Contents

Foreword and Acknowledgements xiii

1 Basics of Reactive Power 1
 1.1 Chapter Overview 1
 1.2 Phasors and Vector Diagrams 1
 1.3 Definition of Different Types of Power 4
 1.4 Definition of Power for Non-Sinusoidal Currents and Voltages 6
 1.5 Equivalent Mechanical Model for Inductance 9
 1.6 Equivalent Mechanical Model for Capacitance 11
 1.7 Ohmic and Reactive Current 12
 1.8 Summary 13
 References 13

2 Reactive Power Consumers 15
 2.1 Chapter Overview 15
 2.2 Reactive Energy Demand 15
 2.3 Simplified Model: Series Reactive Power Consumer 16
 2.4 Realistic Model: Mixed Parallel and Series Reactive Power 16
 2.5 Reactive Power Demand of Consumers 17
 2.5.1 Asynchronous Motors 17
 2.5.2 Transformers 18
 2.5.3 Control Gear (Ballast) for Gas Discharge Lamps 18
 2.6 Summary 21

3 Effect of Reactive Power on Electricity Generation, Transmission and Distribution 23
 3.1 Chapter Overview 23
 3.2 Loading of Generators and Equipment 23
 3.3 Power System Losses 24
 3.3.1 General 28
 3.3.2 Transferable Power of Lines and Voltage Drop 29
 3.3.3 Transformer Voltage Drop 32
| 3.6 | Available Power of Transformers | 34 |
| 3.7 | Summary | 35 |

4 Reactive Power in Standard Energy Contracts | 37 |

4.1 Chapter Overview | 37 |
4.2 Introduction | 37 |
4.3 Reactive Energy to be Considered in Standardized Contracts of Suppliers | 38 |
4.3.1 Pricing Dependent on Consumed Reactive Energy (kvarh) | 38 |
4.3.2 Pricing Dependent on Consumed Apparent Energy (kVAh) | 40 |
4.4 Importance of Reactive Power in Determining the Costs of Connection | 42 |
4.5 Summary | 42 |
 Reference | 42 |

5 Methods for the Determination of Reactive Power and Power Factor | 43 |

5.1 Chapter Overview | 43 |
5.2 Methods | 43 |
5.2.1 Determination of Power Factor in Single-Phase Grids | 43 |
5.2.2 Direct Indication of Power Factor by Means of Brueger’s Device | 44 |
5.2.3 Determination of Power Factor in Three-Phase System | 44 |
5.2.4 Determination of Power Factor Using Portable Measuring Equipment | 46 |
5.2.5 Determination of Power (Factor) via Recorded Data | 48 |
5.2.6 Determination of Power Factor by Means of an Active Energy Meter | 48 |
5.2.7 Determination of Power Factor by Means of an Active and Reactive Energy Meter | 49 |
5.2.8 Determination of Power Factor via the Energy Bill | 50 |
5.3 Summary | 51 |

6 Improvement of Power Factor | 53 |

6.1 Chapter Overview | 53 |
6.2 Basics of Reactive Power Compensation | 53 |
6.3 Limitation of Reactive Power without Phase Shifting | 55 |
6.4 Compensation of Reactive Power by Rotational Phase-Shifting Machines | 55 |
6.5 Compensation of Reactive Power by Means of Capacitors | 56 |
6.6 Summary | 58 |

7 Design, Arrangement and Power of Capacitors | 61 |

7.1 Chapter Overview | 61 |
7.2 Basics of Capacitors | 61 |
7.3 Reactive Power of Capacitors | 64 |
7.4 Different Technologies in Manufacturing Capacitors | 65 |
7.4.1 Capacitors with Paper Insulation | 65 |
7.4.2 Capacitors with Metallized Paper (MP Capacitor) | 65 |
7.4.3 Capacitors with Metallized Plastic Foils | 66 |
Contents

7.5 Arrangements and Reactive Power of Capacitors 66
 7.5.1 Capacitors Connected in Parallel 67
 7.5.2 Capacitors Connected in Series 67
 7.5.3 Star and Delta Connection of Power Capacitors 68
7.6 Design of MV Capacitors 69
7.7 Long-Term Stability and Ageing of Capacitor Installations 69
 7.7.1 General 69
 7.7.2 Influence of Operating Voltage 70
 7.7.3 Ageing in the Case of Detuned Capacitors 72
 7.7.4 Ageing due to Switching Operations 73
7.8 Summary 73

References 73

8 Determination of Required Power of Capacitors 75
 8.1 Chapter Overview 75
 8.2 Basics of Calculation 75
 8.3 Determination of Compensation at New Projected Plants 79
 8.4 Summary 85

References 85

9 Types of Reactive Power Compensation 87
 9.1 Chapter Overview 87
 9.2 Single-Type Compensation 87
 9.2.1 Single-Type Compensation in Asynchronous Motors 88
 9.2.2 Single-Type Compensation of Transformers 97
 9.2.3 Single-Type Compensation of Reactive Power for Welding Transformers 99
 9.2.4 Single-Type Compensation of Fluorescent Lamps 103
 9.3 Bulk-Type Compensation 108
 9.4 Central-Type Compensation 111
 9.5 Mixed Compensation 112
 9.6 Advantages and Disadvantages of Different Types of Compensations 113
 9.7 Summary 115

Reference 115

10 Compensation of Existing Installations 117
 10.1 Chapter Overview 117
 10.2 Methods of Determining the Reactive Power for Extension 117
 10.3 Calculation of the Extension Unit by Means of Energy Invoices 118
 10.4 Summary 121

11 Control of Reactive Power 123
 11.1 Chapter Overview 123
 11.2 General 123
 11.2.1 Reactive Power Compensation Units 124
Contents

11.3 Control of Reactive Power by Automatic Reactive Power Controllers 124
 11.3.1 General 124
 11.3.2 Number of Steps and Reactive Power of the Capacitor Steps 125
 11.3.3 Threshold Level C/k Value 131
 11.3.4 Reverse Control Scheme (cos \(\varphi_d \) Line) 133
 11.3.5 Automatic Reactive Power Control 135
 11.3.6 No-Volt Release Function 137
11.4 How to Wire a Power Factor Relay 137
11.5 Reactive Power Control by ‘Mixed Measurement’ 138
11.6 Reactive Power Control with Multiple Feed-ins 140
 11.6.1 Measuring by Means of Summation Current Transformer 140
 11.6.2 Parallel Operation of Compensation Banks for Each Incoming Supply 142
11.7 Performances of Automatic Compensation Banks 144
11.8 Summary 146

12 Discharging Devices for Power Capacitors 147
12.1 Chapter Overview 147
12.2 Basis at LV Applications 147
 12.2.1 Rapid Discharging with Additional Resistances Switched in 150
 12.2.2 Discharging Capacitors by Means of Reactors 150
12.3 Discharging Devices in MV Capacitors 152
 12.3.1 MV Capacitors to be Discharged by Resistances 152
 12.3.2 MV Capacitors to be Discharged by Reactors 154
12.4 Calculation of the Electric Charge to be Stored on an MV Capacitor 154
12.5 Summary 156

13 Protection of Capacitors and Compensations 157
13.1 Chapter Overview 157
13.2 Protection against Overcurrent and Short Circuit 157
13.3 Overvoltage Protection 158
13.4 Protection against Overttemperatures 158
13.5 Protection against Internal Faults 158
 13.5.1 Protection against Voltage Flashover 159
 13.5.2 Self-healing Technology 159
 13.5.3 Protection against Overheating and Internal Overpressure 159
13.6 Protection by Balance Observation at Single-Phase MV Capacitors 162
13.7 Summary 163
 Reference 163

14 Switching of Capacitors 165
14.1 Chapter Overview 165
14.2 General 165
14.3 Selection of Switchgear 167
 14.3.1 Air Contactors 168
 14.3.2 Circuit Breakers 169
 14.3.3 Switch Fuses and Magnetic Trips 169
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
</tr>
</tbody>
</table>

19	Reactor-Protected Capacitors and Filter Circuits
	Chapter Overview
19.1	
19.2	Effect of Reactor-Protected Systems and System Configuration
19.2.1	Effect of Reactor-Protected Systems
19.2.2	System Configuration of Reactor-Protected Capacitor Banks
19.3	Notes on the Selection of Reactors
19.4	Influence of the Reactor Rate on the Capacitor’s Lifetime
19.5	Filter Effect with Detuned Filters
19.6	Filter Circuits
19.6.1	General
19.6.2	Active Filters
19.6.3	Passive Filters
19.6.4	Comparison of Active and Passive Filters
19.7	Neutral Line Harmonic Filtering
19.7.1	General
19.7.2	Special Features of the Third Harmonic
19.7.3	Network Relief by the Neutral Line Harmonic Filter
19.8	Summary
	References

20	Dynamic Reactive Power Compensation Systems
	Chapter Overview
20.1	
20.1.1	Improvement of Power Quality via Dynamic Reactive Power Compensation Systems
20.2	Motor Startup Compensation
20.3	Flicker Compensation
20.4	Evaluation of Power Factor Correction Solutions as Seen by the Distribution System Operator (Power Utility)
20.5	Summary
	References

21	Compensation Effects at Rectifiers
	Chapter Overview
21.1	
21.2	Compensation Bank at a Six-Pulse Rectifier
21.2.1	Time Courses of Voltage and Current at a Three-Phase Bridge-Connected Rectifier
21.2.2	How Compensation Banks Affect Three-Phase Bridge-Connected Rectifiers
21.3	Characteristic Behaviour of Reactive Power Controllers at Rectifiers
21.4	Summary
	References
Contents

22 Environmental and Climate Protection Using Capacitors 263
22.1 Chapter Overview 263
22.2 PCB-Filled Capacitors 263
22.3 Climate Change and Energy Efficiency through Power Factor Correction 264
22.4 Summary 267
 References 267

Symbols and Abbreviations 269

Index 273