CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction to Oilfield Metallurgy and Corrosion Control</td>
<td>1</td>
</tr>
<tr>
<td>Costs</td>
<td>1</td>
</tr>
<tr>
<td>Safety</td>
<td>2</td>
</tr>
<tr>
<td>Environmental Damage</td>
<td>2</td>
</tr>
<tr>
<td>Corrosion Control</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>2 Chemistry of Corrosion</td>
<td>4</td>
</tr>
<tr>
<td>Electrochemistry of Corrosion</td>
<td>4</td>
</tr>
<tr>
<td>Electrochemical Reactions</td>
<td>4</td>
</tr>
<tr>
<td>Electrolyte Conductivity</td>
<td>5</td>
</tr>
<tr>
<td>Faraday's Law of Electrolysis</td>
<td>5</td>
</tr>
<tr>
<td>Electrode Potentials and Current</td>
<td>5</td>
</tr>
<tr>
<td>Corrosion Rate Expressions</td>
<td>8</td>
</tr>
<tr>
<td>pH</td>
<td>10</td>
</tr>
<tr>
<td>Passivity</td>
<td>10</td>
</tr>
<tr>
<td>Potential-pH (Pourbaix) Diagrams</td>
<td>11</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>3 Corrosive Environments</td>
<td>13</td>
</tr>
<tr>
<td>External Environments</td>
<td>13</td>
</tr>
<tr>
<td>Atmospheric Corrosion</td>
<td>14</td>
</tr>
<tr>
<td>Water as a Corrosive Environment</td>
<td>15</td>
</tr>
<tr>
<td>Soils as Corrosive Environments</td>
<td>16</td>
</tr>
<tr>
<td>Corrosion under Insulation</td>
<td>17</td>
</tr>
<tr>
<td>Internal Environments</td>
<td>18</td>
</tr>
<tr>
<td>Crude Oil</td>
<td>19</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>19</td>
</tr>
<tr>
<td>Oxygen</td>
<td>19</td>
</tr>
</tbody>
</table>
CONTENTS

- CO₂, 20
- H₂S, 22
- Organic Acids, 27
- Scale, 27
- Microbiologically Influenced Corrosion (MIC), 28
- Mercury, 31
- Hydrates, 31
- Fluid Flow Effects on Corrosion, 33

Summary, 33

References, 34

4 Materials, 36

Metallurgy Fundamentals, 36
- Crystal Structure, 36
- Strengthening Methods, 37
- Mechanical Properties, 38
- Fracture, 42
- Creep, 45
- Thermal Expansion, 45

Forming Methods, 45
- Wrought versus Cast Structures, 45
- Welding, 46

Materials Specifications, 49
- API, 49
- AISI—The American Iron and Steel Institute, 49
- ASTM International—formerly the American Society for Testing and Materials, 49
- ASME, 49
- SAE International, 49
- UNS, 50
- NACE—The Corrosion Society, 50
- Other Organizations, 50
- Use of Materials Specifications, 50

Carbon Steels, Cast Irons, and Low-Alloy Steels, 51
- Classifications of Carbon Steel, 52
- Strengthening Methods for Carbon Steels, 53
- Heat Treatment of Carbon Steels, 53
- Quenched and Tempered (Q&T) Steels, 54
- Carbon Equivalents and Weldability, 54
- Hard Spots, 55
- Cleanliness of Steel, 55
- Cast Irons, 55

CRAs, 55
- Iron-Nickel Alloys, 56
- Stainless Steels, 56
- Nickel-Based Alloys, 60
- Cobalt-Based Alloys, 61
- Titanium Alloys, 62
- Copper Alloys, 63
- Aluminum Alloys, 66
- Additional Considerations with CRAs, 68

Polymers, Elastomers, and Composites, 70

References, 72
5 Forms of Corrosion

Introduction, 75
General Corrosion, 75
Galvanic Corrosion, 77
 Galvanic Coupling of Two or More Metals, 77
 Area Ratio, 78
 Polarity Reversal, 83
 Conductivity of the Electrolyte, 83
 Control of Galvanic Corrosion, 83
Pitting Corrosion, 84
 Occluded Cell Corrosion, 84
 Pitting Corrosion Geometry and Stress Concentration, 85
 Pitting Initiation, 85
 Pitting Resistance Equivalent Numbers (PRENs), 86
 Statistics, 86
 Prevention of Pitting Corrosion, 86
Crevice Corrosion, 87
 Alloy Selection, 88
 Filiform Corrosion, 88
Intergranular Corrosion, 89
 Stainless Steels, 89
 Corrosion Parallel to Forming Directions, 90
 Aluminum, 90
 Other Alloys, 91
Dealloying, 91
 Mechanism, 91
 Selective Phase Attack, 91
 Susceptible Alloys, 92
 Control, 92
Erosion Corrosion, 92
 Mechanism, 92
 Velocity Effects, 93
 Materials, 95
 Cavitation, 95
 Areas of Concern, 95
 Control, 98
Environmentally Induced Cracking, 98
 SCC, 99
 HE and H₂S-Related Cracking, 101
 Hydrogen Attack, 105
 Liquid Metal Embrittlement (LME), 105
 Corrosion Fatigue, 106
Other Forms of Corrosion Important to Oilfield Operations, 107
 Oxygen Attack, 107
 Sweet Corrosion, 107
 Sour Corrosion, 108
 Mesa Corrosion, 108
 Top-of-the-Line (TOL) Corrosion, 108
 Wire Line Corrosion, 109
 Additional Forms of Corrosion Found in Oil and Gas Operations, 109
Additional Comments, 113
References, 114
6 Corrosion Control

Protective Coatings, 117
 Paint Components, 117
 Coating Systems, 118
Corrosion Protection by Paint Films, 118
Desirable Properties of Protective Coating Systems, 119
Developments in Coatings Technology, 120
Useful Publications, 120
Surface Preparation, 120
Purposes of Various Coatings, 123
Generic Binder Classifications, 124
Coatings Suitable for Various Service Environments or Applications, 126
Coatings Inspection, 126
Areas of Concern and Inspection Concentration, 131
Linings, Wraps, Greases, and Waxes, 133
Coatings Failures, 137
Metallic Coatings, 143
Water Treatment and Corrosion Inhibition, 146
 Oil Production Techniques, 147
 Water Analysis, 148
 Gas Stripping and Vacuum Deaeration, 148
Corrosion Inhibitors, 148
Cathodic Protection, 154
 How Cathodic Protection Works, 155
 Types of Cathodic Protection, 157
 Cathodic Protection Criteria, 168
 Inspection and Monitoring, 170
 Cathodic Protection Design Procedures, 174
 Additional Topics Related to Cathodic Protection, 177
Summary of Cathodic Protection, 180
 Standards for Cathodic Protection, 180
References, 182

7 Inspection, Monitoring, and Testing

Inspection, 187
 Visual Inspection (VI), 187
 Penetrant Testing (PT), 188
 Magnetic Particle Inspection (MT), 188
 Ultrasonic Inspection (UT), 189
 Radiography (RT), 190
 Eddy Current, 191
 Positive Material Identification (PMI), 192
 Thermography, 192
 Additional Remarks about Inspection, 193
Monitoring, 193
 Monitoring Probes, 193
 Mass-Loss Coupons and Probes, 194
 Electrical Resistance (ER) Probes, 197
 Electrochemical Corrosion Rate Monitoring Techniques, 197
 Hydrogen Probes, 200
 Sand Monitoring, 201
8 Oilfield Equipment

Drilling and Exploration, 209
 Wireline, 212
 Coiled Tubing, 212
Wells and Wellhead Equipment, 213
 History of Production, 214
 Downhole Corrosive Environments, 214
 Tubing, Casing, and Capillary Tubing, 220
 Inhibitors for Tubing and Casing in Production Wells, 223
 Internally Coated Tubing for Oilfield Wells, 226
 Material and Corrosion Concerns with Artificial Lift Systems, 228
 Wellheads, Christmas Trees, and Related Equipment, 231
Facilities and Surface Equipment, 233
 Piping, 233
 Storage Tanks, 236
 Heat Exchangers, 238
 Other Equipment, 241
 Bolting and Fasteners, 241
 Flares, 249
 Corrosion under Insulation, 249
Pipelines and Flowlines, 249
 Pipeline Problems and Failures, 252
 Forms of Corrosion Important in Pipelines and Flowlines, 253
 Repairs and Derating Due to Corrosion, 254
 Casings for Road and Railway Crossings, 255
 Pipeline Materials, 256
 Hydrotecting, 257
 External Corrosion, 257
 Internal Corrosion, 260
 Inspection and Condition Assessment, 262
References, 265

Index