Contents

About the Author vii
Acknowledgments xi

PART ONE Developing Scientific Literacy 1

1 Building a Scientific Vocabulary 3
 - For the Teacher 3
 - 1.1 Biology Vocabulary 4
 - 1.2 Chemistry Vocabulary 15
 - 1.3 Physics Vocabulary 24
 - 1.4 Earth and Space Science Vocabulary 28
 - Answers to Chapter Activities 33

2 Developing Science Reading Skills 35
 - For the Teacher 35
 - 2.1 Science Reading Comprehension: Cloze 38
 - 2.2 Science Reading Comprehension: Jigsaw 39
 - 2.3 Science Vocabulary in Spanish and English 39
 - 2.4 Scientific Terminology: Linking Languages 41
 - Answers to Chapter Activities 42

3 Developing Science Writing Skills 45
 - For the Teacher 45
 - 3.1 Science Note Taking 46
 - 3.2 Science Journaling 47
 - 3.3 Science Essay Questions 49
3.4 Types of Science Writing 51
3.5 Science Writing Style 53
Answers to Chapter Activities 57

4 Science, Technology, and Society 58
For the Teacher 58
4.1 Science and Society 59
4.2 Science and Other Subjects 61
4.3 Careers in Science 67
4.4 Science and Technological Innovation 70
Answers to Chapter Activities 74

PART TWO Developing Scientific Reasoning 77

5 Employing Scientific Methods 79
For the Teacher 79
5.1 Discrepant Events: Establishing a “Need to Know” 80
5.2 Developing Scientifically Oriented Questions 83
5.3 Observation Versus Inference 86
5.4 Brainstorming and Hypothesizing 87
5.5 Experimental Design 90
5.6 Independent Variables 92
5.7 Writing Clear Procedures 94
5.8 Using History to Teach Scientific Methods 95
5.9 Indirect Evidence: “Black Box” Experiments 99
5.10 Evaluating Hypotheses 101
Answers to Chapter Activities 102

6 Developing Scientific Reasoning Skills 106
For the Teacher 106
6.1 Levels of Reasoning 108
6.2 Inductive Reasoning 111
6.3 Deductive Reasoning
6.4 Lateral Thinking
Answers to Chapter Activities

7 Thinking Critically and Resolving Misconceptions
For the Teacher
7.1 Critical Thinking
7.2 Evaluating Claims
7.3 Using a Decision-Making Matrix
7.4 Misconceptions in Physics
7.5 Misconceptions in Chemistry
7.6 Misconceptions in Biology
7.7 Misconceptions in Earth and Space Science
Answers to Chapter Activities

PART THREE Developing Scientific Understanding

8 Organizing Science Information and Concepts
For the Teacher
8.1 Advance Organizers
8.2 Orders of Magnitude: The Universe in Powers of Ten
8.3 Organizational Hierarchy in Biology
8.4 Organization of the Chemistry Curriculum
8.5 Organization of the Physics Curriculum
8.6 Earth Systems Interactions
Answers to Chapter Activities

9 Graphic Organizers for Science
For the Teacher
9.1 Conceptual Grids
9.2 Venn Diagrams
9.3 Flowcharts 174
9.4 Mind Maps 176
9.5 Concept Maps 178
Answers to Chapter Activities 182

10 Learning Science Concepts with Analogies 184
For the Teacher 184
10.1 Extended Science Analogies 187
10.2 Analogies for Learning Physics 195
10.3 Analogies for Learning Chemistry 197
10.4 Analogies for Learning Biology 198
10.5 Analogies for Learning Earth and Space Science 199
Answers to Chapter Activities 200

11 Tools for Improving Memory in Science 203
For the Teacher 203
11.1 The Primacy and Recency Effect 211
11.2 Expanding Short-Term Memory by Chunking 211
11.3 Science Acronyms and Abbreviations 215
11.4 Acrostics for Memorizing Lists 216
Answers to Chapter Activities 219

12 Structure and Function in Science 225
For the Teacher 225
12.1 Form and Function in Machines 226
12.2 Structure and Function in Anatomy and Physiology 229
12.3 Structure and Function in Plants 233
12.4 Structure and Function at a Molecular Level 235
12.5 Model Building 238
Answers to Chapter Activities 239
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Games for Learning Science</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>For the Teacher</td>
<td>243</td>
</tr>
<tr>
<td>13.1</td>
<td>Science Jeopardy</td>
<td>244</td>
</tr>
<tr>
<td>13.2</td>
<td>Science Taboo</td>
<td>247</td>
</tr>
<tr>
<td>13.3</td>
<td>Science Bingo</td>
<td>248</td>
</tr>
<tr>
<td>13.4</td>
<td>Science Pictionary</td>
<td>248</td>
</tr>
<tr>
<td>13.5</td>
<td>Science Bowl</td>
<td>250</td>
</tr>
<tr>
<td>13.6</td>
<td>Science Baseball</td>
<td>252</td>
</tr>
<tr>
<td>13.7</td>
<td>What in the World?</td>
<td>252</td>
</tr>
<tr>
<td>13.8</td>
<td>Twenty Questions</td>
<td>255</td>
</tr>
<tr>
<td>13.9</td>
<td>Logic Games</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>PART FOUR</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Developing Scientific Problem-Solving Skills</td>
<td>259</td>
</tr>
<tr>
<td>14.1</td>
<td>Science Word Problems</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>For the Teacher</td>
<td>261</td>
</tr>
<tr>
<td>14.2</td>
<td>Translating Common Words into Mathematical Symbols</td>
<td>263</td>
</tr>
<tr>
<td>14.3</td>
<td>Translating Natural Language into Algebraic Expressions</td>
<td>264</td>
</tr>
<tr>
<td>14.4</td>
<td>Translating Algebraic Expressions into Natural Language</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Answers to Chapter Activities</td>
<td>268</td>
</tr>
<tr>
<td>15</td>
<td>Geometric Principles in Science</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>For the Teacher</td>
<td>270</td>
</tr>
<tr>
<td>15.1</td>
<td>Developing Measurement Scales</td>
<td>271</td>
</tr>
<tr>
<td>15.2</td>
<td>Indirect Measurement in Science</td>
<td>273</td>
</tr>
<tr>
<td>15.3</td>
<td>Ratios for Solving Problems in Science</td>
<td>275</td>
</tr>
<tr>
<td>15.4</td>
<td>Surface Area to Volume Ratios</td>
<td>277</td>
</tr>
<tr>
<td>15.5</td>
<td>Surface Area to Volume Ratios in Living Systems</td>
<td>279</td>
</tr>
<tr>
<td>15.6</td>
<td>The Inverse Square Law in the Physical Sciences</td>
<td>283</td>
</tr>
<tr>
<td>15.7</td>
<td>Scientific Applications of Conic Sections</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Answers to Chapter Activities</td>
<td>290</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>16</td>
<td>Diagramming and Visualizing Problems in Science</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>For the Teacher</td>
<td>293</td>
</tr>
<tr>
<td>16.1</td>
<td>Vector Diagrams</td>
<td>295</td>
</tr>
<tr>
<td>16.2</td>
<td>Interpreting Scientific Diagrams</td>
<td>298</td>
</tr>
<tr>
<td>16.3</td>
<td>Pictorial Riddles</td>
<td>301</td>
</tr>
<tr>
<td>16.4</td>
<td>Analyzing Photographs</td>
<td>304</td>
</tr>
<tr>
<td>16.5</td>
<td>Digital Movies and Animations</td>
<td>310</td>
</tr>
<tr>
<td>16.6</td>
<td>Extrapolation</td>
<td>316</td>
</tr>
<tr>
<td>16.7</td>
<td>Interactive Scientific Simulations</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>Answers to Chapter Activities</td>
<td>319</td>
</tr>
<tr>
<td>17</td>
<td>Dimensional Analysis</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>For the Teacher</td>
<td>322</td>
</tr>
<tr>
<td>17.1</td>
<td>Unit Measures</td>
<td>326</td>
</tr>
<tr>
<td>17.2</td>
<td>Fundamental Quantities</td>
<td>329</td>
</tr>
<tr>
<td>17.3</td>
<td>SI and Non-SI Units</td>
<td>332</td>
</tr>
<tr>
<td>17.4</td>
<td>CGS and MKS Units</td>
<td>334</td>
</tr>
<tr>
<td>17.5</td>
<td>Discovering Physical Laws Using Fundamental Units</td>
<td>335</td>
</tr>
<tr>
<td>17.6</td>
<td>Simplifying Calculations with the Line Method</td>
<td>337</td>
</tr>
<tr>
<td>17.7</td>
<td>Solving Problems with Dimensional Analysis</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Answers to Chapter Activities</td>
<td>346</td>
</tr>
<tr>
<td>18</td>
<td>Stoichiometry: Interactions of Matter</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>For the Teacher</td>
<td>351</td>
</tr>
<tr>
<td>18.1</td>
<td>Predicting Oxidation States and Ions</td>
<td>354</td>
</tr>
<tr>
<td>18.2</td>
<td>Predicting Polyatomic Ions, Reactants, and Products</td>
<td>360</td>
</tr>
<tr>
<td>18.3</td>
<td>Techniques for Balancing Equations</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Answers to Chapter Activities</td>
<td>366</td>
</tr>
</tbody>
</table>
PART FIVE Developing Scientific Research Skills

19 Scientific Databases
 For the Teacher
 19.1 Databases in Chemistry
 19.2 Databases in Biology
 19.3 Databases in Health
 19.4 Databases in Earth and Space Science
 19.5 Databases in Physics
 Answers to Chapter Activities

20 Spreadsheets, Graphs, and Scientific Data Analysis
 For the Teacher
 20.1 Calculations and Computer Modeling
 20.2 Relating Graphs to Real-World Experiences
 20.3 Graphing Stories
 20.4 Scatter and Line Graphs
 20.5 Column and Bar Graphs
 20.6 Pie and Area Graphs
 20.7 High-Low, Combination, and Log Plots
 20.8 Statistics
 Answers to Chapter Activities

21 Mapping and Visualizing Scientific Data
 For the Teacher
 21.1 Map Construction
 21.2 Topographic Maps
 21.3 Mapping Data Electronically
 21.4 Weather Maps
 21.5 Environmental Maps
21.6 Astronomy Maps 446
21.7 Interpreting Aerial and Satellite Photographs 452
Answers to Chapter Activities 454

22 Science Inquiry and Research 458
For the Teacher 458
22.1 Inquiry 459
22.2 Sensors and Probeware 461
22.3 Problem-Based Learning 465
22.4 Forums and Debates 466
22.5 Rotating Laboratories 468
22.6 Citing Research 470
Answers to Chapter Activities 471

23 Science Projects and Fairs 473
For the Teacher 473
23.1 Writing Research Questions 474
23.2 Developing a Research Proposal 486
23.3 Conducting Research 487
23.4 Sharing Your Findings 488
Answers to Chapter Activities 490

PART SIX Resources for Teaching Science 491

24 Science Curriculum and Instruction 493
24.1 The Nature of Science 493
24.2 Theories and Perspectives in Science Education 496
24.3 Developments in Science Curriculum and Instruction 498
24.4 The Science Curriculum 502
24.5 Advanced Placement and International Baccalaureate Curricula 504
24.6 Teaching Science Inquiry 506
24.7 Teaching Science to English Language Learners 508
24.8 Teaching Science with Humor
24.9 Professional Development in Science Education
24.10 Science Field Trips and Guest Speakers

25 Planning and Managing Science Instruction
25.1 Establishing Science Learning Objectives
25.2 Developing a Science Lesson Plan
25.3 Developing a Science Semester Plan
25.4 Getting to Know Your Students
25.5 Managing the Classroom Effectively
25.6 Assessing Student Performance
25.7 Evaluating Teaching Performance

26 The Science Laboratory
26.1 Equipping the Science Laboratory
26.2 Writing Successful Grant Proposals
26.3 Common and Inexpensive Sources of Chemicals
26.4 Preparing Solutions
26.5 Laboratory Safety
26.6 Safety Equipment Checklist
26.7 Chemical Hazards and Storage
26.8 Disposal of Chemicals
26.9 Accidents

27 Science Reference Information
27.1 Writing Style Guidelines
27.2 Units, Constants, and Conversions
27.3 Chemical Properties
27.4 Graph Paper, Protractors, and Rulers

Notes
Index