Index

Abnormal price movements, 45
Abundant data, high-low frequency vs.
fixed frequency with, 208–212
Acceptable band, of likelihood ratio test, 202
Accounting ratios, 58
Accounting variables, 54–55
Activity-monitoring task, 64
Adaboost, 48–49, 51, 69
Adaptive reinforcement learning, 65
After-event window, 32
size of, 33, 40
Agent-based models, 63–64
Algorithmic modeling, 48, 67
Algorithmic trading, 42, 63–66
Algorithm speed, 199–202
All-overlapping (AO) estimator, 267, 272, 280, 282
α levels, 35–37
window size and, 40
Alpha parameter, 121–122
α-stable Lévy processes, 125
Alternating decision trees (ADTs), 49–51
structure of, 50
Alternative backtest, 196
Alternative backtest result tables, 196–199
Analysts’ earnings forecast, 62
Analytical/simulation results, new, xi
ANOVA, 37
Anselmo, Peter C., xiii, 235
Antipersistent activity, 148
Approximation method, for MMEs, 12
A-priori estimates, 393
AR(1) model, 281
Arbitrary trading rule, 44–45
ARMA models, 287
ARMA process, with GARCH errors, 181–182
AR(p) process, 128
Artificial intelligence approaches, 63
Arzelà–Ascoli theorem, 371, 374, 414, 416
Asset allocation, 286–290
Asset behavior, establishing, 135
Asset-price models, 347–348
Asset price process, approximating, 99–100
Asset pricing, fundamental theorem of, 401
Asset trading costs, 403
Asymptotically normal estimator, 224
Asymptotically unbiased Fourier estimator, 265, 266
Asymptotic distribution, of the likelihood ratio test statistic, 191
Asymptotic theory, 267
Asynchronous trading model, 265
Asynchronous trading, regular, 264
At-the-money SPX, 98. See also Standard and Poor Index (SPX)
At-the-money SPX put options, 105
At-the-money strike, 112
calculating, 111
Augmented Dickey–Fuller (ADF) test, 128–129
Augmented log likelihood, 172
Autocorrelation, of GARCH filtering, 202
Autocorrelation function (ACF), 177, 221
for minute data, 202–203
Automated trading platforms, 235
Automated trading systems, 63–64, 68
Autoregressive conditional duration (ACD) model, 27–28
Autoregressive conditionally heteroskedastic (ARCH) models, 272
Average daily volume (ADV), 34
classification of equity based on, 45
Average estimator, 279
BAC data series, DFA and Hurst methods applied to, 155
Backtest, evaluating results of, 192
Backtest algorithm, 189
Backtest failure ratio, 192
Backtesting, 188–203
Backtest null hypothesis, 202
Backtest results, using GARCH, 204–205
Backtest result tables, 192–195, 199–200
Backtest variant, 195–196
Balanced capital structure, 59
Balanced scorecards (BSCs), 48, 52–53, 69. See also Board balanced scorecards (BSCs); BSC entries; Enterprise BSC; Executive BSC
Ball solution, 391–399
Banach spaces, 349, 350, 351, 386, 387–388, 389
Bandwidth choices, 269
Barany, Ernest, xiii, 119, 327
Bartlett-type kernels, 261, 263
Base learner, 48
Bear Stearns crash, high-frequency data corresponding to, 121, 131–132
Bear Stearns crash week, high-frequency data from, 148–160
Beccar Varela, Maria Pia, xiii, 119, 327
Bernoulli LRT, 191. See also Likelihood ratio test (LRT)
Bernoulli MLE, 190. See also Maximum likelihood estimation (MLE)
Bounded parabolic domain, 352, 368
Bozdog, Dragos, xiii, 27, 97
Brownian motion, 78, 120, 220
BSC indicators, 52, 53. See also Balanced scorecards (BSCs)
BSC management system, 51–52
Bias, 253–254
estimated, 258, 259
of the Fourier covariance estimator, 264–266
Bias-corrected estimator, 261
Bid/ask orders, 29
Bid-ask price behavior, 236
Bid-ask spreads, 228, 229, 236, 238–239, 240
Big values, asymptotic behavior for, 338
Binary prediction problems, 48
Black–Litterman model, 68
Black–Scholes analysis, 383–384
Black–Scholes equation, 352, 400
Black–Scholes formula, 114, 115
Black–Scholes model(s), 4, 6–7, 334
boundary condition for, 354–355
in financial mathematics, 352
with jumps, 375
option prices under, 219
volatility and, 400
Black–Scholes PDE, 348. See also Partial differential equation (PDE) methods
Board balanced scorecards (BSCs), 51–52, 59. See also Balanced scorecards (BSCs)
designing, 59
Board performance, quantifying, 52
Board strategy map, 59–60
Boosting, 47–74
adapting to finance problems, 68
applications of, 68–69
combining with decision tree learning, 49
as an interpretive tool, 67
Boundary value problem, 319, 320
Bounded parabolic domain, 352, 368
Bozdog, Dragos, xiii, 27, 97
Brownian motion, 78, 120, 220
BSC indicators, 52, 53. See also Balanced scorecards (BSCs)
BSC management system, 51–52
Index

Calendar time sampling, 9
Call options chains, constructed VIX using, 105–106
Cantor diagonal argument, 361–362. See also Standard diagonal argument
Carrying capacity, 328
Cauchy sequence, 362
Cauchy’s inequality, 390, 394
Cauchy-stable distribution, 337
CBOE index calculation procedure, 110–113. See also Chicago Board Options Exchange (CBOE) Market Volatility Index (VIX)
CBOE procedure, vs. quadrinomial tree method, 100–101
CBOE VIX indicator, 108
CBOE white paper, 98
CDO tranches, 76
Central limit theorem, 123, 124, 187
Central moments, 10, 12
CEO compensation, 53, 59, 60–62
Chadam–Yin method, 364
Characteristic function, 122, 123, 169, 338
Characteristic parameter, 337
Chicago Board Options Exchange (CBOE) Market Volatility Index (VIX), 97. See also CBOE entries calculation of, 98–99
Chronopoulou, Alexandra, xiii, 219
“Circuit breakers”, 241
Citi data series, DFA and Hurst methods applied to, 155
City Group, Lévy flight parameter for, 341
Classical risk forecast, 163
Classical time series analysis, 177
Combined Stochastic and Dirichlet problem, 317
Comparative analysis, 239–241
Compensation committees, 53
Compensation policy, 59
Complex models, 23
Compustat North America dataset, 54
Conditional density function, 173
Conditional distribution, 29, 30
Conditional expected returns, 181
Conditional normal distribution, density of, 173
Conditional VaR, 188–189, 207. See also Value at risk (VaR)
Conditional variances, 203, 206, 208 of the GARCH(1,1) process, 180
Confidence intervals, for forecasts, 187–188
Consecutive trades, 129
Consensus indicators, 62
Constant coefficient case, 311
Constant default correlation, 79–81
Constant default correlation model, 76
Constant rebalanced portfolio technical analysis (CRP-TA) trading algorithm, 65–66
Constant variance, 181
Constant volatility, 353
Constructed indices, comparison of, 106–107
Constructed volatility index (VIX). See also Volatility index (VIX) comparing, 105–106 convergence of, 105
Contaminated returns, variance and covariance of, 257
Continuous integral operator, 367
Continuous semimartingales, 246, 253
Continuous-time long-memory stochastic volatility (LMSV) model, 220
Continuous-time stochastic modeling, 3
Continuous-time vintage, 78
Convergence-of-interests hypothesis, 54
Convex duality method, 296
Copula models, 77
Copulas, 75–76
CorpInterlock, 62, 63
Corporate governance, 53–54 of S&P500 companies, 54–60
Corporate governance best practices, 59
Corporate governance scorecards, 51–52
Corporate governance variables, 69 interpreting S&P500 representative ADTs with, 58–59
Corporate performance, predicting, 69
Correlation coefficient, 400
Correlation fluctuations impact on securitized structures, 75–95 products and models related to, 77–79
Cost structures, 392
Covariance(s)
estimating, 244
forecasting, 280–285
Covariance function, 252
Covariance matrix, 170
Covariance stationarity, 177, 179, 181
Covariation-realized covariance estimator, 266
Covolatility function, 249
Covolatility measurement/forecasting, as a key issue in finance, 243
Cox, Ingersoll, Ross (CIR) square-root model, 257
cpVIX, 103
Crash imminence, precautions against, 121
Creamer, Germán, xiii, 47
Crisis detection, 131
Crisis-related equity behavior, 150
Cubic-type kernels, 261, 263
Cumulative abnormal return, 62, 63
Cumulative consumption process, 297, 305–306
Cumulative distribution curve, 346
Cumulative distribution function, 176
Current market volatility distribution, estimating, 115
Current weighting, 49
Customer perspective, 51
Cutting frequency, 258, 259
cVIX-1, 101, 102. See also Volatility index (VIX)
cVIX-2, 101, 102
cVIX-b, 102, 103, 105
forecasting, 110
Daily-based forecasts, 210
Daily GARCH process, 215–216. See also Generalized autoregressive conditionally heteroskedastic (GARCH) methodology
Daily portfolio, determination of, 286–287
Daily returns, 4, 14
Daily returns scenario, 215–216
Daily return/volatility, 211–212
Daily sampled indices, analysis of, 132–141
Daily VaR forecast, backtesting, 199–200. See also Value at risk (VaR)
Data
for NIG and VG model estimation, 18
statistical behavior of, 345
Data analysis methods, 122–128
truncated Lévy flight, 122–125
Data-generating processes, 275
Data manipulations, avoiding, 257
Data modeling approach, 48
Data preprocessing, for NIG and VG model estimation, 18
Datasets, stationary and nonstationary, 127
Data synchronization, 244
Dayanik–Karatzas theory, 312
d-dimensional hyperbolic distribution, 171
Default behavior, modeling, 77
Default correlation, 75–76. See also Constant default correlation copula models for, 77
high-frequency tranche price sensitivity to, 88–89
logistic transitional, 84–87
regime-switching, 81–84
across vintages, 93
Default correlation dynamics
impact on high-frequency tranches, 87–92
impact on low-frequency tranches, 79–87
Default rates, 79
Default risk, 93
Defiltering, 182
Delta-hedging strategy, 384
Density, of the skewed t distribution, 170
Density function, Laplace transform of, 169
Density of GH distributions, 167–169
Derivative of a product, 328
Derivative security pricing, 348
Deterministic equation, 331
Detrended fluctuation analysis (DFA) method, 120, 121, 127, 130–131, 132, 138, 140. See also DFA entries results of, 141–145
Detrended fluctuation parameter, 121–122
DFA estimates, 150. See also Detrended fluctuation analysis (DFA) method
DFA exponent values, 138
Index

DFA parameters, 135
DFA regression plots, 137
Differential equations, 331–334
Diffusion coefficients, 384
 measuring, 243–244
 pathwise computing of, 251
Director compensation, 59. See also CEO compensation
Direct reinforcement learning, 65
Dirichlet (DIR) kernel, 255, 261
Discrete time model, 220
DIS data series, DFA and Hurst methods applied to, 153
Disjoint union, 314, 317
Distributional partial derivative, 386
Distribution distortions, 93
Distribution family, choice of, 164
Diversification opportunities, indicating, 137–138
Dominated convergence theorem, 360
Dot-com bubble, 136
Double-auction market, 237
Double-auction prices, 238
Dow Jones data, analysis of, 141–147
Dow Jones Index components of, 145
 Lévy flight parameter for, 342
 memory effects pattern in, 145–147
Dow Jones Index data series
 DFA method applied to, 146
 R/S analysis applied to, 149
Dow Jones Index data series components
 DFA method applied to, 146
 R/S analysis applied to, 149
Dow Jones industrial average (DJIA), 128–129
Drift, 384
Drift (μ) parameter, 225
Drift terms, 402, 405
Duality approach, 300–305, 308–311
Duality gap, 318, 319
Dual problem value, 322
Dual value function, 303, 318, 321
 quantities associated with, 309
Dynamic default correlation, 76
 high-frequency tranche price
 sensitivity to, 89–92
Dynamics, in default correlation, 76
Dynkin’s formula, 314
EAFE index, 138. See also MSCI EAFE stock index
Early market activity, 42
Earnings game, 60
Earnings prediction, 60–63
Earnings surprises, 62, 63
Econometric analysis, 33–34
Econometric models, quantitative evaluation of, 47
EEM index, 137–138, 139
 analysis results for, 142
EEM index exponents, value range of, 132–135. See also Emerging Markets Index (EEM)
EFA index, 137, 139. See also iShares MSCI EAFE Index (EFA)
EFA index exponents, value range of, 132–135
Efficiency ratio, 58
Efficient price, noise dependent on, 282
Elasticity degree assumption, 28–29
Electronic financial markets, development of, 67
Electronic trading, 28
Elliptic operator, 355, 363, 367
Emerging markets, diversifying into, 141
Emerging Markets Index (EEM), 138. See also EEM entries
Empirical CDF, quantile–quantile plots of, 136
Empirical distribution, 164
 of losses, 187
Empirical distribution function, 129
 of losses, 187
Empirical distribution function, 129
Energy estimates, 396
Enterprise BSC, 55. See also Balanced scorecards (BSCs)
Entrenchment hypothesis, 54
Environment, carrying capacity of, 328
Epps effect, 244, 264, 269
Equities, classifying, 34
Equity behavior, 45
 crisis-related, 150
Equity classes
 expected return for, 38
 optimal after-event window size for, 40–41
 probability of favorable price movement for, 36
 rare-events distributions and, 42
Equity data
- high-frequency tick data for, 147–148
- typical behavior of, 129
Equity price, rare events and, 44
Equity tranche, 79, 82
Equity tranche prices, 83, 86
Equivalent martingale measure, 298, 306, 401
“Erroneous trade-break rules,” 241
E-step, of an iterated two-step process, 172–173
Estimated bias, 258, 259
Estimated DFA parameter, 134
Estimated Hurst parameter, 133
Estimation error, 24
Euler discretization scheme, 227
Euler Monte Carlo discretization, 268, 275
European call option
- integro-differential model for, 365
 pricing, 228
European option prices, 219
European options, 348, 353, 385
ExecuComp dataset, 54
Executive BSC, 55. See also Balanced scorecards (BSCs)
Executive compensation, 53
Executive compensation variables, 55
Executive stock options, 53
Exit time, 313, 314
Expectation-maximization (EM) algorithm, 164, 171–175, 183
 dependence on sample size, 183
 for skewed t distributions, 175
Expected discounted utility, 300
 maximizing, 307
Expected return
 for equity classes, 38
 of trades, 35
Expected return surfaces, 39
Expected shortfall (ES), 163
Expected transaction cost, 407
Expected utility problems, 295
Expected value, 172
Expected variance, 99
Expert weighting algorithm, 66
Exponential Lévy models, 6–8, 364
Exponential martingale process, 297
Extreme price movement, 31
Fair value, of future variance, 98, 99
Favorable price movement
 defined, 32
 probability of, 35–36
Federal funds effective rate, 112
Fejer kernel, 261, 263
Feller’s condition, 281
Feynman–Kac lemma, 353
Figueroa-López, José E., xiii, 3
Finance, volatility and covolatility measurement/forecasting in, 243
Finance problems, methods used for, 68
Financial Accounting Standards Board (FASB), 53
Financial analysis, using boosting for, 47–74
Financial asset returns, computing covariance of, 263–264
Financial data, 176
 behavior of, 202
 GH distributions for describing, 165
Financial databases, 62
Financial events
 observations centered on, 107
 probability curves for, 108
Financial market behavior, correlations in, 120
Financial mathematics model, 348
Financial mathematics, Black–Scholes model in, 352
Financial models, with transaction costs and stochastic volatility, 383–419
Financial perspective, 51, 55
Financial returns, 164, 216
Financial sector estimates, 150
Financial time series, 176
 long-term memory effects in, 119
Finite-sample performance, via simulations, 14–17
Finite value function, 315, 322
Finite variance, 123
Fitted Gaussian distributions, 22
Fixed frequency, vs. high-low frequency, 208–212
Fixed-frequency approach, drawback of, 183–185
Fixed-frequency density, 210
Fixed-frequency method, 200
Fixed-point theorem, 391
 applying, 398–399
 existence based on, 397
Fixed portfolio/consumption processes, 308
Fixed rare event, favorable price movement for, 32
Fixed stopping time, 307, 308
Fixed time interval, 9
Fixed timescale, risk forecasts on, 176–185
“Flash-crash” of 2010, 236
Flat-top realized kernels, 261
Florescu, Ionu, xiii, 27, 97
Fluctuating memory effect, 145
Forecast horizon, monthly, 196–199
Forecasting
 of covariance, 280–285
 of Fourier estimator properties, 272–285
 of volatility, 273–275
Forecast pdfs, 209–210
Forecasts, confidence intervals for, 187–188
Foreign stocks index, 128
Forward index level, calculating, 111–112
Fourier coefficients, 247, 251–252
Fourier covariance estimator, finite sample properties of, 264
Fourier cutting frequency, 274
Fourier estimator(s), 244–245
 asymptotic properties of, 248–250
 cutting frequency and, 259–260
 forecasting performance of, 245
 forecasting properties of, 272–285
 gains offered by, 245, 286
 of integrated covariance, 263–272
 of integrated volatility, 254, 252–263
 microstructure noise and, 260–261, 274
 of multivariate spot volatility, 246–252
 of multivariate volatility, 266
 performance of, 273
 results of, 276–279
 robustness of, 252–253
 of volatility of variance and leverage, 250–252
Fourier estimator MSE (MSEf), microstructure noise and, 256. See also Mean squared error (MSE)
Fourier estimator performance, ranking, 279
Fourier–Fejer summation method, 247, 251, 252
Fourier method
 high-frequency data using, 243–294
 gains yielded by, 290
Fourier transform(s), 122, 246, 335
 numerically inverting, 13–14
Fractional Brownian motion (FBM), 125, 220, 221
FRE data series, DFA and Hurst methods applied to, 154
Frequency range, identifying, 22
Frequency sampling, 5
Functional analysis, review of, 386
Functions, weak derivatives of, 387
Function space, 368
Fundamental solutions, 312
Fundamental theorem of asset pricing, 401
Future earnings announcement, 62
Future integrated volatility, forecasting, 276
Future variance, fair value of, 98, 99
Gamma distribution, 171
Gamma Lévy processes, 8
GARCH(1, 1) process, 179–181, 185, 186, 202. See also Generalized autoregressive conditionally heteroskedastic (GARCH) methodology
GARCH(2, 2), 202, 203
GARCH(3, 3), 202, 203
GARCH(p, q) errors, 181
GARCH(p, q) process, 178–179, 207
GARCH calibration, dependence on sample size, 185
GARCH errors, ARMA process with, 181–182
GARCH filter, 164, 165, 177–182
GARCH filtering, 217
 autocorrelation of, 202
GARCH forecasts, 203
GARCH method, 176
GARCH model, 268, 275
GARCH process, stationary distribution of, 181
GARCH sum, simulation of, 186–187
Gaussian copula methods, 75
Gaussian copula models, 76, 91, 93
Gaussian default modeling, 75–76
Gaussian distribution, 120, 122, 337
Gaussian random variable, 336
Gauss–Whittle contrast function, 225
General integro-differential problem, 362–364
Generalized autoregressive conditionally heteroskedastic (GARCH) methodology, 165. See also Daily GARCH process; GARCH entries; Higher-order GARCH models; Long-term GARCH; Low-order GARCH models
long-term behavior of, 203–208
roles in high-low frequency approach, 188
weekly return process and, 212–215
Generalized hyperbolic (GH) distributions, 164, 165, 167–169, 217
linear transformations of, 169–170
subfamilies of, 171
Generalized inverse Gaussian (GIG) distribution, 166–167, 169, 170
Generalized tree process, 354
General semilinear parabolic problem, 355–362
General utility functions, 311
Genetic algorithms, 63, 64
Geometric Brownian motion, 4, 6–7
Geometric Brownian motion case, transaction costs and option price valuation in, 384–386
Geometric Lévy models. See Exponential Lévy models
German Society of Financial Analysts, 51
Girsanov theorem, 307
Goodness of fit, 22
Goodness of fit p-values, 139
Google, Lévy flight parameter for, 343
Google data series, DFA and Hurst methods applied to, 148
Governance index, 51
GPH estimator, 221, 222–223, 227
asymptotic behavior of, 222
computing, 223
Green’s function, 312, 317, 370, 411, 413
estimates based on, 368, 372, 415
Gronwall’s inequality, 390, 394
Heavy-tailed distributions, 164
Heavy-tailed skewed t distribution, 181–182
Hedging portfolio standard, 385
H estimates, 150
Heston model, 280–281
Higher-order GARCH models, 181. See also Generalized autoregressive conditionally heteroskedastic (GARCH) methodology
High-frequency data, xi, 120, 272, 345
from the Bear Stearns crash week, 148–160
corresponding to Bear Stearns crash, 131–132
modeling, 364
multivariate volatility estimation with, 243–294
simulating, 280–281
from a typical day, 129–131
in volatility computing, 243–244
High-frequency financial data, 27–46
High-frequency tick data, 147–148
High-frequency time series, analyzing, 258
High-frequency tranche price histograms, 93
High-frequency tranche prices quantile–quantile plot of, 92, 94
sensitivity to default correlation, 88–89
sensitivity to dynamic default correlation, 89–92
High-frequency tranches, default correlation and, 87–92
High frequency tranching, 76
High-frequency transaction data, 6
High-low frequency, vs. fixed frequency, 208–212
High-low frequency approach, 185–186, 212
High-low frequency density, 210
High-low frequency method, 200, 212, 215–216
limits of, 195
High-low frequency VaR forecast, 186.
See also Value at risk (VaR)
High parameter values, 136
High trading activity, 42
Hilbert space, 387
Hillebrand, Eric, xiii, 75
HL estimator, 263.
See also VaR_HL
Hölder constants, 358
Hölder continuous real-valued function,
350
Hölder continuous real-valued function
with exponent \(\delta \), 351
Hölder’s inequality, 391, 395
Hölder spaces, 349, 355, 367, 388–390,
411
Homotopy perturbation method,
379–380
Housing crisis, 136
Hu–Kercheval method, 164
Hull–White process, 400
Hurst analysis, 130–131, 132
results of, 141
Hurst exponent, 125, 126, 132
values of, 138
Hurst index, 221.
See also Implied Hurst
index
Hurst index estimation, Whittle-based
approach for, 225–226
Hurst parameter(s), 121–122, 125, 135,
220, 221
Hurst parameter analysis, 136
Hurst parameter estimates, 132
Hurst parameter estimators, 229
Hurst regression plots, 137
Hyperbolic distributions, 171

IBM
DFA and Hurst methods applied to,
147
Lévy flight parameter for, 343
IBM time series, 257
i.i.d. data, 172.
See also Independent and
equally distributed (i.i.d.)
sample
Implicit functions theorem, 321
Implied Hurst index, 226–227
Implied Hurst parameter, finding, 228
Implied volatility, 114–115
Improved regularity, 397
Increased noise term, 268

Independent and identically distributed
(iid) sample, 171.
See also i.i.d. data
Independent identically distributed (IID)
random variables, 334
Independent ownership structure, 59
Index option market, 105
Index variants, 107–108
Indicator variables, 188, 189
Indices, predictive power of, 107–110
Induction argument, 358, 359
Inequalities, 390–391
Infinite horizon case, 305–324
Infinite horizon problem, 307
Infinite jump activity, 4
Infinite time horizon, 311
Initial-boundary-value problem, 355,
362–363, 366, 369, 410
Innovations, 178, 180
Student \(t \), 182
Insider ownership, 53–54, 59
Insider ownership variables, 55
“Inside spread”, 239
Instantaneous covariance, computing,
252
Instantaneous volatility process, 253
Institutional brokers’ estimate system
(IBES), 62
INTC data series, DFA and Hurst
methods applied to, 152.
See also Intel (INTC) stock
INTC histograms, 22
INTC return histograms, logarithm of,
23
Integral operator, 363
Integral representation, 360
Integrated covariance, Fourier estimator
of, 263–272
Integrated covariance estimators,
forecasting power of, 280–285
Integrated covolatility, 248
Integrated quarticity (IQ), 255.
See also
IQ estimates
Integrated time series, 127
Integrated volatility
computation of, 258
forecasting, 273
Fourier estimator of, 252–263
Integrated volatility estimators
comparison of, 270–271
optimized, 262
Integrated volatility/covolatilities, computing, 248
Integrating factor, 328, 331, 332–333
Integration by parts, 328
Integro-differential equations, in a Lévy market, 375–380
Integro-differential model, 365
Integro-differential operator, 367
Integro-differential parabolic problems, 347–381
Integro-differential problem, 362–364
Intel Corporation, Lévy flight parameter for, 345
Intel (INTC) stock, 18. See also INTC entries
Internal processes perspective, 52, 55
International indices, 135
International market indices, 120, 128
Interpolating formula, 405
Interquartile range (IQR) rule, 31–32
Intraday data, 4, 202
Inverse Fourier transform, 336
Inverse Gamma distribution, 170, 171
Intrayad data, 4, 202
Inverse Gaussian distribution, 8
Investment bank industry, risk management meltdown of, 121
Investor fear gauge, 98
IQ estimates, 258. See also Integrated quarticity (IQ)
iShares MSCI EAFE Index (EFA), 128. See also EAFE index; EFA entries
Ising model, 64
Iterated two-step process, 172–175
Iterative equations, 208
Iterative method, 364–375
Itô process, 297
Itô’s formula, 401, 405
one-dimensional, 329
two-dimensional, 328–329
Itô’s lemma, 354
Itô’s rule, 307, 315, 320
IV estimates, 258
Jensen’s inequality, 179
Joint density, 172
Jointly Gaussian variables, 78
JPM data series, DFA and Hurst methods applied to, 158
JP Morgan, Lévy flight parameter for, 341
Jump activity, 4
Jump diffusion models, 148
Jump intensity, 354
Jumps
Black–Scholes models with, 353, 364
integro-differential operator modeling, 365
modeling, 375–380
Kercheval, Alec N., xiii, 163. See also Hu–Kercheval method
Kernels
Bartlett-type, 261, 263
cubic-type, 261, 263
Dirichlet, 255, 261
estimator for, 279
Fejer, 261, 263
flat-top realized, 261
multivariate realized, 267, 259, 280
Parzen, 269
TH2-type, 261, 263
Khashanah, Khaldoun, xiii, 27, 97
Koponen model, 124
Kurtosis, 11
of innovations, 180
Kurtosis estimator, 5
Kurtosis parameter, 24
Lagrange multiplier, 301
Lancette, Steven R., xiii, 3
Laplace transform, 169
Large capitalization equities, 34
Large market movements, 375
Large price movement, 29
Large-volume stocks, 34–35
Last-tick interpolation, 267
Latent mixing variables, 172
Latent variable trajectory, recovering, 245
LBC data series, DFA and Hurst methods applied to, 159
Leading indicators, economic models with, 67
Lead-lag realized covariance, 272
Learning algorithms, 64, 66–67
Learning and growth perspective, 52
Least squares regression, 126
Lebesgue measure, 297, 306
Lee, Kiseop, xiii, 3
Legendre–Fenchel transform, 299, 308, 321
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehman bankruptcy</td>
<td>150</td>
</tr>
<tr>
<td>Leland model</td>
<td>384</td>
</tr>
<tr>
<td>Leverage, volatility of</td>
<td>250–252</td>
</tr>
<tr>
<td>Lévy distributions</td>
<td>336, 346</td>
</tr>
<tr>
<td>Lévy flight</td>
<td>125</td>
</tr>
<tr>
<td>Lévy flight models</td>
<td>336–340</td>
</tr>
<tr>
<td>Lévy flight parameter estimating</td>
<td>135</td>
</tr>
<tr>
<td>Lévy flight parameter values of</td>
<td>136, 138</td>
</tr>
<tr>
<td>Lévy-like stochastic process</td>
<td>364</td>
</tr>
<tr>
<td>Lévy market, integro-differential equations in</td>
<td>375–380</td>
</tr>
<tr>
<td>Lévy model(s), 4–5</td>
<td></td>
</tr>
<tr>
<td>for describing log returns</td>
<td>22</td>
</tr>
<tr>
<td>log return process increments under</td>
<td>13</td>
</tr>
<tr>
<td>motivations of, 5</td>
<td></td>
</tr>
<tr>
<td>numerical simulations and, 340–345</td>
<td></td>
</tr>
<tr>
<td>suitability assessment of, 23</td>
<td></td>
</tr>
<tr>
<td>Lévy processes</td>
<td>148</td>
</tr>
<tr>
<td>Lévy–Smirnov distribution</td>
<td>122, 337</td>
</tr>
<tr>
<td>Lévy-stable distribution</td>
<td>337</td>
</tr>
<tr>
<td>Likelihood function</td>
<td>13, 171</td>
</tr>
<tr>
<td>Likelihood ratio process</td>
<td>297</td>
</tr>
<tr>
<td>Likelihood ratio test (LRT), 192</td>
<td></td>
</tr>
<tr>
<td>acceptable band of, 202</td>
<td></td>
</tr>
<tr>
<td>stability of, 199–202</td>
<td></td>
</tr>
<tr>
<td>Likelihood ratio test statistic, 190–191</td>
<td></td>
</tr>
<tr>
<td>asymptotic distribution of, 191</td>
<td></td>
</tr>
<tr>
<td>Limit orders, elasticity/plasticity of,</td>
<td>28–29</td>
</tr>
<tr>
<td>Linear discriminant analysis, 47</td>
<td></td>
</tr>
<tr>
<td>Linear models, statistical significance of</td>
<td>47</td>
</tr>
<tr>
<td>Linear transformations, of GH distributions</td>
<td>169–170</td>
</tr>
<tr>
<td>Link mining algorithm</td>
<td>62</td>
</tr>
<tr>
<td>Lipschitz constant</td>
<td>358</td>
</tr>
<tr>
<td>Lipschitz continuous function</td>
<td>356</td>
</tr>
<tr>
<td>Liquidity, increased</td>
<td>236</td>
</tr>
<tr>
<td>“Liquidity bottleneck”, 236</td>
<td></td>
</tr>
<tr>
<td>Liquidity costs</td>
<td>236</td>
</tr>
<tr>
<td>Liu, Yang, xiii</td>
<td>163</td>
</tr>
<tr>
<td>Location parameter</td>
<td>337</td>
</tr>
<tr>
<td>Locked-in interest rate process</td>
<td>296</td>
</tr>
<tr>
<td>Logarithmic utility functions</td>
<td>321</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>47</td>
</tr>
<tr>
<td>Logistic transitional default correlation</td>
<td>84–87</td>
</tr>
<tr>
<td>Logitboost</td>
<td>49, 62</td>
</tr>
<tr>
<td>Log likelihood, maximizing, 172</td>
<td></td>
</tr>
<tr>
<td>Log-normal diffusion process</td>
<td>275</td>
</tr>
<tr>
<td>Log-periodogram regression</td>
<td>221</td>
</tr>
<tr>
<td>Hurst parameter estimator for</td>
<td></td>
</tr>
<tr>
<td>222–225</td>
<td></td>
</tr>
<tr>
<td>Log-price process</td>
<td>247, 253</td>
</tr>
<tr>
<td>Log-return process, 7, 8, 9</td>
<td></td>
</tr>
<tr>
<td>discretizing, 222</td>
<td></td>
</tr>
<tr>
<td>Log return process increments, 13</td>
<td></td>
</tr>
<tr>
<td>Log returns, 5</td>
<td></td>
</tr>
<tr>
<td>Log squared returns</td>
<td>222</td>
</tr>
<tr>
<td>Long correlations</td>
<td></td>
</tr>
<tr>
<td>data related to, 128–132</td>
<td></td>
</tr>
<tr>
<td>persistence of, 141</td>
<td></td>
</tr>
<tr>
<td>results and discussions of, 132–150</td>
<td></td>
</tr>
<tr>
<td>Long memory, in financial datasets</td>
<td>220</td>
</tr>
<tr>
<td>Long-memory effects, 120</td>
<td></td>
</tr>
<tr>
<td>analyzing, 135</td>
<td></td>
</tr>
<tr>
<td>Long-memory parameter, determining, 226</td>
<td></td>
</tr>
<tr>
<td>Long-memory stochastic volatility (LMSV) models, 221</td>
<td></td>
</tr>
<tr>
<td>application to S&P index, 228–229</td>
<td></td>
</tr>
<tr>
<td>continuous-time, 220</td>
<td></td>
</tr>
<tr>
<td>parameter/estimation/calibration for, 219–231</td>
<td></td>
</tr>
<tr>
<td>parameter estimation under, 221</td>
<td></td>
</tr>
<tr>
<td>simulation results of, 227</td>
<td></td>
</tr>
<tr>
<td>statistical inference under, 222–227</td>
<td></td>
</tr>
<tr>
<td>Long-range correlations, 120, 127</td>
<td></td>
</tr>
<tr>
<td>Long-range dependence, xi, 220</td>
<td></td>
</tr>
<tr>
<td>Long-term assets-to-sales ratio, 58</td>
<td></td>
</tr>
<tr>
<td>Long-term behavior, methods of estimating, 150</td>
<td></td>
</tr>
<tr>
<td>Long-term GARCH, 203–216, See also</td>
<td></td>
</tr>
<tr>
<td>Generalized autoregressive</td>
<td></td>
</tr>
<tr>
<td>conditionally heteroskedastic (GARCH) methodology</td>
<td></td>
</tr>
<tr>
<td>Long-term investments, 135</td>
<td></td>
</tr>
<tr>
<td>Long-term memory effects, 119, 150</td>
<td></td>
</tr>
<tr>
<td>Lorentz(ian) distribution, 122, 337</td>
<td></td>
</tr>
<tr>
<td>Lorentzian random variable, 335</td>
<td></td>
</tr>
<tr>
<td>Lower solution, 356, 357, 358, 364, See also Ordered lower-upper solution pair</td>
<td></td>
</tr>
<tr>
<td>Low-frequency tranches, default correlation and, 79–87</td>
<td></td>
</tr>
<tr>
<td>Low-order GARCH models, 179, See also</td>
<td></td>
</tr>
<tr>
<td>Generalized autoregressive</td>
<td></td>
</tr>
<tr>
<td>conditionally heteroskedastic (GARCH) methodology</td>
<td></td>
</tr>
<tr>
<td>L^p spaces, 386</td>
<td></td>
</tr>
</tbody>
</table>
LRT failure, 196. See also Likelihood ratio test (LRT)
LRT p-values, 192–195
Lunch-time trader activity, 42

Machine learning methods, 48, 64–65
calibration of, 68
Machine learning perspective, 62
Machine-readable news, 64
Major financial events
 observations centered on, 107
 probability curves for, 108
Mancino, Maria Elvira, xiv, 243
Marginal utility function, 299
Mariani, Maria C., xiv, 347, 383
Market capitalization index, 128
Market completeness assumption, 302
Market complexity, modeling of, 99
Market crash, 346
 2008, 136
Market index (indices)
 exponents calculated for, 345
 squared returns of, 220
 technique for producing, 110
Market index decrease, spread and, 105
Market inefficiencies, for small-space and mid-volume classes, 44
Market microstructure effects, 263
Market microstructure, effects on Fourier estimator, 245
Market microstructure contaminations, 273
Market microstructure model, of ultra high frequency trading, 235–242
Market model, 296–297
Market movement, indicators of, 110
Market reaction, to abnormal price movements, 45
Market-traded option prices, 219
Markov chain, stochastic volatility process with, 401
Markowitz-type optimization, 286
Martingale-difference process, 178. See also Continuous semimartingales;
 Equivalent martingale measure;
 Exponential martingale process
 Supermartingale
Matlab, 14, 257
Matlab module, 125, 339
Maximum likelihood estimation (MLE), 13–14, 185
 finite-sample performance of, 14–17
 performance of, 23–24
Maximum likelihood estimators (MLEs, mles), 4, 6, 172–175, 190, 225.
 See also MLE entries; NIG MLE;
 VG MLE
Maximum likelihood method, 183
Maximum price movement, 30
Maximum principle, 359, 360
MBS portfolio, 77. See also
 Mortgage-backed securities (MBSs); Subprime MBS portfolios
 slicing into tranches, 88–89
MBS tranches, 76
MBS units, 79
MBS vehicle, function of, 77
m-dimensional Brownian motion, 311, 312
Mean squared error (MSE), 245,
 254–256. See also MSE entries
cutting frequency and, 259, 260
Mean–variance mixture definition, 170
Mean-variance optimization, 286
Mean-variance utility, 287
Medium-volume stocks, 34–35
Memory effects, 135
Method of moment estimators (MMEs), 4, 5–6, 10–13. See also MME entries;
 VG MME
 finite-sample performance of, 14–17
 performance of, 23–24
Method of upper and lower solutions, 351–364
MFA data series, DFA and Hurst methods applied to, 156
Mi, Yanhui, xiv, 3
Microstructural model, 237–239
 future research on, 241
Microstructure effects, 19, 21, 22
Microstructure noise
 Fourier estimator and, 252–263, 263–272
 impact of, 244
Microstructure noise component, 275–276
Microstructure noise variance, 276
Midrange frequencies, 19
Mincer–Zarnowitz-style regression, 276
Minimum variance estimators, 274
MLE estimator, increase of, 20. See also Maximum likelihood estimators (MLEs, mles)
MLE results, for NIG and VG model estimation, 18–19
MME estimator, increase of, 20, 21. See also Method of moment estimators (MMEs)
MME results, for NIG and VG model estimation, 18–19
Model-free statistical analysis, 29
Modeling, popular distributions used in, 165
Model selection problem, 5
Modified Bessel function of the third kind, 166, 167
Modulated realized covariation, 267
Moment estimators, 24
Moment formulas, 166
Monopolistic competition, 238
Monopolistic competition models, 237
Monotone convergence theorem, 315
Monte Carlo analysis, 256–263, 266–272, 275–285
Monte Carlo replications, 269
Noise variance (continued)
 entries; Simultaneous correlated
 noise; Strict white noise process
No-leverage hypothesis, 255, 274
Non-Gaussian processes, 120
Nonlinear parabolic PDEs, 348. See also
 Partial differential equation (PDE)
 methods
Nonlinear partial differential equations, 384
Nonnegative integers, 349
Nonoverlapping windows, 31
“Nonparametric” methods, 67
Nonstationarity, types of, 136
Nonstationary datasets, 127
Norm, 351, 390
Normal distribution, 164, 181, 337
Normal inverse Gaussian (NIG)
 distributions, 171
Normal inverse Gaussian (NIG) model,
 4, 8–9. See also NIG MLE
 computing MME for, 12–13
 empirical results for, 18–22
 MME and MLE finite-sample
 performance for, 16–17
Normality hypothesis, 138–139
Normality test results, 138
Normality tests, 144
Normalized truncated Lévy model, 125
Normalizing constant, 167, 170
Normal mean–variance mixture
 distributions, 165–166, 167–168
Null hypothesis, 128–129, 192
 unit-root tests rejection of, 145
Numerical simulations, Lévy models and,
 340–345
Nyquist frequency, 257, 269
NYSE TAQ database, 18

Objective function, computing, 173
One-day return forecasting, 195–196
One-dimensional diffusions, optimal
 stopping for, 311–318
One-dimensional GH distribution, 169
One-dimensional hyperbolic
 distributions, 171
One-dimensional integrals, 372,
 414–415
One-dimensional Itô’s formula, 329
One-factor Gaussian copula model, 78
One-sided stable distribution, 337
Operating-expenses-to-sales ratio, 58
Operating-income-to-sales ratio, 58
Optimal α level, for equity classes, 37.
 See also Optimal level α/window
 size trading rule
Optimal after-event window size, for
 equity classes, 40–41
Optimal level α/window size trading rule,
 33. See also Optimal α level, for
 equity classes
Optimal MSE-based covariance
 estimator, 269. See also Mean
 squared error (MSE)
Optimal MSE-based Fourier estimator,
 269
Optimal portfolio/consumption process,
 322
Optimal portfolio process, 321
Optimal stopping, for one-dimensional
 diffusions, 311–318
Optimal stopping boundary, 322
Optimal stopping time, 313, 314, 322
Optimal trading parameters, 45
Optimal values, calculating, 37, 39, 40
Optimal wealth, 324
Optimal wealth process, 319–320, 322
Optimization problem, 299–300, 307
Optimized integrated volatility
 estimators, 262
Optional sampling theorem, 316
Option chain values, 99
 updating, 403
Option price(s), 406
 discrepancies among, 219
 in stochastic volatility models, 401
Option price evolution model, 120
Option price formula, 384
Option price valuation, in the geometric
 Brownian motion case, 384–386
Option pricing algorithm, 226
Options, 348. See also Call options chain;
 European option entries; European
 call option; Put options chains;
 Stock options
 compensation based on, 59
 as given assets, 401–404
 market volatility and, 100–101
 maturity date of, 99
 path-dependent, 226
Options chains, selecting, 110
Index

Order arrivals, simulating, 240
Ordered lower-upper solution pair, 360.
 See also Lower solution; Upper solution
Organizational variables, optimal values of, 54
Ornstein–Uhlenbeck process, 219
Osborne model, 27
Outliers, types of, 28
Out-of-money call option, 105–106
Out-of-money options, 100
Out-of-money put option, 105–106
Out-of-sample forecast, 287
Out-of-the-money SPX, 98. See also Standard and Poor Index (SPX)
Overfitting, 67
Ownership–performance relationship, 54
Parabolic distance, 350, 389
Parabolic domain, 348
Parabolic equation, 409, 417
Parabolic integro-differential problem, 364
Parabolic operator, 370
Parabolic problem, 360–361
Parameter estimates, crisis-related, 150
Parameter estimation, 67
 under the LMSV model, 221
 techniques for, 229–230
Parameter/estimation/calibration, for long-memory stochastic volatility models, 219–231
Parameters
 optimal choice of, 224
 values of, 14
Parametric detection rule, 31
Parametric estimation methods, 9–14
Parametric estimators, performance of, 23–24
Parametric exponential Lévy models (ELMs), 4
 consistency of, 5
 parametric classes of, 22–23
Parametric families, heavy-tailed, 164
Parsimonious model, 5, 22–23
Partial differential equation (PDE) methods, 295. See also Black–Scholes PDE; Nonlinear parabolic PDEs; PDE entries
Partial differential equations (PDEs). See also PDE entries
analysis of, 408–417
under transactions costs and stochastic volatility, 407–408
Partial integral-differential equations (PIDEs), 348, 353, 354, 364, 375
Particle filtering algorithm, 226
Parzen kernel, 269
Parzen weight function, 267
Pasarica, Cristian, xiv, 295
Path-dependent options, 226
PDE derivation. See also Partial differential equations (PDEs)
 given asset option and, 401–404
 traded asset volatility and, 405–408
PDE problems, solving, 352
pdf forecasting, 176. See also Forecast pdfs; Probability density function (pdf)
Peaks, in rare-events distribution, 42
Penn–Lehman Automated Trading (PLAT) Project competition, 65
Percentage excess kurtosis, 12
Performance, insider ownership and, 54
Performance analysis, of S&P500 companies, 54–60
Performance evaluation, 53–60
Periodogram, 223. See also Log-periodogram regression entries
Persistent time series, 126
Phillips–Peron (PP) test, 128–129
Poincare’s inequality, 391, 395
Point estimates, stability of, 4–5
Point estimators, 19
Pointwise limit, 359
Poisson order-arrival process, 239
Poisson probabilities, 240
Poisson process, 237, 354
Poisson random variables, 238
Poisson trading, 268, 272
Population skewness, 11
Portfolio/consumption process, 298
Portfolio/consumption strategy, 300
Portfolio diversification, 135
Portfolio insurers/hedgers, 105
Portfolio management, 169
time horizon for, 185
Portfolio processes, 297–299, 305–307
Portfolio rebalancing, 402
Portfolio risk management method, 170
Portfolios. See also Constant rebalanced portfolio technical analysis
Portfolios (continued)
(CRP-TA) trading algorithm; Multiagent portfolio management system; Subprime MBS portfolios
MBS, 77
tranches of, 77
vintage of, 77
Portfolios value, expected change in, 385
Portfolio utility, 286
Position strategy, 33
Positive process, 310
Powell’s method, 6, 14, 19
Power-type utility functions, 305
Prediction nodes, 50, 51
Prediction rule, 48, 49
Prespecified terminal time, 295
Price behavior, analyzing after rare events, 28
Price change distributions, 31
Price distribution distortion, 91
Price evolution in time, 30
Price movement(s)
corresponding to small volume, 30
detecting and evaluating, 44
persistence of, 27–46
Price movement methodology, results of, 35–41
Price process, 121
Price recovery
probability of, 44
after rare events, 45
Price volatility, UHFT and, 241
Price–volume relationship, 27–28
outlying observations of, 28
Principal–agent conflict, 53
Principal–agent problem, 60
Probability
of favorable price movement, 35–36
Poisson, 240
Probability density, 13–14
Probability density function (pdf), 119, 120, 163, 171, 335. See also Forecast pdfs; pdf forecasting;
Sample pdfs
Probability distributions, 165
Probability mass function (pmf), 171
Probability surfaces, 35, 37
Proportionality constant, 402
Pure optimal stopping problems, 311
Put options, demand for, 106
Put options chains, constructed VIX using, 105–106
p-values, 138–139, 204–205
pVIX-b, 102–103, 105. See also Volatility index (VIX)
pVIX’cVIX spread, 106
Qiu, Hongwei, xiv, 97
Q-learning algorithm, 65
Quadratic covariation formula, 244
Quadratic covariation-realized covariance estimator, 266
Quadratic utility function, 286
Quadratic variation, estimate of, 224
Quadrinomial tree method, 99–100
volatility index convergence and, 105
vs. CBOE procedure, 100–101
Quantile–quantile (QQ) plots, 80
of empirical CDF, 136
of high-frequency tranche prices, 92, 94
of tranche prices, 83–84
“Quantile type” rule, 30
Quantum mechanics, 385
Quote-to-quote returns, 258, 260
Random variables, 334–336
Random walk, 126
Rare-event analysis, 32–33
Rare-event detection, 28, 30–32
Rare events
detecting and evaluating, 29–35
equity price and, 44
trades profile and, 42, 43
Rare-events distribution, 41–44
peaks in, 42
Real daily integrated covariance, regressing, 281
Real integrated covariance regressions, results of, 282–285
Realized covariance (RC), 269
estimator for, 280
measures of, 272
Realized covariance plus leads and lags (RCLL), 266
estimator for, 280, 290
Realized covariance–quadratic variation estimator, 244
Realized variance, 12
Realized volatility, microstructure noise and, 274
Realized volatility estimator, 253–254, 256
results of, 276–279
Realized volatility estimator performance, ranking, 279
Realized-volatility-type measures, 275
Real-valued functions, 350, 351, 388–389
Refresh time, 267
Refresh time procedure, 244
Refresh time synchronization method, 268
Regime-switching default correlation, 81–84
Regime-switching default correlation model, 76
Regime-switching model, drawback of, 84–85
“Regret-free” prices, 238
Regular asynchronous trading, 264
Regular nonsynchronous trading, 268
Regular synchronous trading, 268
Relative risk process, 296
Rellich’s theorem, 398
Representative ADT algorithm, 52–53, 54. See also Alternating decision trees (ADTs)
Representative ADTs, 56–57, 67
Rescaled range (R/S) analysis, 120, 121, 125–126, 140
Retirement problem, 295–326
explicit formulas for, 318–324
Risk, defined, 163
Risk adjustment, standardization and, 124
Risk aversion levels, 287–290
Risk-factor returns, modeling, 166
Risk forecasting, 163–218
Risk forecasts
on a fixed timescale, 176–185
weekly or monthly, 164
Risk-free portfolio, 404, 407
Risk management, 68, 93
Risk models, 163–164
Risky asset, price process of, 6–7, 8
Root mean square fluctuation, 127
Rule of detecting rare events, 31–32
Sabr process, 400
Salas, Marc, xiv, 347
Sample pdfs, theoretical pdf vs., 184. See also Probability density function (pdf)
Sample size
EM algorithm dependence on, 183
GARCH calibration dependence on, 185
Sampling frequency, 5
Sanfelici, Simona, xiv, 243
S&P500 companies, corporate governance and performance analysis of, 54–60. See also Standard and Poor entries
S&P500 index, 137, 138, 139. See also Standard and Poor Index (SPX); Standard and Poor’s 500 equity index (SPX) analysis results for, 143
application of LMSV model to, 228–229
correlation with VIX/S&P500, 106–107
index variants and, 108
S&P500 prices, volatility increase and, 107–110
S&P500 representative ADTs, 56–57. See also Alternating decision trees (ADTs)
interpreting, 58–59
S&P500 representative board scorecard, 61
Santa Fe stock market model, 63
Sarbanes–Oxley Act of 2002, 53
Scale-invariant truncated Lévy (STL) process, 124
Schaefer’s fixed-point theorem, 391
applying, 398–399
existence based on, 397
SCHW data series, DFA and Hurst methods applied to, 157
Second-by-second return path, 275
Securities and Exchange Commission (SEC), 53, 241
Securitized structures, impact of correlation fluctuations on, 75–95
Self-similarity, 127
Semilinear parabolic problem, 355–362
Seminorm, 351, 388, 389, 390
Seneta approximation method, 12
Sengupta, Ambar N., xiv, 75
Sengupta, Indranil, xiv, 347, 383
Senior tranche, 79
default risk of, 93
prices of, 82, 83, 86
Serial correlation, 83, 84, 87, 90
behavior of, 78
slowly decaying, 7
Shareholder–manager conflict, 60
Short-term memory models, 121
Simulated daily returns scenario, 215–216
Simulated weekly returns scenario, 212–215
Simulations, finite-sample performance via, 14–17
Simultaneous correlated noise, 282
Skewed t distributions, 165–175
algorithm for, 175
density of, 170
simulation of, 171
Skewness parameter, 337
Small parameter, 379
Small-volume stocks, 34–35
“Small-world” model, 63
Smooth-fit principle, 319
Sobolev spaces, 349, 352, 387
Sobolev space solutions, 391–400
Social networks, 62, 63
Spaces, involving time, 387–388. See also
Banach spaces; Function space; Hilbert space; Hölder spaces; Lp spaces; Sobolev spaces
Sparse estimator, 279
Spectral density, 225
Spectral density function, 223
Spin model, 64
Splitter nodes, 50, 51
Spot variance, 251
Spot volatility, 248
Spot volatility model, 273
Spread, between indices, 110
SPY, 97
Stability exponent, 337
Stable distributions, 334–336
Stable Lévy distribution, 339
Stable Lévy processes, 340
Stakeholder perspective, 59
Standard and Poor Index (SPX), 405. See also S&P entries
Standard and Poor’s 500 equity index (SPX), 97–98
Standard and Poor’s Governance Services, 51
Standard deviation (StD), 163
Standard diagonal argument, 375, 417. See also Cantor diagonal argument
Standardized Lévy models, 125, 340, 346
Standardized truncated Lévy flight model, 124
Standardized truncated Lévy model, 339
Standardized value, 114
State-price-density process, 297
State variables, 79, 82, 90
Static comparisons,”239–241
Stationarity tests, 129–131. See also
Covariance stationarity
Stationarity/unit-root test, 127–128
Statistical inference, under the LMSV model, 222–227
Statistical models, 6–9
Statistical tests, 190–192
Stochastic differential equations (SDEs), 327–334
Stochastic differential equation solution, Lévy flight parameter for, 340
Stochastic-Dirichlet problem, 317
Stochastic function of time, 245
Stochastic order flow process, 237
Stochastic processes, 352, 400
empirical characterization of, 119
Lévy-like, 364
Stochastic recurrence equation (SRE), 179
Stochastic variable, 129
Stochastic volatility, 348, 354
financial models with, 400–408
Stochastic volatility models, 148, 250–251, 401
problem with, 100
Stochastic volatility process, 100
with Markov chain, 401
Stochastic volatility quadrinomial tree method, 99–100
VIX construction using, 114–115
Stock index, monthly returns for, 164. See also
Standard and Poor Index (SPX); Volatility index (VIX)
Stock market volatility, 97–98. See also
Volatility index (VIX)
Stock options, compensation based on, 53
Stock price, relationship to volume, 27
Strict white noise process, 177
Strike price, 98, 99, 112
Selecting, 111
Strong Markov Property, 317, 320
Strong prediction rule, 49
Strong solutions, 351–352, 355, 356, 361, 362, 364, 368, 369, 374, 412
Student t innovations, 182
“Stylized facts”, 176–177
Subprime MBS portfolios, 87. See also Mortgage-backed securities (MBSs)
Subprime mortgage fiasco, 75
Subseries, 125–126
Super equity, 34–35
Supermartingale, 307, 315
Surfaces, 2D plots of, 39–40
Suspicious events, 45
“Symmetric case”, 4
Symmetric Lévy distribution, 338
Synchronization bias, 248

Target expected returns, 287–290
Taylor’s formula, 403, 406
Technical indicators, 65
Technical trading strategies, 64
Temporal time series, statistical properties of, 120
Terminal condition, 348, 353
TH2-type kernels, 261, 263
Tick-by-tick data, 29, 244
Time. See also Calendar time sampling:
- Continuous-time entries; Discrete time model; Exit time; Fixed stopping time; Fixed time interval; Infinite time horizon; Lunch-time trader activity; Optimal stopping time; Prespecified terminal time; Refresh time entries
- Price evolution in, 30
- Spaces involving, 387–388
- Stochastic function of, 245
Time consistency of Lévy processes, 5
Time-dependent volatility matrix, 246
Time distribution, of rare events, 41–44
Time lag, 339
Timescale forecasts, multiple, 185–188. See also Fixed timescale
Time-scaling problems, 236
Time series, 125, 126. See also Classical time series analysis; Financial time series; High-frequency time series; IBM time series; Integrated time series; Temporal time series; Weekly returns time series
Time series data, filtering, 176
Time series forecasting, 68
Time series stationarity, 127–128 investigating, 141
Time step, 403, 404, 406
Time to expiration, 111
Time to maturity, 112
TLF analysis, 140. See also Truncated Lévy flight (TLF)
TLF distribution, 123, 338
TLF model, 120, 345
Tobin’s Q, values of, 55
Trade activity, rare events distribution and, 44
Traded assets, 401
Traded-asset volatility, 405–408
Trades, distribution of, 41–42
Trades profile, 42, 43
Trading, using boosting for, 47–74
Trading activity heightened, 30
- Increase in, 42
Trading horizon, 237
Trading rules, learning algorithms for generating, 64
Trading strategies, activation of, 42
Trading system optimization, 66
Traditional quantile rule, 31
Tranche price convergence, 91
Tranche price distribution QQ plot, 83–84
Tranche price histograms, 80
- Across vintages, 82–83, 85
Tranche prices, 76, 77, 80
- Across vintages, 90–91
- Default correlation and, 82
- Default correlation dynamics and, 92
- Unconditional distribution of, 80–81
Tranches, of a portfolio, 77
Tranche seniority, 82, 89, 93
Transaction costs, 402–404, 406–407
- Financial models with, 383–408
- In the geometric Brownian motion case, 384–386
Transition level, 89
Truncated Lévy flight (TLF), 120, 122–125, 338
Two-dimensional Itô’s formula, 328–329
Two-factor affine process, 275
Two-scaled adjusted estimators, 279
Two-scale estimator, 261, 279
Two-scale ZMA estimator, 263

UHFT market activities, 236. See also Ultra high frequency trading (UHFT)
UHFT market restrictions, 237
UHFT regulation, 241
UHFT transaction cost, 241
UHFT volume, 235
Ulibarri, Carlos A., xiv, 235
Ultra high frequency traders, 235
Ultra high frequency trading (UHFT). See also UHFT entries
impacts of, 236
market microstructure model of, 235–242
Unbounded parabolic domain, 352
Unconditional default probability, 79, 89
Uniform convergence, 374
Unit-root stationarity tests, results of, 135
Unit-root tests, 121, 127–128, 141
results of, 130–131
Upper solution, 356, 357, 364. See also Ordered lower-upper solution pair
U-shape, of trade distributions, 42
Utility after retirement, 321
Utility estimations, 287
Utility functions, 296, 299
of power type, 305
Utility loss, 290

Value at risk (VaR), 163, 165, 176. See also VaR entries
Value function, 304, 307, 312, 313
for the constant coefficients case, 318
VaR error, 201. See also Value at risk (VaR)
VaR estimates, based on Monte Carlo simulation, 199
VaRHL, 213, 214, 215
VaRHL, 213, 214, 215. See also HL estimator

Variance, volatility of, 250–252
Variance estimator optimization, 286
Variance forecast, 206
Variance gamma (VG) distributions, 171
Variance-gamma (VG) model, 4, 8–9.
See also VG MLE
computing MME for, 10–11
empirical results for, 18–22
VaRTrue, 213, 214
VaR violations, 210
counting, 191–192
VG MLE, 6. See also Maximum likelihood estimators (MLEs);
Variance-gamma (VG) model
finite-sample performance of, 15–16
VG MME, finite-sample performance of, 14–15. See also Method of moment estimators (MMEs);
Variance-gamma (VG) model

Vintage, of a portfolio, 77
Vintage correlation, 76, 79
Violation count stability, in Monte Carlo simulations, 201
Violation indicators, independence of, 188–189
Violation ratio tables, 192–195, 196–199

VIX construction, using stochastic volatility quadrinomial tree method, 114–115. See also Volatility index (VIX); Volatility indices
Volatilities (volatility) forecasting, 273–275
nonconstant, 352
options maturity date and, 99
spread between, 106
Volatility changes, 212
Volatility clusters, 176, 180
Volatility distribution, 113
Volatility function, 248
Volatility index (VIX), 97–98, 405. See also Chicago Board Options Exchange (CBOE) Market
Volatility Index (VIX); cVIX entries; pVIX entries; VIX construction; Volatility indices
CBOE calculation of, 98–99, 110
Volatility index convergence, using quadrinomial tree method, 105
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility indices. See also Volatility index entries</td>
<td>97–115</td>
</tr>
<tr>
<td>constructing</td>
<td>97–115</td>
</tr>
<tr>
<td>new methodology related to</td>
<td>99–100</td>
</tr>
<tr>
<td>predictive power of</td>
<td>107–110</td>
</tr>
<tr>
<td>using different inputs for</td>
<td>101–110</td>
</tr>
<tr>
<td>Volatility matrix</td>
<td>246</td>
</tr>
<tr>
<td>Fourier coefficients of</td>
<td>247</td>
</tr>
<tr>
<td>Volatility measurement/forecasting, as a key issue in finance</td>
<td>243</td>
</tr>
<tr>
<td>Volatility measures</td>
<td>213</td>
</tr>
<tr>
<td>Volatility models, long-memory stochastic</td>
<td>219–231</td>
</tr>
<tr>
<td>Volatility parameter</td>
<td>5, 6, 24</td>
</tr>
<tr>
<td>Volatility particle filter</td>
<td>226</td>
</tr>
<tr>
<td>Volatility process</td>
<td>255</td>
</tr>
<tr>
<td>Volatility smiles (smirks)</td>
<td>219, 220</td>
</tr>
<tr>
<td>VolAvg, 213, 214</td>
<td></td>
</tr>
<tr>
<td>VolStD, 213, 214</td>
<td></td>
</tr>
<tr>
<td>Volume constant in time</td>
<td>30</td>
</tr>
<tr>
<td>relationship to stock price</td>
<td>27</td>
</tr>
<tr>
<td>Volume window, limited</td>
<td>32</td>
</tr>
<tr>
<td>Walmart, Lévy flight parameter for</td>
<td>344</td>
</tr>
<tr>
<td>Walt Disney Company, Lévy flight parameter for</td>
<td>342, 344</td>
</tr>
<tr>
<td>Wang, Jim, xiv</td>
<td>27</td>
</tr>
<tr>
<td>Weak derivatives</td>
<td>349, 386–387</td>
</tr>
<tr>
<td>Weak hypothesis</td>
<td>51</td>
</tr>
<tr>
<td>Weak learner</td>
<td>48, 49</td>
</tr>
<tr>
<td>Weak prediction rules</td>
<td>49, 51</td>
</tr>
<tr>
<td>Weak solution</td>
<td>399</td>
</tr>
<tr>
<td>Wealth processes</td>
<td>297–299, 305–307</td>
</tr>
<tr>
<td>Week-based forecasts</td>
<td>210, 211</td>
</tr>
<tr>
<td>Weekly returns scenario</td>
<td>212–215</td>
</tr>
<tr>
<td>Weekly returns time series</td>
<td>212</td>
</tr>
<tr>
<td>Weekly return/volatility</td>
<td>211–212</td>
</tr>
<tr>
<td>Weighted options</td>
<td>101</td>
</tr>
<tr>
<td>Weighting</td>
<td>48–49</td>
</tr>
<tr>
<td>Whittle-based approach, for Hurst index estimation</td>
<td>225–226</td>
</tr>
<tr>
<td>Whittle contrast function</td>
<td>225</td>
</tr>
<tr>
<td>Whittle estimator</td>
<td>227</td>
</tr>
<tr>
<td>Whittle maximum likelihood estimate</td>
<td>225</td>
</tr>
<tr>
<td>Whittle-type criterion</td>
<td>221</td>
</tr>
<tr>
<td>Whole real line, solution construction in</td>
<td>399–400</td>
</tr>
<tr>
<td>Wiener process</td>
<td>3, 7, 8</td>
</tr>
<tr>
<td>WMT data series, DFA and Hurst methods applied to</td>
<td>151</td>
</tr>
<tr>
<td>XOM data series, DFA and Hurst methods applied to</td>
<td>152</td>
</tr>
<tr>
<td>Xu, Junyue, xiv</td>
<td>75</td>
</tr>
<tr>
<td>Zero autocorrelation</td>
<td>178</td>
</tr>
<tr>
<td>Zero-boundary condition</td>
<td>369, 412</td>
</tr>
<tr>
<td>Zero Dirichlet condition</td>
<td>393, 399</td>
</tr>
<tr>
<td>ZMA estimator</td>
<td>263</td>
</tr>
</tbody>
</table>