure of relationships (Darwin), 301
 Drosophila, embryonic patterning, 3–4
 homeotic genes, 3
 macro-and micro-evolutionary scales, 2
 mechanism for genetic change, 302
 mechanism of development, 301–302
 Mendelian genetics, 3
 Modern Synthesis, 3
 molecular genetics, 3
 organismal development, study of, 2, 3
 organismal embryological development, 302
 phenotypic variation, structure of, 2
 population genetics, 2–3
 a priori theory, 312
 protein-coding genes, 4
 sampling, mapping, and causal inference, 312
 toolkit genes, 3–4
tooth developmental biology
dentition and jaw skeleton function, 50–51
 spatial packing, 50
 timing of odontogenesis, 51
 variation, implies modeling problem, 312
 vertebrate fetal development, 2
evolutionary developmental simulations
advantages, 158–159
endochondral ossification, 147–153
femoral growth plates, 161, 162
high throughput genomic technology, 161
of limb bone growth, 160–161
limitations, 159–160
molecular basis of growth plate
function, 161
postcranial anatomy, changes in, 163
evolutionary reversions, 179, 180–181, 181, 185
evo-neuro-devo see neurodevelopment, evolutionary biology of

FGF see Fibroblast Growth Factor
Fibroblast Growth Factor, 104
Field Theory, 39
genetic “cross-talk,” 40
identical tooth primordia, 39
molar dental lamina, 40
morphogenetic fields, 40
polyphyodont dentitions, 41
“zone of inhibition,” 41
flexion of cranial base, 29, 30
“fluid” intelligence, 209

FOXP2 gene
CNTNAP2 gene, 294
developmental verbal dyspraxia, 285
emergence of language
animal adaptations, 293
computer metaphor, 292–293
orthologous phenotypes/phenologs, 293
KE family generations, 285–286, 286
molecular evolution
amino acid changes, 288–289
neuronal morphology, 290
nucleotide sequence, 288
motor impairment, 286
mouse embryo experiments, 286
Neanderthals, 290–292
transcription factor
DISC1, 287
DLX5 and SYT4, 287
“forkhead box,” 287
“hub” genes, 287, 289

in vivo assays, 287, 288

Generalized Procrustes Analysis, 20–21
gene regulatory networks, 49–50
genetical evolution, neurodevelopment

FOXP2 gene, 207
genomes-up approach, 206–207
“microcephaly genes,” 207, 208
molecular-evolutionary studies, 207
“phenotypes-down” perspective, 208

genetic (quantitative) analysis
animal model, 22
covariation patterns, 22
evolutionary responses to selection, 23–24
matrix permutation test, 23
phenotypic variation, 22
restricted maximum likelihood, 22–23
SOLAR tests, 23

genetic covariation structure, 29

genetic determinants, tooth developmental biology

Clone Model, 39, 41–43
developmental-genetic and morphogenetic processes, 43–44
evolution of heterodonty, 39
Field Theory, 39, 39–41
Molecular Field Theory, 39, 42–43
“peripheral clock,” 43
segmental development in vertebrates, 38–39
timing of tooth initiation, 43
tooth differentiation, 39
geometric morphometric techniques, 20–21
globularization phase, 270, 270–271, 274–275

GPA see Generalized Procrustes Analysis

gradualism, 313

GRNs see gene regulatory networks
growth plates

cellular parameters
absolute changes, 156, 157
relative changes, 156–158, 157
developmental parameters
averages, coefficients of variation, 153–154, 154
from genetically heterogeneous population, 153, 153
magnitude and correlation, 158
means, coefficients of variation, 154, 155, 156
rates of proliferation and hypertrophy, 154, 155, 156
deoondochondral ossification, developmental model see endochondral ossification

evolutionary developmental simulations, 158–160
growth pattern, 140–141, 141
limb bone growth, 142–144
limb bone length, 139–140, 140
longitudinal growth, cellular mechanisms, 141–142
natural selection, 141
gyrus, 233, 251

head and neck muscles
branchial muscles, 172–174, 174
comparative study, 167, 168
developmental and genetic studies, 172–173
embryonic origin of cranial muscles, 171, 171
epibranchial and hypobranchial muscles, 172
extra-ocular muscles, 173, 174
hyoid muscles, 171
laryngoglossal muscles, 173, 174
mandibular muscles, 171
rhombomeric quail-to-chick grafts, 169
heterochrony
framework of, 262–263
and variation
autism, 218, 219
childhood phenotypes, 218
connectivity difference, 220–221, 221
defered adaptations, 218
object identification, 218, 219
ontogenetic adaptations, 220
short-range connectivity, 220
stage-specific typical development, 218
heterodonty, evolution of, 39
hidden variation, impact of, 181, 185
homeotic transformations, 189, 191
hominid bipedalism, 88
homoplasy, parallelism and convergence, 179
Hox genes and coordinated limb evolution
beak evolution, 86
digit and forearm proportions, fossil record, 86
deoondochondral ossification, process of, 85, 85
expression of Hoxd11 and Hoxd13, 83–84, 84
forelimb proportions, 83
Hoxd cluster, distal limb expression, 83
limb length, effect of individual growth plates, 84–86, 85
modulate skeletal growth, Hox genes, 83–84
shortened forearm and fingers, 87
“hub” genes, 287, 289
human-specific genetic changes
androgen receptor gene, 88–90, 89, 92
copulation in hominoids, 90, 90–91
genomic deletions, 88
hominid bipedalism, 88
mouse model, 87
phenotypic loss of vibrissae and penile spines, 90, 90, 91
Pitx1 regulatory site, 88
RNA gene, 87
hypobranchial muscles, 169–170

IMI see intermembral proportions
intermembral proportions, 125
isocortex evolution
cortical gradients, 248–249
developmental gradients
axon-guidance, 246
cell-cell recognition molecules, 246
cortical areas, 246
neurogenesis timing, 245, 245
ocular dominance columns, 246
enlarged cortical module, 242–243
feed-forward and feed-back pathways, 246–247
information compression, posterior-anterior axis
dendritic arbors and neuron soma size, 247–248
excitatory synapses, 247
Jerison’s “proper mass,” 242
larger brains, 242
neurogenesis, gradients of, 243–244, 244
neuron numbers, 241, 242
jaw morphogenesis
allometric growth patterns, 46
bauplan genes, 44
cranial neural crest, 44
gain-of-function experiments, 44
homebox-containing genes, 44–45
homeotic genes, discovery of, 44
Hox gene expression, 45
identity and form
dentition and jaw skeleton, 46–47
gene regulatory networks, 49–50
parathyroid hormone-related protein, 47
peripheral clocks, 49
p63 gene global knock-out mouse mutants, 47–48, 48
studies in mutant mouse strains, 47
3D embryonic teeth, 47
patterning jaw identity, 45
stages of, 37, 38
3D morphometric and radiographic analyses, 46
of baboon (Papio anubis), 46
of bonobo (P. paniscus), 46
of chimpanzee (Pan troglodytes), 46
upper jaw skeleton, effect of “toothlessness,” 48–49
vertebrate jaw, 45
Jerison’s “proper mass,” 242

last common ancestor
“African Ape” model, 102–103
“Ape Convergence” model, 103
phylogenetic resolution and early hominin fossil record, 102
lateral plate mesoderm, 104
LCA see last common ancestor
life, fundamental principles
adaptability
plasticity, 305
unpredictable circumstances, 306
chance
effects, 305
random unpredictable events, 305
coding
change within cells and organisms, 304
 genetic code, 304–305
contingency
cellular phenomenon, 305
long-term consequences, 305
cooperation
 combinations or arrangements, 306
 hierarchical, 306
inheritance with memory
environmental factors, 303
offspring look like parents, 303
modular elements (like LEGOs)
functional subunits, 303
module, 304
nature, modular, 303
partial sequestration
internal integrity, 304
sequestered organelles, internal structures of cells, 304, 304
tinkering, 305
limb(s)
 anatomy, 105, 121
bone evolution in hominoids see growth plates
bone growth
cartilaginous growth plate, 142, 144
endochondral ossification, 142
maturation and hypertrophy phase, 144
osteogenesis and long bone elongation, 142
comparative variation
ape limbs, 124
bipedal adaptations in hominins, 124
and evolutionary morphospace, 124, 125
development
anterior-posterior, 122
dorsal-ventral, 122
forelimb and hindlimb, molecular and genetic pathways, 123, 123–124
limb buds and segments, elongation of, 122–123
limb specification, 124
and morphogenesis, 122, 123
proximal-distal specification and patterning, 122
developmental transformations
artificial selection, 126
 genetic and developmental factors, 126–127
 evolutionary trajectories
AA vs. AC models, 125, 126
limb lengths and intermembral proportions, 125
phases of selection, in hominin evolution, 126
proportions and penile spines
developmental genetics, advances in, 77, 78
evolutionary change see developmental genetics
Hox genes, hominoids, 83–87
human-specific genetic changes, 87–92
molecular genetics, technological advances, 77
patterns of phenotypic integration, 78–79
phenotypic homology, 77–78
“selector genes” (Hox and Pax6), 78
limb bones and muscles, spatial associations, 189, 190
limb serial homology, 192
“logic of monsters,” Alberch’s, 191–192
LPM see lateral plate mesoderm
“lunate sulcus” on hominin fossils, 268
matrix permutation test, 23
MCIP1 and MCIP2 see myocyte-enriched calcineurin interacting protein
Mendelian genetics, 3
mineralization, 298
modern humans anomalies/variations, 191–192
Molecular Field Theory, 39, 42–43
molecular genetics, technological advances, 77
morphospaces, 101–102
multivariate breeder’s equation, 23
musculature, study of, 169
myocyte-enriched calcineurin interacting protein, 186
Neanderthals
excavation protocol, DNA analysis, 291, 291
human contamination, 290–291
selective sweep, 290, 292
neoteny, 217, 219
neurodevelopment, evolutionary biology of
developmental heterochrony and variation see heterochrony
diametric disorders see diametric disorders, neurodevelopment
evo-neuro-devo, 216–217
genetical evolution see genetical evolution, neurodevelopment
heterochronic extension, 216–217
human cognition and disorders see cognition and disorders modern, 222–223
neoteny, 217
neurogenesis and anatomy
“Broca’s area,” 237
cortical layer, 237
cortical plate, 237
hindbrain and forebrain segments, 236
isocortex, 236–237
neocortex, 236
neural tube, 236
primary sensory and motor regions, 237
spinal cord, 236
ventricular zone, 237, 238
“Wernicke’s area,” 237
brain allometry relation
brain size, mammals and vertebrates, 239
cell proliferation, 241
natural-logged values, brain region volumes, 240
segmental location, 239
telencephalic and cerebellar neuron number and volume, 239
vertebrate brain evolution, 241
to evolutionary variations
Aotus, single nocturnal owl monkey, 243–244
neuron number, 243, 244
non-pentadactyly, study of, 189

“obstetrical dilemma” hypothesis, 265
odontogenesis, stages of, 37, 38
On the Origin of Species, 6, 297
ontogenetic adaptations, 220
ontogeny
 in fossil primates, 10
 and phylogeny, evolution and parallelism
 between
 “anatomically plesiomorphic”
 primates, 177
differentiation of muscles, 179
in feeding mechanisms, 178
Haeckel’s theory of recapitulation, 178
of head and neck muscles, 178
morphogenetic semi-independence of
the muscle, 177–178
notion of “scalae naturae,” 178
Pan/Homo split, 178
*The Structure of Evolutionary
 Theory*, 177

paleontology, 3
Palimpsest Model, 18
Pan-Homo, 102–103
Papp2 mutation, 23, 28, 28, 30–31
parathyroid hormone-related protein, 47
parturition, process of, 265
PC see principal component analysis
PCR see polymerase chain reaction
PCSOM see portable confocal scanning
 optical microscope
PD see proximal-distal patterning
pectoral and forelimb muscles
abaxial and primaxial musculature, 175
appendicular musculature, 175
axial pectoral girdle musculature, 175
comparative study, 167, 168
“In-Out”/“Myotomal Extension”
morphogenetic hypothesis, 175, 176
in limb development, 175–176
proximal attachments, 176–177
pelvis
anatomy, 105, 115
comparative variation, 117
development
 ilium formation, genes, 116–117
 misexpression or loss of *Hox*
 genes, 117
 and morphogenesis, 115, 116
developmental transformations
 alterations to *cis*-regulatory
 elements, 120
 changes in gene regulation, 120
 cis-regulatory architecture, 121
 comparative morphospace, 121
 conditional cre-lox targeting
 system, 119
 limb and girdle development, gene
 function, 120–121
 species, variation, 121
 evolutionary trajectories
 AA vs. AC models, 117–118
 australopithecines, 118–119
 for LCA, 117
 pentadactyl autopodia, 189
 peripheral clocks, 43, 49
 p63 gene global knock-out mouse mutants,
 47–48, 48
 phenotypes, 293
 phenotypic homology, 77–78
 phenotypic variation, 22
 “phylotypic stage,” 188
 Pituitary homeobox 1 (Pitx1) gene, 80–81
 Pitx1 regulatory site, 88
 pleiotrophic and co-evolutionary
 hypothesis, 83
 pleiotropy, 8
 polymerase chain reaction, 298
 population genetics, 2–3
 portable confocal scanning optical
 microscope, 61
 prefrontal cortex, 273
 primary sensory areas, 237, 242, 246
 primate muscles
 atavisms, 181
 Bayesian credibility support values,
 167, 169
 bootstrap support values, 167, 169
 developmental constraints, 184–185
 developmental genetic perspective, 186
 digit loss/gain, 188–189
 evolutionary reversions, 179, 180–181,
 181, 185
 evolution at node, 187
 head and neck see head and neck muscles
 hidden variation, impact of, 181, 185
 homeotic transformations, 189, 191
 homoplasy, parallelism and
 convergence, 179
 hypobranchial muscles, 169–170
internal constraints, paradigm of, 188
limb bones and muscles, spatial associations, 189, 190
local molecular clocks, concept of, 186
“logic of monsters,” Alberch’s, 191–192
modern humans anomalies/variations, 191–192
and molecular evolutionary rates, 188
molecular nucleotide, rates of, 187
morphological or developmental serial homology, 196, 198
musculature, study of, 169
non-pentadactyly, study of, 189
ontogenetic factors/constraints, 196
ontogeny and phylogeny, 177–179
paired appendages, 192, 193–194, 195
pectoral and forelimb muscles see pectoral and forelimb muscles
pentadactyl autopodia, 189
“phylotypic stage,” 188
primate clade, simplistic dichotomies, 188
recapitulation hypothesis, Haeckel’s, 185
“similarity bottlenecks,” 197–198
skeletal morphogenesis, 169
structures of FL and HL, serial homologues, 192, 195–196
superficial musculature, 197, 197
time frame, structure’s loss and reacquisition, 181, 182–183
topological position, 189–190
transgenic GFP-green fluorescent protein, 189
trisomies 21, 13 and 18, 181, 185–186
vertebrates, ancestral Tbx4/5 cluster, 192, 194
principal component analysis, 21
Procrustes shape coordinates, 21–22
progenesis, 219
prosomeres, 236
proximal-distal patterning, 122
PTHrP see parathyroid hormone-related protein
pyramidal neuron, 248–249
RARs see Retinoic Acid Receptors
recapitulation hypothesis, Haeckel’s, 185
REML see restricted maximum likelihood
restricted maximum likelihood, 22–23
Retinoic Acid Receptors, 108
rhombomeres, 236
RNA gene, 87
scapula
anatomy, 104, 105
comparative variation
morphospace, 108, 109, 110
scapular spine and glenoid, 110
supraspinous fossa volume, 110
development
chondrogenesis and osteogenesis, 107
developmental and genetic pathways, 108
embryonic tissues, 104, 106–107
genic and molecular studies, 107–108
lateral plate mesoderm, 104
and morphogenesis, 104, 106–107
mouse models, studies in, 104–105
regulators of endochondral ossification, 107
spine and acromion patterning, 108
developmental transformations
AA vs. AC models, 112, 114–115
blade and spine, postnatal integration, 112
blade vs. head/neck cell number, 112–113
Pbx or Tbx gene expression, 113
Pitx1 cis-regulatory enhancer, 114
pleiotropy, 113
regulatory elements, 113–114
spine development, genes influencing, 114
evolutionary trajectories
AA and AC model, 110–111
hominin fossil record, 111
Homo scapular morphology, 111–112
shoulder morphospace, phylogenetic analysis, 111
schizophrenia
connectivity difference, 220–221, 221
short-range connectivity, 220
SCN see suprachiasmatic nucleus
SCPP see secretory calcium-binding phosphoprotein
secondary altriciality, pattern of, 265
secretory calcium-binding phosphoprotein, 298–299
selector genes (*Hox* and *Pax6*), 78
shortened forearm and fingers, 87
skeletal morphogenesis, 169
social brain, 209
SOLAR tests, 23
spatial packing hypothesis, 18, 30
subventricular zone, 237, 238
suprachiasmatic nucleus, 62

“toolkit” genes, 81

tooth developmental biology

 class, position, and form, genetic
determinants, 38–44
dentition and jaw skeleton function, 50–51
developmental-genetic information, 37
fossil hominins, 35, 36
genetic studies of odontogenesis, 36
hominid teeth and jaws, 37
human and primate, evo-devo studies
dentition and jaw skeleton function,
50–51
spatial packing, 50
timing of odontogenesis, 51

jaw identity and form, 46–50
jaw morphogenesis, 44–46
mandible (dentary bone) and lower
permanent molars, 35
odontogenesis, stages of, 37, 38
ontogenetic variation, 37
size-reduction in hominin jaw
apparatus, 36
smaller teeth and jaws, evolution of,
36–37
spatial packing, 50
spatial relationships, 35
timing of odontogenesis, 51
topological position, 189–190
transgenic GFP-green fluorescent
protein, 189
tri-phalangeal thumb, 191
trisomies 21, 13 and 18, 181, 185–186
ventricular zone, 236–237, 238
visual cortices, primary and secondary, 246

Wingless/Integrin, 104