Contents

Preface to the Second Edition xvii
Preface to the First Edition xix

PART 1 STRUCTURES AND MICROSTRUCTURES 1

1 The electron structure of atoms 3

 1.1 The hydrogen atom 3
 1.1.1 The quantum mechanical description 3
 1.1.2 The energy of the electron 4
 1.1.3 Electron orbitals 5
 1.1.4 Orbital shapes 5
 1.2 Many-electron atoms 7
 1.2.1 The orbital approximation 7
 1.2.2 Electron spin and electron configuration 7
 1.2.3 The periodic table 9
 1.3 Atomic energy levels 11
 1.3.1 Spectra and energy levels 11
 1.3.2 Terms and term symbols 11
 1.3.3 Levels 13
 1.3.4 Electronic energy level calculations 14

Further reading 15
Problems and exercises 16

2 Chemical bonding 19

 2.1 Ionic bonding 19
 2.1.1 Ions 19
 2.1.2 Ionic size and shape 20
 2.1.3 Lattice energies 21
 2.1.4 Atomistic simulation 23
 2.2 Covalent bonding 24
 2.2.1 Valence bond theory 24
 2.2.2 Molecular orbital theory 30
 2.3 Metallic bonding and energy bands 35
 2.3.1 Molecular orbitals and energy bands 36
 2.3.2 The free electron gas 37
 2.3.3 Energy bands 40
CONTENTS

6.3 Silicate glasses
 6.3.1 Bonding and structure of silicate glasses 155
 6.3.2 Glass deformation 157
 6.3.3 Strengthened glass 159
 6.3.4 Glass-ceramics 160

6.4 Polymers
 6.4.1 Polymer formation 162
 6.4.2 Microstructures of polymers 165
 6.4.3 Production of polymers 170
 6.4.4 Elastomers 173
 6.4.5 The principal properties of polymers 175

6.5 Composite materials
 6.5.1 Fibre-reinforced plastics 177
 6.5.2 Metal-matrix composites 177
 6.5.3 Ceramic-matrix composites 178
 6.5.4 Cement and concrete 178

Further reading 181
Problems and exercises 182

PART 3 REACTIONS AND TRANSFORMATIONS 189

7 Diffusion and ionic conductivity 191
 7.1 Self-diffusion, tracer diffusion and tracer impurity diffusion 191
 7.2 Non-steady-state diffusion 194
 7.3 Steady-state diffusion 195
 7.4 Temperature variation of diffusion coefficient 195
 7.5 The effect of impurities 196
 7.6 Random walk diffusion 197
 7.7 Diffusion in solids 198
 7.8 Self-diffusion in one dimension 199
 7.9 Self-diffusion in crystals 201
 7.10 The Arrhenius equation and point defects 202
 7.11 Correlation factors for self-diffusion 204
 7.12 Ionic conductivity 205
 7.12.1 Ionic conductivity in solids 205
 7.12.2 The relationship between ionic conductivity and diffusion coefficient 208

Further reading 209
Problems and exercises 209

8 Phase transformations and reactions 213
 8.1 Sintering 213
 8.1.1 Sintering and reaction 213
 8.1.2 The driving force for sintering 215
 8.1.3 The kinetics of neck growth 216
 8.2 First-order and second-order phase transitions 216
 8.2.1 First-order phase transitions 217
 8.2.2 Second-order transitions 217
8.3 Displacive and reconstructive transitions 218
8.3.1 Displacive transitions 218
8.3.2 Reconstructive transitions 219
8.4 Order–disorder transitions 221
8.4.1 Positional ordering 221
8.4.2 Orientational ordering 222
8.5 Martensitic transformations 223
8.5.1 The austenite–martensite transition 223
8.5.2 Martensitic transformations in zirconia 226
8.5.3 Martensitic transitions in Ni–Ti alloys 227
8.5.4 Shape-memory alloys 228
8.6 Phase diagrams and microstructures 230
8.6.1 Equilibrium solidification of simple binary alloys 230
8.6.2 Non-equilibrium solidification and coring 230
8.6.3 Solidification in systems containing a eutectic point 231
8.6.4 Equilibrium heat treatment of steel in the Fe–C phase diagram 233
8.7 High-temperature oxidation of metals 236
8.7.1 Direct corrosion 236
8.7.2 The rate of oxidation 236
8.7.3 Oxide film microstructure 237
8.7.4 Film growth via diffusion 238
8.7.5 Alloys 239
8.8 Solid-state reactions 240
8.8.1 Spinel formation 240
8.8.2 The kinetics of spinel formation 241
Further reading 242
Problems and exercises 242

9 Oxidation and reduction 247
9.1 Galvanic cells 247
9.1.1 Cell basics 247
9.1.2 Standard electrode potentials 249
9.1.3 Cell potential and Gibbs energy 250
9.1.4 Concentration dependence 251
9.2 Chemical analysis using galvanic cells 251
9.2.1 pH meters 251
9.2.2 Ion selective electrodes 253
9.2.3 Oxygen sensors 254
9.3 Batteries 255
9.3.1 ‘Dry’ and alkaline primary batteries 255
9.3.2 Lithium-ion primary batteries 256
9.3.3 The lead–acid secondary battery 257
9.3.4 Lithium-ion secondary batteries 257
9.3.5 Lithium–air batteries 259
9.3.6 Fuel cells 260
9.4 Corrosion 262
9.4.1 The reaction of metals with water and aqueous acids 262
9.4.2 Dissimilar metal corrosion 264
9.4.3 Single metal electrochemical corrosion 265
9.5 Electrolysis 266
9.5.1 Electrolytic cells 267
9.5.2 Electroplating 267
9.5.3 The amount of product produced during electrolysis
9.5.4 The electrolytic preparation of titanium by the FFC Cambridge Process
9.6 Pourbaix diagrams
 9.6.1 Passivation, corrosion and leaching
 9.6.2 The stability field of water
 9.6.3 Pourbaix diagram for a metal showing two valence states, M^{2+} and M^{3+}
 9.6.4 Pourbaix diagram displaying tendency for corrosion

Further reading
Problems and exercises

PART 4 PHYSICAL PROPERTIES

10 Mechanical properties of solids

10.1 Strength and hardness
 10.1.1 Strength
 10.1.2 Stress and strain
 10.1.3 Stress–strain curves
 10.1.4 Toughness and stiffness
 10.1.5 Superalasticity
 10.1.6 Hardness

10.2 Elastic moduli
 10.2.1 Young’s modulus (the modulus of elasticity) (E or Y)
 10.2.2 Poisson’s ratio (\(\nu\))
 10.2.3 The longitudinal or axial modulus (L or M)
 10.2.4 The shear modulus or modulus of rigidity (G or \(\mu\))
 10.2.5 The bulk modulus, K or B
 10.2.6 The Lamé modulus (\(\lambda\))
 10.2.7 Relationships between the elastic moduli
 10.2.8 Ultrasonic waves in elastic solids

10.3 Deformation and fracture
 10.3.1 Brittle fracture
 10.3.2 Plastic deformation of metals
 10.3.3 Dislocation movement and plastic deformation
 10.3.4 Brittle and ductile materials
 10.3.5 Plastic deformation of polymers
 10.3.6 Fracture following plastic deformation
 10.3.7 Strengthening
 10.3.8 Computation of deformation and fracture

10.4 Time-dependent properties
 10.4.1 Fatigue
 10.4.2 Creep

10.5 Nanoscale properties
 10.5.1 Solid lubricants
 10.5.2 Auxetic materials
 10.5.3 Thin films and nanowires

10.6 Composite materials
 10.6.1 Young’s modulus of large particle composites
 10.6.2 Young’s modulus of fibre-reinforced composites
 10.6.3 Young’s modulus of a two-phase system

Further reading
Problems and exercises
11 Insulating solids

11.1 Dielectrics

11.1.1 Relative permittivity and polarisation
11.1.2 Polarisability
11.1.3 Polarisability and relative permittivity
11.1.4 The frequency dependence of polarisability and relative permittivity
11.1.5 The relative permittivity of crystals

11.2 Piezoelectrics, pyroelectrics and ferroelectrics

11.2.1 The piezoelectric and pyroelectric effects
11.2.2 Crystal symmetry and the piezoelectric and pyroelectric effects
11.2.3 Piezoelectric mechanisms
11.2.4 Quartz oscillators
11.2.5 Piezoelectric polymers

11.3 Ferroelectrics

11.3.1 Ferroelectric crystals
11.3.2 Hysteresis and domain growth in ferroelectric crystals
11.3.3 Antiferroelectrics
11.3.4 The temperature dependence of ferroelectricity and antiferroelectricity
11.3.5 Ferroelectricity due to hydrogen bonds
11.3.6 Ferroelectricity due to polar groups
11.3.7 Ferroelectricity due to medium-sized transition-metal cations
11.3.8 Poling and polycrystalline ferroelectric solids
11.3.9 Doping and modification of properties
11.3.10 Relaxor ferroelectrics
11.3.11 Ferroelectric nanoparticles, thin films and superlattices
11.3.12 Flexoelectricity in ferroelectrics

Further reading

Problems and exercises

12 Magnetic solids

12.1 Magnetic materials

12.1.1 Characterisation of magnetic materials
12.1.2 Magnetic dipoles and magnetic flux
12.1.3 Atomic magnetism
12.1.4 Overview of magnetic materials

12.2 Paramagnetic materials

12.2.1 The magnetic moment of paramagnetic atoms and ions
12.2.2 High and low spin: crystal field effects
12.2.3 Temperature dependence of paramagnetic susceptibility
12.2.4 Pauli paramagnetism

12.3 Ferromagnetic materials

12.3.1 Ferromagnetism
12.3.2 Exchange energy
12.3.3 Domains
12.3.4 Hysteresis
12.3.5 Hard and soft magnetic materials

12.4 Antiferromagnetic materials and superexchange

12.5 Ferrimagnetic materials

12.5.1 Cubic spinel ferrites
12.5.2 Garnet structure ferrites
12.5.3 Hexagonal ferrites 383
12.5.4 Double exchange 384

12.6 Nanostructures 385
12.6.1 Small particles and data recording 385
12.6.2 Superparamagnetism and thin films 386
12.6.3 Superlattices 386
12.6.4 Photoinduced magnetism 387

12.7 Magnetic defects 389
12.7.1 Magnetic defects in semiconductors 389
12.7.2 Charge and spin states in cobaltites and manganites 390

Further reading 393
Problems and exercises 393

13 Electronic conductivity in solids 399

13.1 Metals 399
13.1.1 Metals, semiconductors and insulators 399
13.1.2 Electron drift in an electric field 401
13.1.3 Electronic conductivity 402
13.1.4 Resistivity 404

13.2 Semiconductors 405
13.2.1 Intrinsic semiconductors 405
13.2.2 Band gap measurement 407
13.2.3 Extrinsic semiconductors 408
13.2.4 Carrier concentrations in extrinsic semiconductors 409
13.2.5 Characterisation 411
13.2.6 The p-n junction diode 413

13.3 Metal–insulator transitions 416
13.3.1 Metals and insulators 416
13.3.2 Electron–electron repulsion 417
13.3.3 Modification of insulators 418
13.3.4 Transparent conducting oxides 419

13.4 Conducting polymers 420

13.5 Nanostructures and quantum confinement of electrons 423
13.5.1 Quantum wells 424
13.5.2 Quantum wires and quantum dots 425

13.6 Superconductivity 426
13.6.1 Superconductors 426
13.6.2 The effect of magnetic fields 427
13.6.3 The effect of current 428
13.6.4 The nature of superconductivity 428
13.6.5 Josephson junctions 430
13.6.6 Cuprate high-temperature superconductors 430

Further reading 438
Problems and exercises 438

14 Optical aspects of solids 445

14.1 Light 445
14.1.1 Light waves 445
14.1.2 Photons 447

14.2 Sources of light 449
14.2.1 Incandescence 449
14.2.2 Luminescence and phosphors 450
14.2.3 Light-emitting diodes (LEDs) 453
14.2.4 Solid-state lasers 454
14.3 Colour and appearance 460
14.3.1 Luminous solids 460
14.3.2 Non-luminous solids 460
14.3.3 Attenuation 461
14.4 Refraction and dispersion 462
14.4.1 Refraction 462
14.4.2 Refractive index and structure 464
14.4.3 The refractive index of metals and semiconductors 465
14.4.4 Dispersion 465
14.5 Reflection 466
14.5.1 Reflection from a surface 466
14.5.2 Reflection from a single thin film 467
14.5.3 The reflectivity of a single thin film in air 469
14.5.4 The colour of a single thin film in air 469
14.5.5 The colour of a single thin film on a substrate 470
14.5.6 Low-reflectivity (antireflection) and high-reflectivity coatings 471
14.5.7 Multiple thin films and dielectric mirrors 471
14.6 Scattering 472
14.6.1 Rayleigh scattering 472
14.6.2 Mie scattering 475
14.7 Diffraction 475
14.7.1 Diffraction by an aperture 475
14.7.2 Diffraction gratings 476
14.7.3 Diffraction from crystal-like structures 477
14.7.4 Photonic crystals 478
14.8 Fibre optics 479
14.8.1 Optical communications 479
14.8.2 Attenuation in glass fibres 479
14.8.3 Dispersion and optical fibre design 480
14.8.4 Optical amplification 482
14.9 Energy conversion 483
14.9.1 Photoconductivity and photovoltaic solar cells 483
14.9.2 Dye sensitized solar cells 485
14.10 Nanostructures 486
14.10.1 The optical properties of quantum wells 486
14.10.2 The optical properties of nanoparticles 487
Further reading 489
Problems and exercises 489

15 Thermal properties 495
15.1 Heat capacity 495
15.1.1 The heat capacity of a solid 495
15.1.2 Classical theory of heat capacity 496
15.1.3 Quantum theory of heat capacity 496
15.1.4 Heat capacity at phase transitions 497
15.2 Thermal conductivity 498
15.2.1 Heat transfer 498
15.2.2 Thermal conductivity of solids 498