Index

abstraction
 classes 34
 OOP 27
aggregation variation 35
ALM (asset and liability management) 235
Altiplanos 157–8
AND/OR rule 156–7
AoS (asset-or-nothing) 4
APT (arbitrage pricing theory) framework 5
arbitrage-free valuation, replicating portfolios and
2–3
ARCH (AutoRegressive Conditional
 Heteroskedasticity) model 51
Archimedean class 61
see also copula/copula functions
ARMA (AutoRegressive Moving Average) 51
associations, in OOP 34–6
ASW (asset swap) 180, 196–7
basis risk 12, 234
basket credit derivatives with CDOs 203–30
pricing issues, algorithms 211–13
 generating function method 212
 Monte Carlo simulation 211
pricing issues, models 204–11
 dependent defaults 205–7
 factor models, conditional independence
 207–11
 Archimedean copulas 210
 Gaussian copula 208–9
 stochastic correlation 209
 student t and double t copulas 209–10
 independent defaults 204–5
see also under CDOs (collateralized debt
 obligations)
Basket notes 160–1
Black and Litterman approach 244
Black–Scholes model 7–8, 12, 53, 139, 151, 192
bonds
 types 76–8
 asset-backed securities 77–8
 convertible bonds 9, 76, see also separate entry
 equity-linked notes 76–7, see also ELNs
 (equity-linked notes)
 floaters 76
 inflation-linked bonds 77
 reverse floaters 76
callability 75
callability/putability 190–1
CBlackScholes_Compound class 145
cash flow design 75–111
cash flow generator design 99–110
coupon 99
 coupon dates 100
 FpML 103–9
 calculationPeriodAmount 106
 calculationPeriodDates 104–5
 CCCLcalculation 107
 CCCLcalculation class 108
 CCCLndexFactory and related classes 108
 CCCLnterestRateStream and related classes 109
 paymentDates 105–6
 resetDates 106
 issue price 99
 maturity date 99
 nominal, principal or face amount 99
 UML’s activity diagram 100–2
 generic cash flow, generation 101–2
CCLleg class 110–11
JScheduler 80–99, see also separate entry
time and scheduler issues 78–80
day count conventions and accrual factors
79–80
payment date conventions 78–9
see also bonds
CDOs (collateralized debt obligations) 77
basket credit derivatives and 203–30
diversification 217–19
general structure 213–15
tranching 215–17
see also under basket credit derivatives and CDOs
cash CDO 213–14
CDO deals 218–19
simulation-based pricing of 224–30
CABS (asset-backed security) class 225–7
default time generator 227–8
waterfall scheme 228–30
standardized CDO contracts 219–24
CDX and i-Traxx 220
implied correlation 221–2
synthetic CDO 213–14
unfunded CDOs 214
CDS (credit default swap) 182–4, 197–201
FpML representation of 184–7
CreditDefaultSwap type, elements 184
feeLeg 185
generalTerms 184
protectionTerms 185
CEV (Constant Elasticity of Variance) model 53
Cholesky decomposition 244
CLeg class 110–11
cliquet notes 153–6
see also under digital and cliquet notes
CMOs (collateralized mortgage obligations) 77
coherecnt risk measures theory 238
common random numbers 166
composition 35
compound options 142–50
pricing issues 143–4
pricing the options, formulas for 144
call on call 144
call on put 144
put on call 144
put on put 144
using the option class 144–50
see also callability/putability
CoN (cash-or-nothing) 4
conditional independence 207–11
conditional probabilities 63–4
conditional rank correlation 68
contingent repayment plans 114–16
convertible bonds 76, 113–35
barriers 121–4
Contingent convertibles (Co.Cos) 121–2
contingent reverse convertibles 122
Parisian option 123–4
contingent repayment plans 114–16
Payoff class 115–16
LYONs (Liquid Yield Option Notes) 117–20, see also separate entry
object-oriented structuring process 113–14
financial asset class 114
reverse convertible bonds 121
COption_American class 32, 40–2
COption_European class 32, 40–2
copula/copula functions 8, 59–63
Archimedian copulas 210
CCopulaGenerator factory pattern 228
Clayton copula 211
copula dualities 62–3
Copula filters 242
copulas and survival copulas 61–2
Gaussian copula 208–9
non-exchangeable copulas 68–70
student t and double t copulas 209–10
see also factor copula
correlation, implied 221–2
base correlation 221, 223
compound correlation 221
correlation asymmetry 68–70
counterparty risk 12–13, 234, 247–59
collateral 255–7
dependence problems 253–4
execution risk and FpML 258–9
netting 257–8
risk mitigating agreements 254–8
crash protection 138–40
credit derivatives 179–87
asset swap spread 180–1
CDS 182–4, see also under CDS (credit default swap)
TRORS 181–2
credit event 182
credit implied correlation 56–7, 221–2
credit-linked notes 177–201
callable and putable bonds 190–1
credit derivatives 179–87, see also separate entry
credit protection 188–9
defaultable bonds 177–9, see also under defaults
credit protection 188–9
credit risk
market information on 196–201
obligor-specific information 197–201
CDS information 199
equity information 197–9
maximum likelihood approach 198–9
Moody’s KMV approach 198
security-specific information (ASW) 196–7
reduced form models 193–6, see also separate entry
structural models 191–3
DateFormat class 81, 83
day count conventions 79–80
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC (dynamic conditional correlation)</td>
<td>59, 241–2</td>
</tr>
<tr>
<td>defaults</td>
<td></td>
</tr>
<tr>
<td>default risk</td>
<td>194–5</td>
</tr>
<tr>
<td>defaultable bonds</td>
<td>177–9</td>
</tr>
<tr>
<td>credit spreads</td>
<td>178–9</td>
</tr>
<tr>
<td>expected loss</td>
<td>178</td>
</tr>
<tr>
<td>dependent</td>
<td></td>
</tr>
<tr>
<td>copula functions</td>
<td>207</td>
</tr>
<tr>
<td>Marshall–Olkin model</td>
<td>205–7</td>
</tr>
<tr>
<td>independent</td>
<td>204–5</td>
</tr>
<tr>
<td>delivery grade</td>
<td>234</td>
</tr>
<tr>
<td>‘delta hedged equity’</td>
<td>222–4</td>
</tr>
<tr>
<td>derivatives</td>
<td></td>
</tr>
<tr>
<td>linear derivatives</td>
<td>3</td>
</tr>
<tr>
<td>nonlinear derivatives</td>
<td>3–5</td>
</tr>
<tr>
<td>replicating portfolios</td>
<td>for 3–5</td>
</tr>
<tr>
<td>Derman and Kani model</td>
<td>50</td>
</tr>
<tr>
<td>digital and cliquet notes</td>
<td>153–6</td>
</tr>
<tr>
<td>cliquet notes</td>
<td>154</td>
</tr>
<tr>
<td>digital notes</td>
<td>153</td>
</tr>
<tr>
<td>forward start options</td>
<td>154–5</td>
</tr>
<tr>
<td>reverse cliquet notes</td>
<td>155–6</td>
</tr>
<tr>
<td>DVP (delivery-versus-payment) principle</td>
<td>258</td>
</tr>
<tr>
<td>dynamic replication strategy</td>
<td>4</td>
</tr>
<tr>
<td>eclipse</td>
<td>261–2</td>
</tr>
<tr>
<td>UML plugging for</td>
<td>262–3</td>
</tr>
<tr>
<td>workbench</td>
<td>262</td>
</tr>
<tr>
<td>ELNs (equity-linked notes)</td>
<td>76–7, 137–75</td>
</tr>
<tr>
<td>digital and cliquet notes</td>
<td>153–6, see also separate entry</td>
</tr>
<tr>
<td>multivariate notes</td>
<td>156–61, see also separate entry</td>
</tr>
<tr>
<td>single coupon products</td>
<td>137–50, see also separate entry</td>
</tr>
<tr>
<td>EMM (equivalent martingale measure)</td>
<td>6</td>
</tr>
<tr>
<td>Encapsulation principle</td>
<td>28–9</td>
</tr>
<tr>
<td>equity ‘average’ implied correlation</td>
<td>56</td>
</tr>
<tr>
<td>ES (expected shortfall)</td>
<td>238</td>
</tr>
<tr>
<td>Everest note</td>
<td>158–60</td>
</tr>
<tr>
<td>EWMA (Exponentially Weighted Moving Average)</td>
<td>52, 238</td>
</tr>
<tr>
<td>scheme</td>
<td></td>
</tr>
<tr>
<td>exceedance correlation</td>
<td>68</td>
</tr>
<tr>
<td>exercise class</td>
<td>117–20</td>
</tr>
<tr>
<td>CAMericanExercise</td>
<td>118–19</td>
</tr>
<tr>
<td>CBermudaExercise</td>
<td>119</td>
</tr>
<tr>
<td>CEuropeanExercise</td>
<td>118</td>
</tr>
<tr>
<td>CExercise</td>
<td>118</td>
</tr>
<tr>
<td>exercise period classes</td>
<td>120</td>
</tr>
<tr>
<td>factor copula</td>
<td>208–11</td>
</tr>
<tr>
<td>filtered residuals</td>
<td>241</td>
</tr>
<tr>
<td>floaters</td>
<td>76</td>
</tr>
<tr>
<td>FMM (forward martingale measure)</td>
<td>7–8</td>
</tr>
<tr>
<td>Forex markets implied correlation</td>
<td>55–6</td>
</tr>
<tr>
<td>forward price</td>
<td>3</td>
</tr>
<tr>
<td>FpML (Financial products Mark-up Language)</td>
<td>276</td>
</tr>
<tr>
<td>description</td>
<td>277–82</td>
</tr>
<tr>
<td>DataDocument</td>
<td>279</td>
</tr>
<tr>
<td>party component</td>
<td>281</td>
</tr>
<tr>
<td>portfolio component</td>
<td>281</td>
</tr>
<tr>
<td>product component</td>
<td>281</td>
</tr>
<tr>
<td>strategy component</td>
<td>281</td>
</tr>
<tr>
<td>structure, overview of</td>
<td>278–82</td>
</tr>
<tr>
<td>Trade Component</td>
<td>279–81</td>
</tr>
<tr>
<td>execution risk and</td>
<td>258–9</td>
</tr>
<tr>
<td>FpML representation of CDS</td>
<td>184–7, see also under CDS (credit default swap)</td>
</tr>
<tr>
<td>future asset returns distribution</td>
<td>46–8</td>
</tr>
<tr>
<td>implied information</td>
<td>47</td>
</tr>
<tr>
<td>parametric models</td>
<td>47</td>
</tr>
<tr>
<td>realized (cross)moments</td>
<td>47–8</td>
</tr>
<tr>
<td>futures style market</td>
<td>258</td>
</tr>
<tr>
<td>OTC and</td>
<td>234</td>
</tr>
<tr>
<td>purpose of</td>
<td>234</td>
</tr>
<tr>
<td>GA (genetic algorithm) techniques</td>
<td>246</td>
</tr>
<tr>
<td>gamma-hedging strategy</td>
<td>15</td>
</tr>
<tr>
<td>GARCH models</td>
<td>51–2</td>
</tr>
<tr>
<td>factor GARCH representation</td>
<td>58</td>
</tr>
<tr>
<td>GARCH+DCC filter</td>
<td>241–2</td>
</tr>
<tr>
<td>multivariate GARCH</td>
<td>57–8</td>
</tr>
<tr>
<td>orthogonal GARCH model</td>
<td>58</td>
</tr>
<tr>
<td>Gaussian copula</td>
<td>208–9, 221</td>
</tr>
<tr>
<td>GED (Generalized Error Distribution)</td>
<td>52</td>
</tr>
<tr>
<td>getDateInstance method</td>
<td>82</td>
</tr>
<tr>
<td>Girsanov theorem</td>
<td>5, 8</td>
</tr>
<tr>
<td>GLS (generalized least squares) regression</td>
<td>245</td>
</tr>
<tr>
<td>GregorianCalendar</td>
<td>83–97</td>
</tr>
<tr>
<td>hedging</td>
<td>12, 15</td>
</tr>
<tr>
<td>see also ‘delta hedged equity’</td>
<td></td>
</tr>
<tr>
<td>historical correlation</td>
<td>57–9</td>
</tr>
<tr>
<td>historical simulation</td>
<td>237, 239–42</td>
</tr>
<tr>
<td>choice of scenarios</td>
<td>239</td>
</tr>
<tr>
<td>data compression</td>
<td>239</td>
</tr>
<tr>
<td>filtered historical simulation</td>
<td>240–1</td>
</tr>
<tr>
<td>histogram</td>
<td>240</td>
</tr>
<tr>
<td>multivariate extension, GARCH+DCC filter</td>
<td>241–2</td>
</tr>
<tr>
<td>implied correlation</td>
<td>55–7</td>
</tr>
<tr>
<td>credit implied correlation</td>
<td>56–7, 221–2</td>
</tr>
<tr>
<td>equity ‘average’ implied correlation</td>
<td>56</td>
</tr>
<tr>
<td>Forex markets implied correlation</td>
<td>55–6</td>
</tr>
<tr>
<td>implied information</td>
<td>47</td>
</tr>
<tr>
<td>implied probability</td>
<td>48–50</td>
</tr>
<tr>
<td>implied trees</td>
<td>49</td>
</tr>
<tr>
<td>inflation-linked bonds</td>
<td>77</td>
</tr>
<tr>
<td>Interval classes</td>
<td>95</td>
</tr>
<tr>
<td>i-Traxx</td>
<td>220</td>
</tr>
<tr>
<td>see also under CDOs (collateralized debt obligations)</td>
<td></td>
</tr>
</tbody>
</table>
Java 26–7
components 26–7
Java Runtime Environment (JRE) 26
see also JScheduler
JMC program, Asian option pricing with
169–75
JScheduler 80–99
data models 85–98
CInterval class structure 90
CInterval factory pattern 92
CPeriod class 87
day adjustment classes 96
Interval classes 95
design patterns 98–9
classification 98
factory method pattern 99
JScheduler panel control 86
date handling in Java 80–5
DateFormat class 83
DateFormat class 81
getDateInstance method 82
GregorianCalendar class 83–4
parse() method 83
jump process 71
Levy processes 71
liquidity 183, 196–7, 258
liquidity risk 234–5
local volatility models 53–4
long-term risk 12
LYONs (Liquid Yield Option Notes)
bond 117–20
mapping process
of market risk exposure 236–7
buckets 236
gamma position 237
Margrabe formula 8
mark-up language 265–6
see also XML (Extensible Mark-up Language)
Marshall–Olkin model 205–7
martingale property 6
MaxMin–Expected–Utility framework 193
MBS (mortgage backed securities) 77
MDDL (Market Data Definition Language) 276
Mezzanine tranche 213
MIR (Market Implied Ratings), Moody’s 201
model risk 11
moment matching 151–2
Monte Carlo method 161–75, 211, 237
components 161–2
error estimation 162
probability distribution functions (p.d.f.’s) 161,
see also separate entry
random number generator 161
sampling rule 161
scoring (or tallying) 162
variance reduction techniques 162
error estimates 164–5
JMC program, Asian option pricing with 169–75
Monte Carlo integration 162–3
variance reduction techniques 165–8, see also separate entry
Moody’s KMV approach 198
Moody’s Market Implied Ratings (MIR) 201
multivariate notes 156–61
Altiplanos 157–8
AND/OR rule 156–7
Basket notes 160–1
Everest 158–60
Murphy’s machines 246–7
netting 257–8
Newton–Rhapson method 144
no-arbitrage and pricing 5–8
multivariate claims 7–8
univariate claims 5–7
non-parametric dependance measures 64–5
OEX (option to exchange) 8
option class 127–9
option pricing 129–35
down-and-in call/up-and-in put 132
down-and-in put/up-and-in call 132
down-and-out call/up-and-out put 132
pricing() method 130–1
rebate 132
up-and-out call/down-and-out put 132
valuation methods for barrier options 125–6
see also Parisian option
OOP (object-oriented programming) 15–17, 19–42
abstraction 27
analysis and design 20–5
notation elements for classes 21
option and asset classes 21
option, asset and country classes 22
associations 34–6
attributes and operations 28–9
classes 28
collections 37
description 19–20
inheritance 29–34, see also COption_American
class; COption_European class
abstract classes 34
Java 26–7, see also separate entry
message exchanging 37
modeling 25–7
UML (Unified Modelling Language) 25–6
polymorphism 37–42, see also separate entry
responsibilities 29
OTC (over-the-counter) market 12
 versus futures style derivatives 234–5, see also
 under futures style market
overfitting 240
overloaded methods 37–8
overridden methods 37–8

parametric models 47, 237
 parametric volatility models 51–4, see also under
 volatility and correlation
Parisian option 123–4
parse() method 83
payment date conventions 78–9
Poisson process 194
polymorphism 37–42
 dynamic polymorphism 39
 early binding 39
 late binding 39
 overloading 38
 overriding 39–42
premium leg 182
probability distribution functions (p.d.f.’s) 161
 sampling from 163–4
 sampling via inversion of c.d.f. 164
 transformation of 163–4
protected variables 33
protection buyer 182
protection leg 183
putable bond 115
put–call parity relationship 5

random number generator 161
realized variance 46
realized volatility 54–5
reduced form models 193–6
 default risk 194–5
 recovery risk 195
replicating portfolios
 arbitrage-free valuation and 2–3
 for derivatives 3–5, see also under derivatives
 super-replicating portfolios 4
reverse convertible bond 13–16, 121
 see also under ELNs (equity-linked notes)
reverse floaters 76
risk
 basis risk 234
 counterparty risk 234, 247–59, see also separate entry
 execution risk and FpML 258–9
 liquidity risk 234
risk management 233–59
 counterparty risk 247–59, see also separate entry
OTC versus futures style derivatives 234–5,
 see also under OTC (over-the-counter) market
stress testing 242–7, see also separate entry
counterparty risk 12–13
long-term risk 12
measurement risk 11–12
model risk 12
optionality 11
value-at-risk & co. 235–9, see also under VaR
(Value-at-Risk) methodology
Rubinstein model 50
sampling rule 161
scoring (or tallying) 162
securitization 203
see also CDOs
sequence diagram 109–10
SGML (Standard Generalized Mark-up Language) 265
single coupon products 137–50
 Asian options 150–3
 call spreads 141
 callability/putability, compound options 142–50,
 see also separate entry
crash protection 138–40
 outside barrier options 139–40
 setting the strike 139
participation rate 141
up-and-out option 141
smile and skew effects 7, 50
Spearman rank correlation 68
square root process 53
static replication strategy 3
stochastic correlation 209
stochastic volatility models 52–3
stress testing 242–7
 consistent scenarios 243–6
 Black and Litterman approach 244
 Cholesky decomposition 244
 information sources 243
 Murphy’s machines 246–7
 super-replicating portfolios 4
 survival copulas 61–2
SWT (standard widget toolkit) 261
tail dependence 65–6
tranches/tranching 213–14
 equity tranche 213, 216
 junior tranche 213, 216
 Mezzanine 213
 senior and supersenior tranches 213
‘triangular arbitrage’ relationship 55
TRORS (total rate of return swap) 181–2
UML (Unified Modelling Language) 25–6
UML’s activity diagram 100–2
 Date Computation block, activities 101
 sequence diagram 109–10
value() 116
VaR (Value-at-Risk) methodology 235–9
market risk exposure mapping 236–7
profits and losses, distribution 237–8
 historical simulation 237, see also separate entry
 Monte Carlo simulation 237
parametric method 237
risk measures 238–9
 coherent risk measures theory 238
VAR (vector autoregression systems) 244
variance reduction techniques 162, 165–8
 antithetic variates 167
 common random numbers 165–6
 control variates 168
VCM (version and configuration management) 261
volatility 45–71
 parametric volatility models 51–4
 GARCH models 51–2
 local volatility models 53–4
 non-normal conditional distribution 52
 stochastic volatility models 52–3
 volatility asymmetry 52
realized volatility 54–5
volatility measures 50–5
 implied volatility 50–1
 volatility surface 51
waterfall 213–14, 228–30
 squared CDO waterfall mechanism 229
XBRL (eXtensible Business Reporting Language) 276
XML (Extensible Mark-up Language) 265–82
 building blocks of 268
 description 266–7
 DTD and XML-Schema 269
 DTD (Document Type Definition) 268–70
 in finance 276
 mark-up language 265–6
 namespace 271–2
 uses 266–7
XMLschema 269, 272–5
 simple XML schema 273–5
XMLsyntax 267–9