INDEX

abrupt pn-junction, 104
absorption, 3, 26
absorption, induced, 27
absorption loss, 77
acceptor, 97, 99
acceptor level, 99
amplitude-modulating noise, 172
amplitude shift keying, 161
analog modulation, 169
anisotropic optical gain, 195
antiguiding effect, 52, 152
antireflection, 214
anti-Stokes luminescence, 26
AR, 214
aspect ratio, 52
astigmatism, 153
asymmetry measure, 48
Auger process, 24, 143
autocorrelation function, 175
avalanche breakdown, 116
average collision time, 99
axial mode, 157

band filling effect, 36, 159
band offset, 15, 127
bandgap energy, 3
band-structure engineering, 201

base function, 16
beam waist, 153
Bernard–Duraffourg relation, 32
BH, 154, 156
biaxial stresses, 208
Biot–Savart’s law, 8
bistable LDs, 184
blackbody radiation theory, 31
Bloch function, 4
Bloch oscillation, 21
Bloch theorem, 4
Bohr magneton, 8
Boltzmann constant, 29
bra vector, 5
Bragg wavelength, 67, 218
breakdown, 116
breakdown, avalanche, 116
breakdown, Zener, 116
Brillouin zone, bending of, 21
buffer layer, 202
built-in potential, 104
bulk, 4
buried heterostructure, 154, 156
carrier, 94
carrier concentration, intrinsic, 96
carrier concentration, threshold, 132
INDEX

carrier distribution, 28
carrier lifetime, 126, 128
carrier noise, 173
cathodoluminescence, 26
cavity, Fabry–Perot, 57
cavity, optical, 27, 57
characteristic matrix, 82
characteristic temperature, 143
chemiluminescence, 26
chirped grating, 71
chirping, 167
chromatic dispersion, 172
cladding layer, 41
cleaved facet, 59
coherent, 26, 160
complex refractive index, 40
compound semiconductor, 93
compressive strain, 203
conduction-electron, 93
conductivity effective mass, 100
confinement of resonant radiation, 227
coupled cavity, 184
coupled wave equation, 67
coupled wave theory, 67
coupling coefficient, 66
coupling rate of feedback light to an LD, 186
critical angle, 42
critical thickness, 202
current multiplication factor, 117
current versus light output, 131
cutoff condition, 49
cyclotron angular frequency, 97
cyclotron resonance, 12, 13
DBR LD, 222
decay coefficient, 166
decay rate, 186
decay time, 166
defformation potential, 206
delta function, 19, 177
density of states, 17
density of states, effective, 29, 95
density-of-states effective mass, 95
depletion layer, 103
depth layer capacitance, 108
derivative electrical resistance, 146
derivative light output, 145
derivative measurement, 144
deviation, 165
DFB LD, 71, 213
dielectric film, 59
differential gain, 165
diffracted pattern, 149
diffraction grating, 57
diffusion, 101
diffusion capacitance, 116
diffusion coefficient, 101
diffusion length, 115, 153
diffusion potential, 104
digital modulation, 169
dipole moment, 34
Dirac’s constant, 4
direct modulation, 160, 162
direct transition, 13, 24
discrete, 3
discrete approach, 82
dispersion, 77, 157
dispersion, chromatic, 172
dispersion curve, 48
dispersion, material, 172
dispersion, mode, 172
dispersion, structural, 172
distributed Bragg reflector, 57
distributed Bragg reflector LD, 222
distributed feedback, 57
donor, 97, 98
donor level, 98
dopant, 97
double heterostructure, 127
drift current, 101
effective density of states, 29, 95
effective mass, 6
effective mass approximation, 16
effective mass, conductivity, 100
effective mass, density of state, 95
effective mass, longitudinal, 95
effective mass, transverse, 95
effective refractive index, 47
effective refractive index, method, 52
eigenvale equation, 48
Einstein summation convention, 207
Einstein’s A coefficient, 31
Einstein’s B coefficient, 31
Einstein’s relation, 101
elastic strain, 203
electric conductivity, 101
electric current noise, 173
electroluminescence, 26
electroluminescence, injection-type, 26
electron beam exposure, 77
electron, conduction, 93
element semiconductor, 93
elementary electric charge, 97
emission, 3
emission, induced, 26
<table>
<thead>
<tr>
<th>INDEX</th>
<th>387</th>
</tr>
</thead>
<tbody>
<tr>
<td>emission, spontaneous, 26</td>
<td>grating, tapered, 71</td>
</tr>
<tr>
<td>emission, stimulated, 26</td>
<td>grating, uniform, 71</td>
</tr>
<tr>
<td>energy band, 4</td>
<td>guiding effect, anti-, 52, 152</td>
</tr>
<tr>
<td>energy barrier layer, 15</td>
<td>half width at half maximum, 63</td>
</tr>
<tr>
<td>energy barriers, 127</td>
<td>Hall coefficient, 98</td>
</tr>
<tr>
<td>energy eigenvalue, 4</td>
<td>Heaviside function, 192</td>
</tr>
<tr>
<td>energy level, 3</td>
<td>heavy hole, 95</td>
</tr>
<tr>
<td>ensemble average, 174</td>
<td>heavy hole band, 12</td>
</tr>
<tr>
<td>envelope function, 16</td>
<td>heterojunction, 126</td>
</tr>
<tr>
<td>equivalent refractive index, 159</td>
<td>high frequency modulation, 184</td>
</tr>
<tr>
<td>etching mask, 77</td>
<td>hole, 93</td>
</tr>
<tr>
<td>evanescent wave, 46</td>
<td>holographic exposure, 77</td>
</tr>
<tr>
<td>excitation, 23</td>
<td>homojunction, 126</td>
</tr>
<tr>
<td>external cavity, 184</td>
<td>horizontal transverse mode, 148, 151</td>
</tr>
<tr>
<td>external differential quantum efficiency, 139</td>
<td>HWHM, 63</td>
</tr>
<tr>
<td>external modulation, 160, 162</td>
<td>hybrid orbital, 6</td>
</tr>
<tr>
<td>extinction coefficient, 40</td>
<td>hydrostatic strain, 206</td>
</tr>
<tr>
<td>extinction ratio, 166</td>
<td>hysteresis, 188</td>
</tr>
<tr>
<td>extrinsic semiconductor, 97</td>
<td>hysteresis loop, 160</td>
</tr>
<tr>
<td>eye pattern, 171</td>
<td>impedance of vacuum, 50</td>
</tr>
<tr>
<td>Fabry–Perot cavity, 57</td>
<td>incident light, 43</td>
</tr>
<tr>
<td>far-field pattern, 148</td>
<td>index guiding, 39</td>
</tr>
<tr>
<td>Fermi–Dirac distribution, 28</td>
<td>index-coupled DFB LD, 213</td>
</tr>
<tr>
<td>Fermi level, 28</td>
<td>indirect transition, 13, 24</td>
</tr>
<tr>
<td>Fermi level, intrinsic, 96</td>
<td>induced absorption, 27</td>
</tr>
<tr>
<td>Fermi level, quasi, 28, 102</td>
<td>induced emission, 26</td>
</tr>
<tr>
<td>Fermi particles, 94</td>
<td>injection-type electroluminescence, 26</td>
</tr>
<tr>
<td>field optical gain coefficient, 40</td>
<td>intensity-modulation/direct-detection, 161</td>
</tr>
<tr>
<td>field spectrum, 175</td>
<td>interaction energy, 8</td>
</tr>
<tr>
<td>film, 41</td>
<td>interband transition, 157</td>
</tr>
<tr>
<td>fluorescence, 25</td>
<td>interference fringe pattern, 77</td>
</tr>
<tr>
<td>forward bias, 126</td>
<td>internal cavity, 184</td>
</tr>
<tr>
<td>free carrier absorption, 141</td>
<td>internal loss, 134</td>
</tr>
<tr>
<td>free carrier plasma effect, 152</td>
<td>internal quantum efficiency, 139</td>
</tr>
<tr>
<td>free space, 39</td>
<td>intraband relaxation time, 194</td>
</tr>
<tr>
<td>free spectral range, 62</td>
<td>intrinsic, 126</td>
</tr>
<tr>
<td>frequency fluctuation spectrum, 175</td>
<td>intrinsic carrier concentration, 96</td>
</tr>
<tr>
<td>frequency-modulating noise, 172</td>
<td>intrinsic Fermi level, 96</td>
</tr>
<tr>
<td>frequency shift keying, 161</td>
<td>intrinsic semiconductor, 93</td>
</tr>
<tr>
<td>Fresnel formulas, 43, 147</td>
<td>inverse Laplace transform, 164</td>
</tr>
<tr>
<td>full width at half maximum, 63</td>
<td>inverted population, 27</td>
</tr>
<tr>
<td>fundamental mode, 49</td>
<td>ionization coefficient, 117</td>
</tr>
<tr>
<td>FWHM, 63</td>
<td>junction capacitance, 108</td>
</tr>
<tr>
<td>gain flattening, 194</td>
<td>ket vector, 5</td>
</tr>
<tr>
<td>gain guiding, 40, 151</td>
<td>kink, 153</td>
</tr>
<tr>
<td>gain, optical, 27</td>
<td>Laplace transform, 163</td>
</tr>
<tr>
<td>Gaussian distribution function, 182</td>
<td>laser, 27</td>
</tr>
<tr>
<td>graded index SCH, 192</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

lateral mode, 148
lattice mismatching, 202
light hole, 95
light hole band, 12
linearly graded pn-junction, 109
linearly polarized light, 43
longitudinal effective mass, 95
longitudinal mode, 157
Lorentzian, 36, 129, 183
luminescence, 25
luminescence, anti-Stokes, 26
luminescence, cathodo, 26
luminescence, chemi, 26
luminescence, electro, 26
luminescence, injection-type electro, 26
luminescence, photo, 25
luminescence, Stokes, 25
luminescence, thermo, 26
luminescence, tribo, 26
Luttinger parameter, 205
Luttinger–Kohn Hamiltonian, 204, 205
magnetic flux density, 8
Marcatili’s method, 54
material dispersion, 172
Maxwell’s equations, 83
minizone, 21
mirror, 27, 57
mirror loss, 133
mobility, 101
modal gain, 194
mode competition, 153
mode density, 31
mode dispersion, 172
mode hopping, 153
mode number, 45
mode partition noise, 183
mode volume, 174
modified MQW, 192
modified Schawlow–Townes linewidth formula, 183
modulation efficiency, 168
MQW LD, 191
multimode, 157
multiple quantum well LD, 191
near-field pattern, 148
negative resistance, 21
node, 65
noise, 172
nonradiative recombination, 23
nonradiative recombination lifetime, 128
nonradiative transition, 3
nonreturn-to-zero, 170
nonthermal equilibrium, 28
normalized frequency, 48
normalized waveguide thickness, 48
NRZ, 170
optical cavity, 27, 57
optical confinement factor, 47
optical fiber amplifier, 161
optical filter, 62
optical gain, 27
optical isolator, 184
optical resonator, 27, 57
optical waveguide, 39
optical waveguide, planar, 40
optical waveguide, strip, 40
optical waveguide, three-dimensional, 40
optical waveguide, two-dimensional, 40
orbital angular momentum, 8
orbital angular momentum operator, 206
orbit–strain interaction Hamiltonian, 206
order of diffraction, 68, 218
orthonormalize, 173
oscillation, 132
overflow, 143
pattern effect, 171
Pauli exclusion principle, 3
Pauli’s spin matrices, 9
penetration depth, 46
periodic multilayer, 82
periodic potential, 14
perturbation parameter, 4
perturbation theory, first-order, 5
perturbation theory, second-order, 5
phase shift, 44
phase shift keying, 161
phase-shifted grating, 71
phase velocity, 45
phonon, 23
phosphorescence, 25
photoluminescence, 25
photon, 23
photon lifetime, 128
photon recycling, 227
photoresist, 77
Pikus–Bir Hamiltonian, 204, 206
planar optical waveguide, 40
Planck’s constant, 4
plane of incidence, 43
plane wave, 43
pn-junction, 103, 155
pn-junction, abrupt, 104
INDEX

pn-junction, graded, 109
pn-junction, linearly graded, 109
pnpn-junction, 155
Poisson equation, 106
polarization controller, 161
population inversion, 27
potential well, 15
power fluctuation spectrum, 175
propagate, 39
propagation constant, 45
propagation mode, 42
punch-through, 119
quantum box, 17
quantum noise, 172
quantum number, 4
quantum structures, 14
quantum well, 15
quantum well LD, 191
quantum well, one-dimensional, 16
quantum well, three-dimensional, 17
quantum well, two-dimensional, 16
quantum wire, 17
quarter-wavelength-shifted grating, 219
quasi-Fermi level, 28, 102
QW, 15
QW, strained, 202
radiative recombination, 23
radiative recombination lifetime, 128
radiative transition, 3
rate equations, 128
reciprocal effective mass tensor, 6
recombination, 23
recombination, nonradiative, 23
recombination, radiative, 23
reflected light, 43
reflector, 27
refracted light, 43
refractive index, 40
refractive index, complex, 40
relative electric susceptibility, 193
relaxation, 23
relaxation oscillation, 162
resonance condition, 61, 133
resonant angular frequency, 169
resonator, 27
return-to-zero, 170
rib waveguide, 154
ridge, 53
ridge waveguide, 155
ring cavity, 57
running wave, 64
RZ, 170
saturable absorber, 184
saturation current density, 116
selection rule, 199
self-pulsation, 184
semiclassical theory, 173
semiconductor, 93
semiconductor, compound, 93
semiconductor, element, 93
semiconductor, intrinsic, 93
semimetal, 20
separate confinement heterostructure, 192
separation-of-variables procedure, 84
shear strain, 206
signal to noise ratio, 161
single crystal, 4
single-mode LD, 213
single-mode operation, 157
single quantum well LD, 191
slope efficiency, 139
small-signal analysis, 164
Snell's law, 41
space-charge layer, 103
spatial hole burning, 151, 152, 219
spectral density functions, 175
spectral linewidth, 63, 175
spectral linewidth enhancement factor, 178
spherical polar coordinate system, 9
spin, angular momentum, 8
spin angular momentum operator, 206
spin magnetic moment, 8, 9
spin-orbit interaction, 8
spin-orbit interaction, Hamiltonian, 9
split-off band, 12
split-off energy, 12
spontaneous emission, 26
spontaneous emission coupling factor, 128
SQW LD, 191
standing wave, 64
steady state, 131
step function, 192
stimulated emission, 26
Stokes luminescence, 25
stopband, 70
strain, 201
strain, compressive, 203
strain, hydrostatic, 206
strain, shear, 206
strain, tensile, 203
strain-dependent spin-orbit interaction,
 Hamiltonian, 206
INDEX

strained QW, 202
stress, 202
strip optical waveguide, 40
structural dispersion, 172
substrate, 41
superlattice, 19
superlattice, type I, 20
superlattice, type II, 20
superlattice, type III, 20
synchrotron radiation, 79
tapered grating, 71
TE mode, 43
tensile strain, 203
tensor, 206
thermal equilibrium, 27
thermoluminescence, 26
three-dimensional optical waveguide, 40, 52
threshold, carrier concentration, 132
threshold current, density, 131
time average, 174
time-dependent quantum mechanical perturbation theory, 33
TM mode, 43
total reflection, 41, 44
transfer matrix, 68, 86
transition, direct, 13, 24
transition, indirect, 13, 24
transition, nonradiative, 3
transition, radiative, 3
transverse effective mass, 95
transverse electric mode, 43
transverse magnetic mode, 43
transverse mode, 148
transverse mode, horizontal, 148, 151
transverse mode, vertical, 148, 149
transverse resonance condition, 45
triboluminescence, 26
tunneling effect, 20
turn-on delay time, 162
two-dimensional optical waveguide, 40
undoped, 126
uniform grating, 71
valence band absorption, 143
VCSEL, 224
vertical cavity surface emitting LD, 224
vertical transverse mode, 148
wave function, 4
wave vector, 4
Wiener–Khintchine theorem, 175
x-ray exposure, 77
Zener breakdown, 116
zinc blende structure, 6