INDEX

−100mv shift criterion, 169
13 chrome alloys, 70T, 221, 256
−850mv CSE criterion, 169
above-ground storage tanks (AST), 236, 236F, 237F
abrasion, 234
acetic acid, 216, 217F
acid-producing bacteria, 30
acrylic coatings, 125
activation polarization, 6F
adhesion, 128
adsorption inhibitors, 148, 149F
aging production fields, 193
alkali attack, 110F
alkyd paints, 124
alligating, 140F
alloy selection, 69–70, 88
alloying, 53
alpha ferrite, 51
alternating current field measurement, 193
aluminum
alloys, 67T
anodes, 159
corrosion, 66
drill pipe, 211
intergranular corrosion, 90F
killed steel, 55
liquid metal embrittlement, 106
typical applications, 68
American Iron and Steel Institute (AISI), 49
American Petroleum Institute (API), 49
API 5L, 256
API RP 14E, 232
API Spec 6A, 232
API specifications, 1, 49

API storage tank guidelines, 237T
API X65, 256
amines, 150
ammonia stress corrosion cracking, 99
amphoteric metal, 144F
anchor patterns, 128
annular space corrosion, 218
anode
definition, 4
materials, 160, 163
ANSI/API RP 14E, 93
antimony trichloride, 150
area ratio
fasteners, 78, 79F
weld filler metals, 78
artificial lift systems, 228–233
beam-pumped wells, 228–229, 228F, 229F
fatigue, 228
gas leakage, 229
gas-lifted oil wells, 229–230
hydraulic lift systems, 230
progressive cavity pumps, 230–231, 231F, 231T
sucker rods, 228
wear, 228
ASME specifications, 49
asphalt/coal tar, 258
ASTM International
ASTM A 193, 245, 246
ASTM Grade L7M bolts, 246
ASTM specifications, 49
atmospheric corrosion, 14
austenite, 51
automated image analysis, 206, 206F
B7 bolts, 245, 248
backfills, 160, 164
bacteria
bacterial growth monitoring, 203
classes of important bacteria, 30T
bake-out procedures, hydrogen, 246
barrier coatings, 119F
base metal, 46
batch treatments, 150–151
beach marks, 106
benzoate, 150
biocide, 32T, 218, 220, 258T
biofilms, 233, 257, 260
bituminous coatings, 124
black powder, 254, 254F
bleaching effect, 162
blisters, coating, 137, 138F, 139F, 140F, 141F, 141–142, 259F
body centered cubic (BCC), 37F
bolts, 78, 79F, 87F, 241, 245–249
bracelet anode, 160
brackish waters, 146
brass valve dealloying, 91F
brazed aluminum heat exchangers (BAHXs), 106, 239, 240F
breakthrough, injection water, 218
Brinell hardness, 40
brines, 146
brittle fracture, 42, 43F
budget limitations, 193
buried pipeline, 161F
cadmium plating, 145, 246, 248
calcareous deposits, 156F
calcium additions to steel, 55
calcium plumbate pigments, 118
caliper surveys, 215
capillary tubing, 220, 222–223, 225
carbon equivalents and weldability, 53, 54
carbon steel
 alpha ferrite, 51
 aluminum killed, 55
 anodes, 160
 austenite, 51
 calcium additions, 55
 carbon equivalents and weldability, 53
 carbon-manganese steel, 52
cementite, 51
cleanliness of steel, 55
delta ferrite, 52
hard spots, 55
heat treatment, 53
high-alloy steel, 52
high-carbon steel, 52
high-strength low-alloy (HSLA) steels, 52
killed steels, 55
low-alloy steel, 52
low-carbon steel, 52
martensite, 52, 54
medium-carbon steel, 52
microstructure, 51
oxygen removal, 55
pearlite, 52
phase diagram, 51F
quenched and tempered (Q&T) steels, 54, 54F
silicon killed, 55
stress corrosion cracking (SCC), 100F
sulfur effects, 55
carbon-manganese steel, 52
carboxyls, 150
carboxyls, 150
Carlsbad, New Mexico, 260
casing, downhole
 cathodic protection, 222, 222F, 223F
cement, 222
definition, 220
E log i, 222
exterior corrosion, 221
external coatings, 222
ICCP, 222
interior corrosion, 221
packer fluids, inhibitors, 221
permanent installations, 221
casing, pipeline, 255–256, 255F
cast iron
 dealloying, 91F
definition, 55
cast structures, 45
cathode, 4
cathodic corrosion inhibitors, 148
cathodic protection, 2, 154–182
 advantages of galvanic anode CP, 158T
 aluminum anode, 158T, 159
calcareous deposits, 156F
carbon steel anodes, 160
coatings
 debonding, 168F
 primary means of corrosion control, 154
copper-copper sulfate electrode (CSE), 157, 171F
debonded coating, 179, 179F
design, 174–177
corroded cathode, 174–177
 computer methods, 174–177
 computer screen, 175F, 176F
current densities, 174T
goal of cathodic protection, 176T
 offshore platform node, 177F
 sample procedure, 175F
dielectric shielding, 179, 180F
distributed anodes, 157
efficiency, anode, 158
equilibrium potential, 155, 156
Evans diagrams, 154, 155F
galvanic anode cathodic protection
 anode material choice, 160
 backfills, 160
gypsum in backfill, 160
 vs. ICCP, 168T
ezinc bracelets, 160
hot spots, 158
impressed current cathodic protection (ICCP), 160–168
 advantages of ICCP, 168
 anode materials, 163
 backfill, carbonaceous, 164
 bleaching effect, 162
cathodic protection (cont’d)
buried pipeline, 161F
chloride ions, 162
coating debonding, 168F
comparisons with galvanic anode CP, 168T
deep anode bed, 167F
dielectric shield, 167F
flush-mounted anodes, 167
graphite anodes, 164
high-silicon cast iron anodes, 163T
ICCP anode materials, 165T
ICCP backfills, 166
iron anodes, 165
lead anodes, 165
limitations of ICCP, 168
market share for ICCP anode materials, 166T
mixed-metal oxide (MMO) anodes, 164T
oxidation reactions, 162
platinum anodes, 165
polymer anodes, 165
precious metal anodes, 165
rectifier, 160, 162F
scrap steel anodes, 165
lead wire, 157
leak records, 155F
magnesium anode, 158, 158T
mechanism of control, 155–156
mineral deposits, 156
NACE SP 0169, 168, 177–179
pH shift, 156
potential profile, 157F
potential surveys, 170, 172F, 173F
protection criteria, 168–170
−100 mv shift criterion, 169
−850 mv CSE criterion, 169
E log i criterion, 169, 170F
instant off potentials, 177–178, 178F
quality control, 158, 161F
remote anode location, 157
sacrificial anode cathodic protection, 154F, 157
soil resistivity, 172–174, 173F
standards, 180
STI p3 tanks, 180, 180F
stray current corrosion, 179F
zinc anode, 158T, 159, 159T
cauktic embrittlement, 101
cavitation, 95F
cement, 222
cementite, 51
C-factor, 94
chalking, 141F
Charpy impact testing, 41–42F, 232
checking, 138F, 140F
chevron markings, 43F
chloride, 99, 128T, 162, 214
chlorinated rubber coatings, 124
Christmas tree, 96, 231, 231F
chromates, 150
chromium and other CRA coatings, 146
circumferential welds, 259
clamps, repair, 255F
cleanliness of steel, 55
CO2
channeling corrosion, 76F, 110
dewaard-Milliams model, 21
injection, 147
coil tar, 118, 258
coating debonding, 168F
coating systems for bolts, 247T, 248T
coatings
primary means of corrosion control, 154
protective, 117–146
cobalt alloys, 61–62, 233
cooled tubing, 212
cold cracking, 46
coiled tubing, 212
cold cracking, 46
colonies of cracks, 100F
corrosion, 65F
dealloying, 63
erosion corrosion, 64
nominal composition of alloys, 64T
stress-corrosion cracking, 64
under deposit corrosion, 65F
wrought alloys, 64–65
copper sulfate electrode (CSE), 9, 157, 171F
corrosion
allowance, 113
corelation, 3, 117–185
definition, 4
fatigue, 106
forms of, 75–116, 253
locations, 213F
mechanisms, 253T
monitoring, 211
rate, 8–10, 154T, 205F
corrosion inhibitors, 148–154, 218, 221, 223–226, 261
 application methods, 151
 batch injection, 151
 continuous injection, 151
 squeeze treatment, 151
 venturi pig, 152F
 batch treatments, 150–151
 compatibility with other chemicals, 151
dosage rate, 148
ER probe, 153
H₂S scavengers, 150
hydrazine, 150
mechanical deaeration, 150
monitoring, 152, 153F
morpholine, 151
pH adjustment, 150, 151
pigments, 119F
sampling locations, 153F
scaling, 151
testing, 152, 153F
treatment methods, 226T
types of
 adsorption inhibitors, 148, 149F
 amines, 150
 antimony trichloride, 150
 benzoate, 150
 carboxyls, 150
cathodic corrosion inhibitors, 148
carbonates, 150
environmental conditioners, 148
film-forming inhibitors, 148
oxygen levels, 149
passivating inhibitors, 150
phosphonates, 150
precipitation inhibitors, 148, 150
scavengers, 148
temperature limits, 149
thiourea, 150
vapor phase corrosion inhibitors, 148
volatile corrosion inhibitors (VCI), 148
corrosion-resistant alloys (CRAs), 1, 55–70, 212, 218–219, 221, 233, 239, 245
alloy selection, 69–70
 13 chrome alloys, 70T
duplex stainless steels, 70T
nickel-based alloys, 70T
aluminum alloys
 common alloys, 67T
corrosion, 66
typical applications, 68
cobalt-based alloys, 61–62
copper alloys, 63–66
 brasses, 64
 bronzes, 65
cast alloys, 65–66
 composition, 64T
copper-beryllium alloys, 65
copper-nickel alloys, 64–65, 65F
copper-tin phase diagram, 65
corrosion, 65F
dealloying, 63
erosion corrosion, 64
nominal composition of alloys, 64T
stress-corrosion cracking, 64
under deposit corrosion, 65F
wrought alloys, 64–65
nickel-based alloys, 60–61, 61T
PREF-pitting resistance equivalent numbers, 68–69
stainless steels, 56–60
 13 chrome alloys, 56
 2205 stainless steel, 60
 304 stainless steel, 58
 316 stainless steel, 58
austenitic stainless steels, 57–59, 59T
duplex stainless steels, 59–60, 60T
ferritic stainless steels, 57
highly alloyed austenitic stainless steels, 59
martensitic stainless steels, 56, 57T&F
precipitation-hardened stainless steels, 60
temperature criteria
 critical crevice temperature (CCT), 69
critical pitting temperature (CPT), 69
titanium alloys, 62–63
use in offshore oil and gas production, 63T
corrosion under insulation (CUI), 18F, 100F, 249F, 250T, 251T
problem locations, 18F, 249F
stress corrosion cracking (SCC), 100F
corrosive environments, 13–34
atmospheric corrosion, 14
CO₂, 20–22
corrosion under insulation (CUI), 17
 crude oil, 19
external environments, 13–18
H₂S, 22–33
 internal corrosion, 18–33
natural gas, 19
 oxygen, 19
 soils, 16
water, 15
costs, 1, 117, 256
 of protective coatings, 117
coupons, mass loss, 194–197
drill pipe corrosion monitoring, 211F
 cracking, 140, 141F
creep, 42
crive corrosion, 87–89, 212
critical exposure temperature (CET), 44
critical velocity, 93
 crude oil, 19
 hydrogen blistering of pipeline, 105F
crystal structure, 36, 37F
cumulative damage, 210
cupronickel, dealloying, 92F
damage to internal coatings, 212F
daerated, 148, 150
dealloying, 91–92
 brass valve, 91F
 cast iron, 91F
 control, 92
cupronickel, 92F
dealuminification, 91
dezincification, 91
selective attack, 91
selective leaching, 91
selective phase attack, 91
susceptible alloys, 92
dealuminification, 91
debonded coating, 143F, 179, 179F, 258, 259F
deployment, 167F
degassing of wire and cable, hydrogen embrittlement, 102
design minimum temperature (DMT), 44
delta ferrite, 52
dezincification, 91
dielectric shield/shielding, 167F, 179, 180F, 260
disbonded coatings, 143F, 179, 179F, 258, 259F
distortion of welded structures, 47, 48F
distributed anodes, 157
dosage rate, 148
downhole environments
 artificial lift systems, 228
capillary tubing, 220
casing, 220
inhibitors, 223
internal coatings, 226
pumps, 228
tubing, 220
downstream, 1
drill strings and drill pipe, 209–212
 aluminium drill pipe, 211
corrosion monitoring, 211
coupon for drill pipe corrosion monitoring, 211F
cumulative damage, 210
external wear, 212
fatigue, 209–210, 210F
H₂S scavengers, 210
hard bands, 212
inspection, 210
internal coatings, 212
NACE MR 0175/ISO 15156, 211
 oxygen scavengers, 210
 pH of drilling fluids, 210–211
 storage, corrosion during, 211
 wireline damage, 212F
ductile fracture, 42, 43F
ductile-brittle transition temperature, 42F&T
ductility
 definition, 41
 requirements, 256
duplex stainless steel, 70T, 148, 219, 246
dye penetrant, 188
E log i criterion, 169, 170F, 222
eddy current, 191–192, 192F
efficiency, anode, 158
elastic modulus, 39
elastomers, 71, 231
ebends and bends in piping, erosion corrosion, 97
electrical resistance (ER) probes, 153, 197, 197F
electrochemical corrosion rate monitoring, 197–198
electrochemistry, 4–8
 activation polarization, 6F
 area ratio, 78
 concentration polarization, 7, 8F
 conductivity, 83
 corrosion definition, 4
 corrosion rate, 8
 electrical current, 9
 penetraton rates, 10T
 units, 9
 wall thickness, 9
 weight loss, 9
electrochemical reactions, 4
electrode potentials, 5
electrolyte conductivity, 5, 83
electromotive forces (EMF) series, 5, 6T
 exchange current density, 7F
 Faraday’s law of electrolysis, 5
galvanic series, 6T
hydrogen evolution, 4
Nernst equation, 6
Ohm’s law, 5
overpotential, 7
oxidation reactions, 4
oxygen reduction, 4
polarity reversal, 83
potential-pH (Pourbaix) diagrams
 immunity, 11
 iron, 11F
 passivity, 11
 water, 11F
potential, electrode, 5
reduction reactions, 4
reference electrodes, 9T, 9F
electrolyte conductivity, 5, 83
emototive force (EMF) series, 5, 6T
electroplated coatings, 246
 hydrogen embrittlement (HE), 102
ed grain attack, 111
endurance limit, 44F, 106F
enhanced oil recovery (EOR), 147
environmental conditioners, 148
environmental damage, 2
environmentally induced cracking, 98–107
 alternate terms
 caustic embrittlement, 99
corrosion fatigue, 99
corrosion fatigue, 99
hydrogen embrittlement (HE), 99
liquid metal embrittlement (LME), 99
stress corrosion cracking (SCC), 99
season cracking, 99
corrosion fatigue, 106
environments, 99T
H₂S corrosion/cracking, 101–105
hydrogen attack, 105
hydrogen embrittlement (HE), 101–105
liquid metal embrittlement (LME), 105–106
mechanism, 98
stress corrosion cracking (SCC), 99–101
environments, corrosive, see external environments; internal environments
epoxy coatings, 124
equilibrium potential, 5, 11F, 155, 156
equipment, oilfield, 209–268
erosion corrosion, 92–98, 232F, 238
Evans diagrams, 154, 155F
exchange current density, 7F
external coatings, 222
external corrosion, 221, 257–260
external corrosion direct assessment (ECDA), 262
external environments, 13–18
atmospheric corrosion, 15F
corrosion under insulation (CUI), 18F
soil, 15–17
water, 15–16
external wear, 212
extruded thermoplastic coatings, 258

face centered cubic (FCC), 37F, 63
facilities and surface equipment, 233–249
failure modes, 244
Faraday's law of electrolysis, 5
fasteners, 78, 79F, 87F, 241, 245–249
fatigue, 44–45, 209–210, 241, 245
ferrite, 51
ferritic stainless steels, 246
fiber reinforced plastic (FRP), 234
field joint, 260F
field kits, 30
field trial testing, 204–207
filiform corrosion, 88, 89F
film-forming inhibitors, 148, 220
fine-grained steel, 256
fire safety
firewater systems, 234
liquid metal embrittlement, 106
fisheyes, 142F
flares, 249
flow rates, 260
flow regimes, 93F
flowline definition, 249
fluid analysis, 201–203, 202F
fluid flow effects on corrosion, 33
fluid velocity, 233
fluoropolymer coatings, 248–249
flush-mounted anodes, 167
formation water, 146, 214, 217, 220
forming direction, 90
forming methods, 45–49
fouling deposits, 238
fracture
fracture control, 48
fracture mechanics, 187
fracture surface, 44F
fresh water, 146
fretting corrosion, 111F–112F, 238
fusion, lack of, 46
fusion zone, 46
fusion-bonded epoxy coatings, 258, 259
galvanic anodes, 239F
cathodic protection, 154F, 157
galvanic cell, 5
galvanic corrosion, 77–84, 261F
area ratio, 78
fasteners, 78, 79F
weld filler metals, 78
c Control, 83
electrolyte conductivity, 83
galvanic coupling, 77, 78F
galvanic series in seawater, 77T
heat affected zone, 81F
insulated flange assembly, 80F
Luders band corrosion, 81, 82F
old pipe connected to new pipe, 82F
pipeline, 82F–83F
polarity reversal, 83
ringworm corrosion, 81F
galvanic coupling, 77, 78F
galvanic monitoring, 199
galvanic probes, 220
galvanic series, 6T, 77T, 169T
galvanized coatings, 246, 248T
galvanizing, liquid metal embrittlement, 106
gas breakout, 214, 220
gas condensate, H₂S cracking, 104
gas stripping, 148, 220
gas wells, 218–220
gel pig, 261
general corrosion, 75–77, 76F
geological formation, 19F
girth welds, 259
grade B7 bolts, 245, 246
grain boundaries, 37F
grain size refinement, 53
graphite anodes, 164
grit blasted surfaces, 129
gypsum, 160

H₂S, 214, 216
alloy selection, 27
cracking, 219F
hardness limitations, 23F
NACE MR0175-ISO15156, 23–27
scavengers, 150, 220
halides, 149
hard bands, 212
hard spots, 47, 55
hardness, 40, 432
 hardness levels, 232
 hardness vs. yield strength, 40T
 hydrogen embrittlement (HE), 102
 maximum, 246
heat affected zone (HAZ), 46, 81F
heat exchanger, 86F, 87F, 186, 238–241
high-alloy steel, 52
high-carbon steel, 52
high-silicon cast iron anodes, 163T
high strength, 241
high-strength fasteners, 245–246
high-strength low-alloy (HSLA) steels, 52
Hooke’s law, 39
hot cracking, 46
hot rolling, 256
hot spots, 158
hydrates, 31, 33F
hydrazine, 150
hydrogen attack, 105F
hydrogen blistering, 104–105
hydrogen embrittlement (HE), 102–103, 246, 257
hydrogen evolution, 4
hydrogen induced cracking (HIC), 103
hydrogen grooving, 110F
hydrogen probes, 200–201, 200F
hydrogen stress cracking (HSC), 102
hydrogen uptake and degassing, 212
hydrostatic testing, 204, 257T, 258T
Hyflon, 248
impressed current cathodic protection (ICCP), 165T, 166, 222
incomplete penetration, 47
inhibitor pigs, 254
inhibitors, corrosion, 148–154
initiation
 pitting corrosion, 85
 stress corrosion cracking (SCC), 99
injection fluids, 146, 218
injection water, 146
materials selection, 236T
injection wells, 220
inspection, 187–193
 after coating application, 129–131
 aging production fields, 193
 alternating current field measurement, 193
 areas of concern, 131–133
 budget limitations, 193
 definition, 186
dye penetrant, 188
eddy current, 191–192, 192F
hold points or checkpoints, 127
humidity, 130T
magnetic flux leakage (MFL), 193
magnetic particle testing (MT), 188, 188F
two-component paints, 129
ultrasonic inspection (UT), 189–190, 189F, 190F
welds, 47–48, 187
wet film thickness of coatings, 129
instant off potentials, 177–178, 178F
insulated flange assembly, 80F
intergranular corrosion, 89–91
 aluminum, 90F
 forming direction, 90F
 stainless steels, 89–90
 stainless steels, sensitized microstructure, 89F
 stainless steels, sensitized welds, 89F
intergranular stress corrosion cracking (IGSCC), 101, 101F
internal coatings, 212, 227
internal corrosion, 221, 260–262
internal corrosion direct assessment (ICDA), 262
internal environments, 18–33
 CO₂, 20–22, 21F, 22F
 crude oil, 19
H₂S, 22–27
 alloy selection, 27
 NACE MR0175-ISO15156, 23–27
hydrates, 31, 33F
 mercury, 31
 microbiologically influenced corrosion (MIC), 28T, 29F, 30–32
 natural gas, 19, 20T
 organic acids, 27
 oxygen, 19
 scale, 27F
 sour corrosion, 19
 sweet corrosion, 19
interstial solid solutions, 38F
IOZ coatings, 120F, 125
iron anodes, 165
iron carbonate scale, 215
iron counts, 202–203, 202F
iron-nickel alloys, 56
iron-oxidizing bacteria, 30
ISO standards, 232
killed steels, 35
Knoop hardness, 40
Kynar, 248
laboratory testing, 204–206
lack of fusion, 46
lead anodes, 165
lead wire, 157
leak records, 155F
lifting or undercutting, 138F
linear polarization resistance (LPR), 197F, 198
linings, 133–135
liquid metal embrittlement, 105–106
aluminum, 106
brazed aluminum heat exchangers, 106
fire safety, 106
galvanizing, 106
LNG tanks, 56
low-alloy steel, 52, 241
low-carbon steel, 52
Luders band corrosion, 81, 82F
magnesium anode, 158, 158T
magnetic flux leakage (MFL), 193, 262
magnetic particle testing (MT), 188, 188F
makeup torque, 248
marine growth, 187
market share for ICCP anode materials, 166T
martensite, 52, 54
martensitic stainless steel, 226, 246, 256
materials, 36–74
selection, 221T
specifications, 49–50
mechanical deaeration, 150
chemical properties of materials, 38–42
medium-carbon steel, 52
mercury, 31, 219
mesa corrosion, 108
metallurgy fundamentals, 36–45
meteoric water, 146
microbiologically influenced corrosion (MIC), 28–31
microstructure, 51
mineral deposits, 156, 238
minimum allowable temperature (MAT), 44
minimum design metal temperature (MDMT), 43
miscible flooding, 147
mixed-metal oxide (MMO) anodes, 164T
monitoring corrosion, 193–204
morpholine, 151
morphology of pits, 85
MR 0175/ISO 15156, 233
mud, drilling, 147
multiphase fluid flow, 93
multilayer polyethylene coatings, 258
NACE MR 0175/ISO 15156, 211, 216, 219, 232, 245
NACE SP 0169, 168, 177–179
NACE SP 0176/ISO 15156, 246
NACE—The Corrosion Society, 50
natural gas, 19, 20T
corrosion, 215
neoprene, 234
Nernst equation, 6–8
nickel aluminum bronze (NAB), 234, 246
nickel-based alloys, 60–61, 61T, 70T, 233, 246
nondestructive testing (NDT), 187
normalizing, 256
NORSOK, 221, 235
occluded cell corrosion, 84
Ohm’s law, 5
oil pipelines, 260
oil production techniques, 147
oil wells, 218, 219
oilfield equipment, 209–268
drilling and exploration, 209–213
facilities and surface equipment, 233–249
pipelines and flowlines, 249–268
wells and wellhead equipment, 213–233
old pipe connected to new pipe, 82F
organic acids, 27, 216, 219, 260
organic contamination, 128
organic-phase fluids (OPF), 147
organic zinc primers, 125
overload fracture, 42
overpotential, 7
oxidation reactions, 4, 162
oxygen, 19, 216
attack, 107
dissolved, 235
levels, 149
monitoring, 203, 220
reduction, 4
removal, 55
scavengers, 150, 210, 220
packer fluids, 218, 221
paint components, 117–118
paraffin deposits, 227, 260
Pareto principle, 193
passivating inhibitors, 150
passivity, 10
pearlite, 52
penetran testing (PT), 188, 188F
penetration rate, 9, 10
permeability, 137
pH
adjustment, 150–151
definition, 10
drilling fluids, 210–211
effect on corrosion, 10F, 16T
monitoring, 203
shift, 156
phase diagram
copper-tin, 65F
ever-iron carbide, 51F
phase-separation models, 261
phosphating, 248
phosphonates, 150
pigments, 118
pigs, 260
pinholing, 142F
pinpoint rusting, 128F, 143F
pipe support, 234
pipeline, 1–2, 249–264
13Cr, 256
API 5L, 256
API X65, 256
black powder, 254, 254F
casings, 255–256, 255F
clamps, repair, 255F
cement weight coating, 256F
corrosion assessment, 257–263
corrosion locations, radial, 252F
corrosion mechanisms, 253F
costs, 256
definition, 249
derating due to corrosion and other damage, 254–255
ductility requirements, 256
damaged, 188F
failure causes, 252F
fine-grained steel, 256
forms of corrosion on pipelines, 253
hot rolling of steel for pipeline fabrication, 256
hydrogen embrittlement, 257
hydrotesting, 257
inhibitor pigs, 254
inspection, 262
internal corrosion, 252, 253F, 260–262
internal corrosion direct assessment (ICDA), 260
martensitic stainless steel, 256
materials, 256–257
pitting corrosion grid pattern, 254F
repair methods, 254–255
seamless pipe, 257
spiral-welded pipe, 246, 257
steel, 103F
top-of-the-line (TOL) corrosion, 254, 254F
weight coating, concrete, 256F
welding defects, 257
piping, 233–236
pit pipe, 187F
pitting corrosion, 84–87
grid pattern, 254F
heat exchanger in seawater, 86F
initiation, 85
insulated flange assembly,
morphology of pits, 85
pipeline exterior, 86F
pitting initiation times, 85
pitting resistance equivalent numbers (PREN), 86
pitting statistics, 86
prevention, 87
stainless steel, 85
statistics, 86
submerged offshore platform weld, 85F
pitting resistance equivalent numbers (PREN), 68–69, 86
planktonic bacteria, 30
plate frame heat exchangers, 239, 240F
platinum anodes, 165
polarity reversal, 83
polarization curve, 7–9
polyester coatings, 125
polymer anodes, 165
polymer sphere pig, 261
polymers, 70–72
polyurea coatings, 125
polyurethane coatings, 125
porosity, 46
positive material identification (PMI), 192, 192F
potential (electrode), 5
potential plot, 157F
potential profile, 157F
potential surveys, 170, 172F, 173F
potential-pH (Pourbaix) diagrams, 11
potentials, electrode, 5
precious metal anodes, 165
precipitation inhibitors, 148, 150
pressure relief devices, 186
pressure vessels, 186
printed circuit heat exchangers, 240–241, 241F
process equipment material selection, 242–244T
produced water, 146
production profile, 147, 214F
progressive cavity pumps, 231
proportionality limit, 38
protective coatings, 117–146, 258
Prudhoe Bay, 260
pumps, 186
quality control of cathodic protection anodes, 158
quenched and tempered (Q&T) steels, 54F, 241
quenching definition, 54
radiography (RT), 48, 190, 190F, 191F, 262
rates, corrosion, 154F
rectifier, 160, 162F
red lead pigments, 118
reduction reactions, 4
reference electrodes, 9T
remote anode location, 157
repair methods and derating due to corrosion, 254–255
resistivity effect on corrosion, 16T
ring bulging, 237F
ringworm corrosion, 81F
risk-based inspection, 186
river branching pattern, stress corrosion cracking (SCC), 99, 100F
Rockwell hardness, 40
sacrificial anode cathodic protection, 154F, 157
SAE specifications, 49
safety, 1, 38–39
sagging and runs, 143
salt content, 15F
sampling locations, 153F
sand monitoring, 201, 201F
sandy soil, 16
scale, 27F
scaling, 151, 216
scanning electron microscopy evaluation, 205F, 206F
scavengers, 148
scrap steel anodes, 165
seals and control surfaces-erosion corrosion, 97
seamless pipe, 257
seawater, 146
systems, 234
second-phase hardening, 53
selective attack, 91
selective leaching, 91
selective phase attack, 91, 234
sensitized microstructure, 89F
sensitized welds, 89F
sessile bacteria, 30
shear lips, 106F
shell and tube heat exchanger, 238, 238F
shrink sleeve, 260F
silicon killed, 55
slag inclusions, 46
slime-forming bacteria, 30
sludge deposits, 260
slugging, 261F
SOCRATES software, 220
soil corrosivity, 16–17
soil resistivity, 172–174, 173F
sour corrosion, 19, 107–108, 216
sour water environments for testing, 206T
spiral-welded pipe, 46, 257
springs, 233
squeeze treatment, corrosion inhibitor, 151, 225F
stainless steels, 56–60, 85, 246
13 chrome alloys, 56
2205 stainless steel, 60
304 stainless steel, 58
316 stainless steel, 58
austenitic stainless steels, 57–59, 59T
duplex stainless steels, 59–60, 60T
ferritic stainless steels, 57
highly alloyed ausenitic stainless steels, 59
intergranular corrosion, 89–90, 89F
martensitic stainless steels, 56, 57T&F
precipitation-hardened stainless steels, 60
statistics, 86
steam, 147, 218, 220
injection, 147
steam-assisted gravity drainage (SAGD), 147
steel quality, 103
hydrogen blistering, 105
steels, low-alloy, 241
stepwise cracking, 103
STI p3 tanks, 180, 180F
storage, corrosion during, 211
storage tanks, 186, 236–238
strain, definition, 39
stray current corrosion, 112F, 179F
strengthening methods, 53–54
alloying, 37, 53
carbon steels, 53
grain size refinement, 37, 53
precipitation hardening, 38
second-phase hardening, 37, 53
themomechanical processing, 38
work hardening, 37, 53
stress, definition, 38
stress corrosion cracking (SCC), 99, 233
ammonia, 99
carbon steel pipeline, 100F
chlorides, 99
colonies of cracks, 100F
control, 101
corrosion underneath insulation (CUI), 100F
initiation sites, 99
intergranular SCC, 101, 101F
river branching pattern, 99, 100F
stress-oriented hydrogen-induced cracking (SOHIC), 104F
stress riser, 187
stress-strain curve, 45F
striations, 45F
striking marks, 47
submerged offshore platform weld, 85F
substitutional solid solutions, 38F
sulfate reducing bacteria (SRB), 29
sulfide stress cracking (SSC), 104
sulfur, 219
effects, 55
sulfuric acid storage tank, 193F
sulfur-oxidizing bacteria, 30
surface crack detection, 48
surface preparation for coating, 121–123, 121F
surface profile, 128F
sweet corrosion, 19, 107, 214, 216
Tafel extrapolation, 198–199, 199F
Tafel slope, 7, 8
tapes, 258
Teflon, 248
temperature
changes as fields age, 220
critical crevice temperature (CCT), 69
critical pitting temperature (CPT), 69
effect on ductility, 41–44
limits, 149
minimum allowable temperature (MAT), 44
minimum design metal temperature (MDMT), 43
pipeline, 261F
tempering definition, 54
tensile strength, 39
testing, 152, 153F, 186, 204–207
analysis of samples after exposure, 205–207
automated image analysis, 206, 206F
corrosion rates changes versus time, 205F
field trial testing, 204–207
hydrostatic testing, 204
laboratory testing, 204–206
procedures, standardized, 207
scanning electron microscopy evaluation, 205F, 206F
sour water environments for testing, 206T
testing (cont’d)
- standardized test procedures, 207
- test duration, 205
- thermal cycling, 241
- thermal expansion, 234, 238
- thermal fatigue, 241
- thermal insulation, 261
- thermal-sprayed aluminum, 145
- thermography, 192–193
- thermos bottle corrosion, 113F
- thiourea, 150
- threads
 - machined, 245
 - rolled, 244–245
- tidal effect on corrosion, 16T
- time delay, hydrogen embrittlement (HE), 102
- titanium, 88F, 233, 239, 246
 - alloys, 62–63
 - used in offshore oil and gas production, 63T
- topside equipment on offshore platform, 233F
- torque, makeup, 248
- toughness, 41
- transgranular SCC, 101, 101F, 106
- tubing, downhole, 220–221
 - 13Cr, 221
 - condensate, 220
 - corrosion, 215F, 219
 - corrosion inhibitors, 221
 - corrosion resistant alloys (CRA), 221
 - erosion corrosion, 96F
 - gas breakout, 220
 - NORSOK, 221
 - temperature changes as fields age, 220
- tubing displacement, corrosion inhibitor, 225F
- ultrasonic inspection (UT), 48, 189–190, 189F, 190F, 262
- underdeposit attack, 87
- universal number system (UNS), 50
- upstream, 1
- vacuum deaeration, 148, 220
- valves, 232
- Venturi pig, 152F
- Vickers hardness, 40
- vinyl coatings, 124
- vinyl ester coatings, 125
- visual inspection (VI), 187, 262
- Viton, 248
- volatile corrosion inhibitors (VCI), 148
- waste water, 147
- water, 15–16
 - analysis, 148
 - deaeration, 148
 - gas stripping, 148
 - injection, 218
- salt content, 15F
- separation, 260
- slug, 260
- solubility in natural gas, 215T
- tidal effect on corrosion, 16T
- treatment, 146, 148
- waste, 147
- water cut, 14F
- critical, 214
- waterflooding, 147
- water-alternating gas (WAG) recovery, 148
- water-based muds (WBM), 147
- weight coating, concrete, 256F
- weight-loss corrosion, 216
- weld bead, 46
- weld filler metals, 78
- welds, 46–48, 187
 - circumferential, 259
 - corrosion, 48F
 - defects, 257
 - distortion of welded structures, 47, 48F
 - fracture control, 48
 - fusion, lack of, 46
 - fusion zone, 46
 - girth, 259
 - hard spots, 47
 - heat affected zone (HAZ), 46
 - hot cracking, 46
 - hydrogen embrittlement (HE), 102
 - incomplete penetration, 47
 - inspection of welds, 47–48
 - porosity, 46
 - slag inclusions, 46
 - spiral-welded pipe, 46, 257
 - striking marks, 47
 - weld bead, 46
 - welding-related corrosion, 48F
- wellheads, Christmas trees, and related equipment, 93F, 219, 231–233
- erosion corrosion, 96
- wells, 213–228
 - acetic acid, 216, 217F
 - annular space corrosion, 218
 - artificial lift systems, 228–233
 - beam-pumped wells, 228–229, 228F, 229F
 - biocide treatment, 218
 - breakthrough, injection water, 218
 - caliper surveys, 215
 - capillary tubing, 225
 - chlorides, 214
 - CO₂, 214, 216
 - condensate, 215
 - corrosion inhibitor treatment methods, 226T
 - corrosion inhibitors, 218, 223–226
 - corrosion locations, 213F
 - corrosion resistant alloys (CRA), 218–219
 - deWaard and Milliams, 216
 - duplex stainless steel, 219
 - formation waters, 214, 217
 - gas breakthrough, 214
 - gas wells, 218
H₂S, 214, 216, 219F
injection fluids, 218
injection wells, 219
internal coatings, 227
iron carbonate scale, 215
materials selection, 221T
NACE MR 0175/ISO 15156, 216, 219
natural gas corrosion, 215
oil wells, 218
organic acids, 216, 219
oxygen, 216
packer fluids, 218
paraffin deposits, 227
scaling, 216
sour corrosion, 216
squeeze treatment, corrosion inhibitor, 225F
steam, 218
sweet corrosion, 214, 216
temperature effects, 218
tubing corrosion, 215F, 219
tubing displacement, corrosion inhibitor, 225F
water, injection, 218
water cut, critical, 214
water solubility in natural gas, 215T
weight-loss corrosion, 216
workover fluids, 218
fatigue, 228
gas leakage, 229
gas-lifted oil wells, 229–230
hydraulic lift systems, 230
progressive cavity pumps, 230–231, 231F, 231T
sucker rods, 228
wear, 228
Wicks-Fraser, 260
wireline, 212
corrosion, 109, 110F
corrosion resistant alloys (CRA), 212
crevise corrosion, 212
damage to internal coatings, 212F
hydrogen uptake and degassing, 212
work hardening, 53
workover fluids, 218
wraps, 134–137, 258
petrolatum tape, 135F
waxed tape, 136
wrinkling, 142F
yield strength, 39
Young’s modulus, see elastic modulus
zinc anodes, 158–159
zinc coatings, 144–145, 246
bolts, 145
electroplating, 144
fasteners, 145
galvanic protection, 144F
galvanizing, 144
hydrogen embrittlement, 144
pH effect on corrosion, 144F
pigments, 118
polarity reversal, 144
Sherardizing, 144
surface preparation, 145
zinc phosphate, 118