Contents

Preface to the Second Edition XV
Preface to the First Edition XVII
List of Contributors XIX

Content of Volume 1

1 Postharvest Handling and Preparation of Foods for Processing 1
Alistair S. Grandison

1.1 Introduction 1
1.2 Properties of Raw Food Materials and Their Susceptibility to Deterioration and Damage 2
1.2.1 Raw Material Properties 3
1.2.1.1 Geometric Properties 3
1.2.1.2 Color 4
1.2.1.3 Texture 4
1.2.1.4 Flavor 5
1.2.1.5 Functional Properties 5
1.2.2 Raw Material Specifications 6
1.2.3 Deterioration of Raw Materials 6
1.2.4 Damage to Raw Materials 7
1.2.5 Improving Processing Characteristics through Selective Breeding and Genetic Engineering 7
1.3 Storage and Transportation of Raw Materials 9
1.3.1 Storage 9
1.3.1.1 Temperature 10
1.3.1.2 Humidity 11
1.3.1.3 Composition of Atmosphere 12
1.3.1.4 Other Considerations 12
1.3.2 Transportation 13
1.4 Raw Material Cleaning 13
1.4.1 Dry Cleaning Methods 14
1.4.2 Wet Cleaning Methods 17
1.4.3 Peeling 20
1.5 Sorting and Grading 20
Contents

1.5.1 Criteria and Methods of Sorting 20
1.5.2 Grading 23
1.6 Blanching 25
1.6.1 Mechanisms and Purposes of Blanching 25
1.6.2 Processing Conditions 27
1.6.3 Blanching Equipment 27
1.7 Sulfiting of Fruits and Vegetables 28
References 29

2 Thermal Processing 31

Michael J. Lewis and Soojin Jun

2.1 Introduction 31
2.1.1 Reasons for Heating Foods 32
2.1.2 Safety and Quality Issues 33
2.1.3 Product Range 34
2.2 Reaction Kinetics 35
2.2.1 Microbial Inactivation 35
2.2.2 Heat Resistance at Constant Temperature 35
2.3 Temperature Dependence 37
2.3.1 Batch and Continuous Processing 39
2.3.2 Continuous Heat Exchangers 42
2.3.2.1 Direct Heating 44
2.4 Heat Processing Methods 46
2.4.1 Thermization 46
2.4.2 Pasteurization 47
2.4.2.1 HTST Pasteurization 48
2.4.2.2 Tunnel (Spray) Pasteurizers 51
2.4.2.3 Extended Shelf Life Products 52
2.4.3 Sterilization 52
2.4.3.1 In-Container Processing 52
2.4.3.2 UHT Processing 60
2.5 Special Problems with Viscous and Particulate Products 65
2.6 Ohmic Heating 67
2.6.1 Introduction 67
2.6.2 Fundamental Principles of Ohmic Heating 67
2.6.2.1 Electrochemical Reaction on Electrodes 68
2.6.2.2 Heating Pattern of Multiphase Food in Ohmic System 69
2.6.2.3 Modeling of Ohmic Heating 70
2.7 Filling Procedures 72
2.8 Storage 72
References 73

3 Evaporation and Dehydration 77

James G. Brennan

3.1 Evaporation (Concentration, Condensing) 77
3.1.1 General Principles 77
3.1.2 Equipment Used in Vacuum Evaporation 79
3.1.2.1 Vacuum Pans 79
3.1.2.2 Short Tube Vacuum Evaporators 80
3.1.2.3 Long-Tube Evaporators 81
3.1.2.4 Plate Evaporators 82
3.1.2.5 Agitated Thin-Film Evaporators 83
3.1.2.6 Centrifugal Evaporators 83
3.1.2.7 Refractance Window Evaporator 83
3.1.2.8 Ancillary Equipment 84
3.1.3 Multiple-Effect Evaporation 84
3.1.4 Vapor Recompression 85
3.1.5 Applications for Evaporation 86
3.1.5.1 Concentrated Liquid Products 86
3.1.5.2 Evaporation as a Preparatory Step to Further Processing 88
3.1.5.3 The Use of Evaporation to Reduce Transport, Storage, and Packaging Costs 89
3.2 Dehydration (Drying) 91
3.2.1 General Principles 91
3.2.2 Drying Solid Foods in Heated Air 92
3.2.3 Equipment Used in Hot Air Drying of Solid Food Pieces 94
3.2.3.1 Cabinet (Tray) Dryer 94
3.2.3.2 Tunnel Dryer 94
3.2.3.3 Conveyor (Belt) Dryer 95
3.2.3.4 Bin Dryer 95
3.2.3.5 Fluidized Bed Dryer 96
3.2.3.6 Pneumatic (Flash) Dryer 98
3.2.3.7 Rotary Dryer 99
3.2.4 Drying of Solid Foods by Direct Contact with a Heated Surface 99
3.2.5 Equipment Used in Drying Solid Foods by Contact with a Heated Surface 100
3.2.5.1 Vacuum Cabinet (Tray or Shelf) Dryer 100
3.2.5.2 Double Cone Vacuum Dryer 100
3.2.6 Freeze Drying (Sublimation Drying, Lyophilization) of Solid Foods 101
3.2.7 Equipment Used in Freeze Drying Solid Foods 102
3.2.7.1 Cabinet (Batch) Freeze Dryer 102
3.2.7.2 Tunnel (Semi-continuous) Freeze Dryer 103
3.2.7.3 Continuous-Freeze Dryers 104
3.2.7.4 Vacuum Spray Freeze Dryer 104
3.2.8 Drying by the Application of Radiant (Infrared) Heat 105
3.2.9 Drying by the Application of Dielectric Energy 105
3.2.10 Electrohydrodynamic Drying (EHD) 107
3.2.11 Osmotic Dehydration 108
3.2.12 Sun and Solar Drying 110
3.2.13 Drying Food Liquids and Slurries in Heated Air 111
3.2.13.1 Spray Drying 111
3.2.14 Drying Liquids and Slurries by Direct Contact With a Heated Surface 116
3.2.14.1 Drum (Roller, Film) Dryer 116
3.2.14.2 Vacuum Band (Belt) Dryer 117
3.2.14.3 Refractance Window Drying System 118
3.2.15 Other Methods Used for Drying Liquids and Slurries 118
3.2.16 Applications of Dehydration 119
3.2.16.1 Dehydrated Vegetable Products 119
3.2.16.2 Dehydrated Fruit Products 121
3.2.16.3 Dehydrated Dairy Products 122
3.2.16.4 Instant Coffee and Tea 123
3.2.16.5 Dehydrated Meat Products 123
3.2.16.6 Dehydrated Fish Products 123
3.2.17 Stability of Dehydrated Foods 124
References 126

4 Freezing 131
José Mauricio Pardo and Keshavan Niranjan
4.1 Introduction 131
4.2 Refrigeration Methods and Equipment 131
4.2.1 Plate Contact Systems 132
4.2.2 Gas Contact Refrigerators 132
4.2.3 Immersion and Liquid Contact Refrigeration 133
4.2.4 Cryogenic Freezing 134
4.3 Low Temperature Production 135
4.3.1 Mechanical Refrigeration Cycle 135
4.3.1.1 The Pressure and Enthalpy Diagram 137
4.3.1.2 The Real Refrigeration Cycle (Standard Vapor Compression Cycle) 138
4.3.2 Equipment for a Mechanical Refrigeration System 139
4.3.2.1 Evaporators 139
4.3.2.2 Condensers 140
4.3.2.3 Compressors 141
4.3.2.4 Expansion Valves 142
4.3.2.5 Refrigerants 142
4.3.3 Common Terms Used in Refrigeration System Design 143
4.3.3.1 Cooling Load 144
4.3.3.2 Coefficient of Performance 144
4.3.3.3 Refrigerant Flow Rate 144
4.3.3.4 Work Done by the Compressor 145
4.3.3.5 Heat Exchanged in the Condenser and Evaporator 145
4.4 Freezing Kinetics 145
4.4.1 Formation of the Microstructure during Solidification 146
4.4.2 Mathematical Models for Freezing Kinetics 147
4.4.2.1 Neumann’s Model 148
4.4.2.2 Plank’s Model 148
4.4.2.3 Cleland’s Model 149
4.4.2.4 Pham’s Model 149
4.5 Effects of Refrigeration on Food Quality 150
References 151

5 Irradiation 153
Alistair S. Grandison

5.1 Introduction 153
5.2 Principles of Irradiation 153
5.2.1 Physical Effects 154
5.2.2 Chemical Effects 158
5.2.3 Biological Effects 158
5.3 Equipment 160
5.3.1 Isotope Sources 160
5.3.2 Machine Sources 162
5.3.3 Control and Dosimetry 162
5.4 Safety Aspects 165
5.5 Effects on the Properties of Food 165
5.6 Detection Methods for Irradiated Foods 167
5.7 Applications and Potential Applications 168
5.7.1 General Effects and Mechanisms of Irradiation 169
5.7.1.1 Inactivation of Microorganisms 169
5.7.1.2 Inhibition of Sprouting 170
5.7.1.3 Delay of Ripening and Senescence 171
5.7.1.4 Insect Disinfestation 171
5.7.1.5 Elimination of Parasites 171
5.7.1.6 Miscellaneous Effects on Food Properties and Processing 172
5.7.1.7 Combination Treatments 172
5.7.2 Applications to Particular Food Classes 172
5.7.2.1 Meat and Meat Products 172
5.7.2.2 Fish and Shellfish 173
5.7.2.3 Fruits and Vegetables 174
5.7.2.4 Bulbs and Tubers 174
5.7.2.5 Spices and Herbs 175
5.7.2.6 Cereals and Cereal Products 175
5.7.2.7 Other Miscellaneous Foods 175
References 176

6 High Pressure Processing 179
Margaret F. Patterson, Dave A. Ledward, Craig Leadley, and Nigel Rogers

6.1 Introduction 179
6.2 Effect of High Pressure on Microorganisms 182
6.2.1 Bacterial Spores 182
6.2.2 Vegetative Bacteria 183
6.2.3 Yeasts and Molds 183
6.2.4 Viruses 184
6.2.5 Parasites 184
6.2.6 Strain Variation within a Species 185
6.2.7 Stage of Growth of Microorganisms 185
6.2.8 Magnitude and Duration of the Pressure Treatment 185
6.2.9 Effect of Temperature on Pressure Resistance 185
6.2.10 Substrate 186
6.2.11 Combination Treatments Involving Pressure 186
6.2.12 Effect of High Pressure on the Microbiological Quality of Foods 187
6.3 Ingredient Functionality 188
6.4 Enzyme Activity 189
6.5 Foaming and Emulsification 191
6.6 Gelation 193
6.7 Organoleptic Considerations 195
6.8 Equipment for HPP 196
6.8.1 HPP Systems 196
6.9 Pressure Vessel Considerations 197
6.9.1 High Pressure Pumps 198
6.9.2 Control Systems 199
6.10 Current and Potential Applications of HPP for Foods 200
References 201

7 Emerging Technologies for Food Processing 205
Liliana Alamilla-Beltrán, Jorge Welti-Chanes, José Jorge Chanona-Pérez, Ma de Jesús Perea-Flores, and Gustavo F. Gutiérrez-López
7.1 Introduction 205
7.2 Pulsed Electric Field Processing 206
7.2.1 PEF Treatment Chambers 207
7.2.2 Effects of PEF on Microorganisms 208
7.2.3 Factors Affecting the Ability of PEF to Inactivate Microorganisms 209
7.2.3.1 Processing Factors 209
7.2.3.2 Microorganism Factors 210
7.2.3.3 Food Factors 210
7.2.4 Effects of PEF on Enzymes 212
7.2.5 Other Applications of PEF 214
7.3 Ultrasound Power 215
7.3.1 Applications of Ultrasound in the Food Industry 216
7.3.1.1 Low-Intensity Ultrasound 216
7.3.1.2 High-Intensity Ultrasound 217
7.3.2 Enzymes 217
7.3.3 Microorganisms 218
7.3.4 Fruits and Vegetables 218
7.4 Other Technologies 218
7.4.1 High-Pressure Carbon Dioxide 218
7.4.2 Ozonization 219
7.4.3 Plasma Processing 220
7.5 Conclusions 220
References 221

8 Packaging 225
 James G. Brennan and Brian P.F. Day
8.1 Introduction 225
8.2 Factors Affecting the Choice of a Packaging Material and/or Container for a Particular Duty 226
8.2.1 Mechanical Damage 226
8.2.2 Permeability Characteristics 226
8.2.3 Greaseproofness 228
8.2.4 Temperature 228
8.2.5 Light 229
8.2.6 Chemical Compatibility of the Packaging Material and the Contents of the Package 229
8.2.7 Protection against Microbial Contamination 230
8.2.8 In-Package Microflora 231
8.2.9 Protection against Insect and Rodent Infestation 231
8.2.10 Taint 232
8.2.11 Tamper-Evident/Resistant Packages 232
8.2.12 Other Factors 233
8.3 Materials and Containers Used for Packaging Foods 233
8.3.1 Papers, Paperboards, and Fiberboards 233
8.3.1.1 Papers 233
8.3.1.2 Paperboards 235
8.3.1.3 Molded Pulp 236
8.3.1.4 Fiberboards 236
8.3.1.5 Composite Containers 236
8.3.2 Wooden Containers 237
8.3.3 Textiles 237
8.3.4 Flexible Films 237
8.3.4.1 Regenerated Cellulose 238
8.3.4.2 Cellulose Acetate 239
8.3.4.3 Polyethylene 239
8.3.4.4 Polyvinyl Chloride 240
8.3.4.5 Polyvinylidene Chloride 240
8.3.4.6 Polypropylene 240
8.3.4.7 Polyester 241
8.3.4.8 Polystyrene 241
8.3.4.9 Polyamides 241
8.3.4.10 Polycarbonate 242
8.3.4.11 Polytetrafluoroethylene 242
8.3.4.12 Ethylene-Vinyl Acetate Copolymers 243
Contents

8.3.5 Metallized Films 243
8.3.6 Flexible Laminates 243
8.3.7 Heat-Sealing Equipment 244
8.3.8 Packaging in Flexible Films and Laminates 245
8.3.9 Rigid and Semi-rigid Plastic Containers 247
8.3.9.1 Thermoforming 247
8.3.9.2 Blow Molding 247
8.3.9.3 Injection Molding 248
8.3.9.4 Compression Molding 248
8.3.10 Metal Materials and Containers 248
8.3.10.1 Aluminum Foil 248
8.3.10.2 Tinplate 249
8.3.10.3 Electrolytic Chromium-Coated Steel 250
8.3.10.4 Aluminum Alloy 252
8.3.10.5 Metal Containers 252
8.3.11 Glass and Glass Containers 255
8.4 Modified Atmosphere Packaging 258
8.5 Aseptic Packaging 261
8.6 Active Packaging 264
8.6.1 Introduction 264
8.6.2 Oxygen Scavengers 264
8.6.3 Carbon Dioxide Scavengers 267
8.6.4 Carbon Dioxide Emitters 267
8.6.5 Ethylene Scavengers 268
8.6.6 Ethanol Emitters 268
8.6.7 Moisture Absorbers 269
8.6.8 Flavor/Odor Absorbers 269
8.6.9 Antioxidant Release 270
8.6.10 Antimicrobial Packaging 270
8.6.11 Lactose and Cholesterol Removers 271
8.6.12 UV Light Absorbers 271
8.6.13 Other Active Packaging Systems 272
8.7 Intelligent Packaging 272
8.7.1 Introduction 272
8.7.2 Time–Temperature Indicators (TTIs) 272
8.7.3 Quality Indicators and Sensors 273
8.7.3.1 Chemical Indicators 273
8.7.3.2 Microbial Indicators 273
8.7.3.3 Gas Concentration Indicators 273
8.7.4 Radiofrequency Identification Devices (RFID) 274
8.7.5 Other Intelligent Packaging Devices 274
8.7.6 Consumer Attitudes, Safety, and Legal Aspects of Active and Intelligent Packaging 275
8.8 The Role of Nanotechnology in Food Packaging 276
References 276
Content of Volume 2

9 Separations in Food Processing Part 1 281
James G. Brennan and Alistair S. Grandison

10 Separations in Food Processing: Part 2 – Membrane Processing, Ion
Exchange, and Electrodialysis 331
Michael J. Lewis and Alistair S. Grandison

11 Mixing, Emulsification, and Size Reduction 363
James G. Brennan

12 Baking 407
Stanley P. Cauvain

13 Extrusion 429
Paul Ainsworth

14 Food Deep-Fat Frying 455
Pedro Bouchon

15 Safety in Food Processing 491
Carol A. Wallace

16 Traceability in Food Processing and Distribution 515
Christopher Knight

17 The Hygienic Design of Food Processing Plant 533
Tony Hasting

18 Process Control in Food Processing 559
Keshavan Niranjan, Araya Ahromrit, and Ashok S. Khare

19 Environmental Aspects of Food Processing 571
Niharika Mishra, Ali Abd El-Aal Bakr, Keshavan Niranjan, and Gary Tucker

20 Water and Waste Treatment 593
R. Andrew Wilbey

21 Process Realisation 623
Kevan G. Leach

22 Microscopy Techniques and Image Analysis for the Quantitative
Evaluation of Food Microstructure 667
Maria de Jesús Perea-Flores, Angélica Gabriela Mendoza-Madrígali, José Jorge Chanona-Pérez, Liliana Alamilla-Beltrán, and Gustavo Fidel Gutierrez-López
Contents

23 Nanotechnology in the Food Sector 693
Christopher J. Kirby

24 Fermentation and the Use of Enzymes 727
Dimitris Charalampopoulos

Index 753