INDEX

A
Activity, defined, 55
Activity durations, 55
calculating, 59–60
Activity-on-arc (AOA), 56
Activity-on-node (AON), 56
Actual cost (AC), 58
Additive process, 87
Aggregate plan, 218, 223
planning strategies, 219
Aggregate project plan, 45–47
Agile project management, 67–68
Air Canada, 269
Airtel, 119
Alaska Airlines, 119, 257
Amazon, 2, 4, 34, 179
Amazon Prime Now Service, 3
AmBev, 196–197
American Airlines, 133
American Express, 258, 269
American Standard, 269
Analogical reasoning, 289
Analytics, 195
Organizational evolution with, 198
Anchor Brewery, 120
Annual holding cost, 233
Annual ordering cost, 233
ANOVA, 297
Anticipation inventories, 224
Anticyclic output, 124
APICS, 184
Apple, Inc., 3, 23, 26, 82, 83, 155–156, 158, 174
iPad, 156, 204, 205, 207
Apple’s App Store, 83
Applied Materials, 157
Applied research, 14
As-is value stream map, 313, 315
Assemble-to-order, 18, 105, 161
Assembly line, 90, 91
Assignable variation, 250, 251
Autodesk, 182
Auto industry, 4
Automation, 34, 89
Available seat miles, 121

B
Backorders, 224
Balanced scorecard, 245–246
benefits of, 245
four major areas, 245
Bank of America, 267
Barcoding and scanning, 324
Batch size, 105
and flow, 319
Beer game, 167, 191–194
Benchmarking, 184, 246, 275, 277–278
Best Buy, 156–157, 167
Beta distribution, 59
Bias
of forecast, 207, 217
of measurement system, 287
Big Data, 195
Binomial distribution, 256
Black and Decker, 29
Black belts, of six sigma, 295, 304
Blockchain technology, 12, 183
Blue Cross, 131
Blueprinting, 137
Boeing, 29
Bottlenecks, 122, 134, 317, 319, 325
defined, 134
in a sequential process, 134–137
Branding, 275, 288–289
guidelines, 288
Brainwriting, 289
Break-even location model, 171
Breakthrough projects, 46
Bucyrus International, 157
Buffer inventories, 224
Buffers, project and feeding, 66
Bullwhip effect, 166–168
business practices that contribute to, 167–168
Burger King, 104, 121
Business case, 51, 275
Business process design. See reengineering
Business strategy, 21, 23, 24, 28, 29
categories of, 23
formulating, 22–34
C
C chart, 256
Capacity
defined, 120
fixed, adding, 128, 156
long-term planning, 121–128
measures, 122
for multiple outputs, 124–126
planning, 121
and scheduling, 128
for services, 141–143
short-run, techniques for increasing, 140
short-term alternatives, 139–141
short-term planning, 134–139
strategies, 123–128
timing of increments, 127–128
Capital costs, 226
Carroll Hospital Center, 182
Cash conversion cycle, 163
Causal forecasting methods, 201, 211–217
Cause and effect diagrams, 267, 268, 275, 276,
290, 294, 297, 325
Cellular production, 99–103, 307
advantages and disadvantages, 99–102
layout, 102–103
u-shaped cells, 308
Champions/sponsors, of six sigma, 296
Chance variation, 250
Change management, 43, 54
Channel assembly, 184
Chase demand, 219
Chase, Richard, 109, 179
Chrysler, 4, 271
Cisco Systems, 162, 174
City of Springdale, AR, 302
Closed-loop supply chains, 184–185
Closeness preferences, in job form layout, 98–99
Coca-Cola Company, 3
Coefficient of determination, 215
Collaborative Planning, Forecasting, and
Replenishment (CPFR), 223
Columbia/HCA, 177
Commodities, 88, 160
Community, location decision and, 170–172
Compaq, 155
Competitiveness, 4
global trends, 20–21
Computer-aided design (CAD) software, 87
Concurrent design, 88
Consolidated Patient Account Centers
(CPACs), 41–42
Continuous flow manufacturing, and value, 316–317
Continuous process industries, 88–89
Continuous transformation process, 88–89
Contract manufacturers, 170, 174
Control, 10–11, 249, 310
Control charts, 241, 250–257, 275, 276
for attributes, 251, 255–256
constructing, 254–257
determining control limits, 253
factors, 253
for variables, 252–253
Controllable costs, 235
Control limits, defined, 251
Control system, characteristics of, 249
Core capabilities, 7, 26, 27–31, 168, 244
strategically important parts of, 30
Core competencies, 161, 174
Correlation coefficient, 215
Cost and facility size, 123
minimization, 24
reductions in, and responsiveness, 19
Costco, 24
Cost of goods, 227
Cost-volume-distance model, 98–99
Cost-volume-profit model, 171
CPO (critical path method), 53, 55, 56, 77
and project scheduling, 46–55
Crashing, 68
Creativity
enhancing team, 289
threats to, 288
Credit Crisis, 4
Critical activities, 55
Critical chain, 63–66
defined, 66
task-resource dependency, 66
Critical path, 55
defined, 55
project completion and, 56–57
Critical to quality trees, 268, 275
Cross-docking, 24, 184
Cross-training, 102, 141
Cummins, 269
Cumulative capabilities model. See Sand Cone
Model
Customer performance, 245
Customer-relationship management (CRM), 182–183
Customer requirements, 270, 278
Customer satisfaction, 9, 267, 304
surveys, 257
Customer service, 240
Customer value, 14–20
Customization, 16–18, 102. See also mass
customization
continuum of, 16
defined, 16
CVD model, 98–99
Cycle inventories, 224–225
Cycle time, 92, 93, 135, 314, 316
Cyclical component, 202
Decoupling inventories, 224
Deere & Co., 302
Defects per million opportunities (DPMO), 268, 273, 275, 276, 283–285
Defects per opportunity, 283–285
Defects per unit, 283
Delayed differentiation, 184
Dell Computer, 165, 184
Deloitte Consulting, 197
Delphi method, 200
Demand
chain, 158, 160
forecast, 131
planning, 199–218
Dependability, competitiveness and, 28
Dependent variable, 211
Derivative projects, 46
Design for assembly (DFA), 308
Design for Excellence, 87
Design for manufacturability (DFM), 308
Design for Six Sigma, 269, 270, 275
Design of experiments, 275, 293–295, 325
considerations of, 294
Development, 14
DMAIC improvement process, 266, 267, 273–276, 325
Dover Corp., 321
Downstream, in supply chain, 158
Drum-buffer-rope (DBR), 317
Duracell, 3
Duty tours, 132
E
Early adopters, 22
Early finish times, 57
Early start times, 57
Earned value, 73
varying, 73
Earned value chart, 73
eBay, 179
E-commerce, 162
Economic order quantity (EOQ) model, 232–236
Economies of scale, 123
defined, 123
Economies of scope, defined, 124
Educational services, resource scheduling, 132
Effectiveness, 32, 84
stages of operational, 243–244
Efficiency, 32, 134, 166, 197
defined, 134
formula, 93, 135
Electronics industry, 156–157
Energizer, 3
Engineer-to-order, 105, 161
Enterprise resource planning (ERP), 159, 162, 180–182
Environment, 5, 170, 242, 246
EOQ model. See Economic order quantity
(EOQ) model
Ericsson, 119, 162
Event, 55
Exchange rates, 20, 168
Expected completion time, 59
Expediting, 97
Experience curves, 143
Exponential smoothing, 205–207
Exports, 5, 20
F
Facebook, 10
Facility
size, planning, 123
Fail safing, and service guarantees, 112–113
Failure Mode and Effect Analysis (FMEA), 248–249, 275, 325
Feeding buffer, 66
Finished goods, 225
Finished goods inventory, 313
Finish times, and project completion, 57
Finite loading, 129
Fire alarm distributions, 142
First-to-market, 23
Fishbone diagrams. See Cause and effect
diagrams
Flexibility, 16, 27, 124, 141, 166, 169
advantages, 16
competitive advantages of, 16
defined, 16
Flextronics, 170, 174
Float, 58
Floating bottlenecks, 134
Floating workers, 131
Flow analysis, for products and services, 134–139
Flow shops, 89–95, 307
advantages and disadvantages, 90
defined, 89
layout of, 91–92
Focus, 3, 26–28, 123
areas of, 27
defined, 26
reasons for loss of, 28
Focused factory, 84
Focused organization, 26, 84
Ford, 3, 271
Forecasting
assessing accuracy, 217–218
causal methods, 201, 211–217
demand, 131
error, 207, 211, 212
exponential smoothing, 205–207
method and influencing factors, 201
moving averages, 204–205
outliers, 213–214
purposes and methods, 199–201
qualitative, 199, 200
quantitative, 200
with regression model, 211–217
relationship between variables, 212
residual, 211
seasonal component, 209
tracking signal, 218
trend component, 207
weighted moving average, 204
Forward buying, 167
Fraction-defective (p) charts, 255–256
Fujitsu Microelectronics, 182
Functionality, 15
Functional organizations, 83, 271, 272, 316
Functional products, 166
G
Gaming industry, 83
Gantt chart, 52, 64, 129, 275
General Electric (GE), 267, 271
General Motors (GM), 3, 4, 271
Global trends, 20–21
Goldratt, Eliyahu, 63–65, 289, 317
Green belts, of six sigma, 295, 304
Green movement, 85
Green revolution, 159
Green sourcing, 13, 162
Gross domestic product (GDP), 32–33
Group technology, 99
H
Hammer, Michael, 5, 29, 270
Harley-Davidson, 26, 306
Harper Hospital, scheduling at, 131
Hayes, Bob, 105, 243
Henry Ford Hospital, 218–219
Hewitt Associates, 266
Hewlett-Packard (HP), 18, 48, 184, 281, 306, 321
Hill, Terry, 26
Historical analogy, 200
Holding cost, 235
Hollowed out, 174
defined, 30
Home Depot, 185
Honda, 29
Honeywell, 267, 304, 325
Hospitals, resource scheduling, 131–132
House of quality, 278, 279–281
Human resource outsourcing, 266
Hybrid shop, 101
Hybrid stage, in cellular production, 103
I
IBM, 119, 174, 182, 240, 271–272
Idle time, 93
Immelt, Jeffrey, 268
Improvement curves, 143
Improvement trajectories, 25
Inc Magazine, 120
Independent variable, 211
Infinite loading, 129
Information outputs, economics of, 10
Information technology
in supply chains, 179–183
Innovation, defined, 23
product-process, 1107
Innovativeness, 14–15
Innovative products, 166
Inputs
value-creation processes, 8
Intensiva HealthCare, 26
International operations, location decision and, 169–170
International Organization for Standardization, 247
Inventory
and lean, 309
turnover, 164
Inventory and supply planning, 223
decisions in inventory management, 227
forms of inventories, 225
functions of inventories, 224–225
inventory-related costs, 226–227
Inventory management, 159
Inventory-related costs, 226–227
iPad, 204, 205, 207
ISO 9000, 179, 247–248
J
Jabil Circuit, 170, 174
Japan and lean, 306–307
JD Power and Associates, 257
JetBlue, 257
JIT. See also Lean
in services, 321
K
Kaizen blitz, 303, 314, 322
Kaizen event. see Kaizen blitz
Kanban, 316, 321. See also Pull systems
in services, 321
Kano model, 281–282
Kmart, 26
Kotter, John, 54
L
Latest finish time, 57
Latest start time, 57
Late-to-market, 24
Layout analysis, purposes of, 84
Layout, and lean, 308
Layout, service operations, 84
Lean
benefits of, 323–325
compared with traditional systems, 307–311
defined, 305
history and philosophy of, 306–311
principles, 305
Lean management, 5
Lean manufacturing, 159, 160
Lean organization, tools for perfection, 321–323
Lean production, 5, 159, 306
Lean Six Sigma, 270, 304, 324–325
Learning curve, 143–145
defined, 143
factors that affect learning rate, 143–144
typical learning-forgetting pattern, 146
Level production, 219
Lewis, Ken, 267
Life-cycle, 23
analysis, 200
of anticyclic outputs, 121
curve, 23
multiple outputs, 124–126
product/process, 106–108
of projects, 48–49
Linearity, of measurement system, 287
Line balancing, 92–95, 314
Line of visibility, 138
LINEST Excel function, 207, 213, 214
LL Bean, 278
Location
and developing capabilities, 168–169
and logistics, 168
planning strategies, 168–173
of services, 173
Logical cell, 102
Logistics, 166–173
defined, 166
Lot-size inventories, 224
Lot sizing rules, 316
Louis Vuitton, 83
Lower control limit (LCL), 251
Lucent, 162
M
Made-to-order customization, 105
Maintenance, repair, and operating (MRO) supplies, 225
Make-to-order items, 104–105, 161
Make-to-stock items, 104, 161
Malcolm Baldridge National Quality Award, 273
Mapping, 137–138
Market capitalization, 83
Market evolution, 29
Market pull, 86
Market segmentation, 24
Martin Marietta, 84
Mass customization, 17–18
Hewlett-Packard example, 18
strategies, 17–18
Master black belts, of six sigma, 295, 304
Mastercard, 3
Matrix organizations, 49
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazak</td>
<td>21</td>
</tr>
<tr>
<td>McDonalds</td>
<td>5, 104, 113, 257</td>
</tr>
<tr>
<td>McKinsey and Company</td>
<td>26, 175</td>
</tr>
<tr>
<td>Mean absolute deviation (MAD)</td>
<td>217</td>
</tr>
<tr>
<td>Mean absolute percent error (MAPE)</td>
<td>217</td>
</tr>
<tr>
<td>Measurement systems analysis</td>
<td>275, 276, 283, 285–287, 325</td>
</tr>
<tr>
<td>Mecklenburg County, NC</td>
<td>42</td>
</tr>
<tr>
<td>Medicaid</td>
<td>131</td>
</tr>
<tr>
<td>Medicare</td>
<td>131</td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>169</td>
</tr>
<tr>
<td>Merrill Lynch</td>
<td>269</td>
</tr>
<tr>
<td>Metcalfe’s law</td>
<td>179</td>
</tr>
<tr>
<td>Microsoft</td>
<td>2, 179</td>
</tr>
<tr>
<td>Microsoft Project</td>
<td>64</td>
</tr>
<tr>
<td>Migration project</td>
<td>42</td>
</tr>
<tr>
<td>Milestone points</td>
<td>51</td>
</tr>
<tr>
<td>Miniplant</td>
<td>102</td>
</tr>
<tr>
<td>Mission</td>
<td>246</td>
</tr>
<tr>
<td>Modular design</td>
<td>18</td>
</tr>
<tr>
<td>Monitoring and control</td>
<td>10–11, 242–243</td>
</tr>
<tr>
<td>Monster.com</td>
<td>268</td>
</tr>
<tr>
<td>Moore’s law</td>
<td>179</td>
</tr>
<tr>
<td>Most likely time</td>
<td>58</td>
</tr>
<tr>
<td>Motorola</td>
<td>267, 273, 296</td>
</tr>
<tr>
<td>Moving averages</td>
<td>204–205</td>
</tr>
<tr>
<td>Movistar</td>
<td>241</td>
</tr>
<tr>
<td>Muda</td>
<td>311</td>
</tr>
<tr>
<td>Multiple sourcing</td>
<td>309</td>
</tr>
<tr>
<td>MySap modules</td>
<td>181</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NAFTA</td>
<td>174</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>18</td>
</tr>
<tr>
<td>Network</td>
<td>55</td>
</tr>
<tr>
<td>Newsvendor Problem</td>
<td>220–222</td>
</tr>
<tr>
<td>Next-shoring</td>
<td>13, 175</td>
</tr>
<tr>
<td>Nike, 3, 21, 174</td>
<td></td>
</tr>
<tr>
<td>Nokia</td>
<td>119</td>
</tr>
<tr>
<td>Nominal Group Technique</td>
<td>275, 289</td>
</tr>
<tr>
<td>Nordstrom</td>
<td>26</td>
</tr>
<tr>
<td>Normal distribution</td>
<td>250</td>
</tr>
<tr>
<td>North Shore – Long Island Jewish Health System</td>
<td>241</td>
</tr>
<tr>
<td>Northshore University Hospital</td>
<td>274</td>
</tr>
<tr>
<td>Number-of-defects (c) charts</td>
<td>256</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Off-diagonal transformation process</td>
<td>106</td>
</tr>
<tr>
<td>Off-peak pricing</td>
<td>131</td>
</tr>
<tr>
<td>Offshoring</td>
<td>30, 162, 170, 175</td>
</tr>
<tr>
<td>Omega, 83</td>
<td></td>
</tr>
<tr>
<td>One factor at a time (OFAT)</td>
<td>293</td>
</tr>
<tr>
<td>Operational effectiveness</td>
<td>243–244</td>
</tr>
<tr>
<td>measures of, 244</td>
<td></td>
</tr>
<tr>
<td>Operational innovation, 5, 24, 29</td>
<td></td>
</tr>
<tr>
<td>Operations activities, 11</td>
<td></td>
</tr>
<tr>
<td>defined, 5</td>
<td></td>
</tr>
<tr>
<td>trends in, 11–13</td>
<td></td>
</tr>
<tr>
<td>Operation splitting, 129</td>
<td></td>
</tr>
<tr>
<td>Operations strategy, 3</td>
<td></td>
</tr>
<tr>
<td>Opportunity costs, 227</td>
<td></td>
</tr>
<tr>
<td>Optimistic time, 58</td>
<td></td>
</tr>
<tr>
<td>Order cost, 235</td>
<td></td>
</tr>
<tr>
<td>Ordering costs, 226, 233</td>
<td></td>
</tr>
<tr>
<td>Order qualifier, 26</td>
<td></td>
</tr>
<tr>
<td>Order winner, 26, 169</td>
<td></td>
</tr>
<tr>
<td>Osborn, Alex</td>
<td>288</td>
</tr>
<tr>
<td>Outliers, 213–214</td>
<td></td>
</tr>
<tr>
<td>Output, 8–10. See also Product</td>
<td></td>
</tr>
<tr>
<td>Outsource strategies, 174–179</td>
<td></td>
</tr>
<tr>
<td>Overbooking, 133–134</td>
<td></td>
</tr>
<tr>
<td>Overlapping, 90</td>
<td></td>
</tr>
<tr>
<td>Owens Corning, 182</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>p chart, 241, 255–256</td>
<td></td>
</tr>
<tr>
<td>Paced line, 91</td>
<td></td>
</tr>
<tr>
<td>Pareto analysis, 268, 275, 297</td>
<td></td>
</tr>
<tr>
<td>Parts</td>
<td></td>
</tr>
<tr>
<td>organization into families, 99</td>
<td></td>
</tr>
<tr>
<td>Path, defined, 55</td>
<td></td>
</tr>
<tr>
<td>Path slack, 58</td>
<td></td>
</tr>
<tr>
<td>PepsiCo, 3</td>
<td></td>
</tr>
<tr>
<td>Perceptual maps, 86</td>
<td></td>
</tr>
<tr>
<td>Performance frontier, 24–26</td>
<td></td>
</tr>
<tr>
<td>PERT (program evaluation and review technique), 59, 64</td>
<td></td>
</tr>
<tr>
<td>and project scheduling, 55–63</td>
<td></td>
</tr>
<tr>
<td>scheduling, PERT and CPM, 55–64</td>
<td></td>
</tr>
<tr>
<td>Pessimistic time, 58</td>
<td></td>
</tr>
<tr>
<td>Pilot cell, 103</td>
<td></td>
</tr>
<tr>
<td>Pipeline inventories, 224</td>
<td></td>
</tr>
<tr>
<td>Planned value (PV), 73</td>
<td></td>
</tr>
<tr>
<td>Planning. See also Product</td>
<td></td>
</tr>
<tr>
<td>and control, and lean, 310</td>
<td></td>
</tr>
<tr>
<td>Platform projects, 46</td>
<td></td>
</tr>
<tr>
<td>Poisson distribution, 257</td>
<td></td>
</tr>
<tr>
<td>Poka yoke, 323</td>
<td></td>
</tr>
<tr>
<td>Postponement, 18, 184</td>
<td></td>
</tr>
<tr>
<td>Precedence graph, 92</td>
<td></td>
</tr>
<tr>
<td>Precedence relationships, 59</td>
<td></td>
</tr>
<tr>
<td>Preemption, 129</td>
<td></td>
</tr>
<tr>
<td>Prioritization matrices, 267</td>
<td></td>
</tr>
<tr>
<td>Process batch, 318</td>
<td></td>
</tr>
<tr>
<td>Process capability analysis, 275, 290–293</td>
<td></td>
</tr>
<tr>
<td>index, 291–293</td>
<td></td>
</tr>
<tr>
<td>one-sided index, 293</td>
<td></td>
</tr>
<tr>
<td>Process centered organization, 271</td>
<td></td>
</tr>
<tr>
<td>Process control, 249–257</td>
<td></td>
</tr>
<tr>
<td>Process distributions, changes in, 252</td>
<td></td>
</tr>
<tr>
<td>Process flow analysis, 134</td>
<td></td>
</tr>
<tr>
<td>approaches for, 269–270</td>
<td></td>
</tr>
<tr>
<td>Process-flow analysis, 134–139</td>
<td></td>
</tr>
<tr>
<td>Process map, 138, 275, 276–277, 304</td>
<td></td>
</tr>
<tr>
<td>Process mapping, 241, 268, 297, 303, 325</td>
<td></td>
</tr>
<tr>
<td>Process monitoring, 243–249</td>
<td></td>
</tr>
<tr>
<td>Process owners, 296</td>
<td></td>
</tr>
<tr>
<td>Process performance measures, 283</td>
<td></td>
</tr>
<tr>
<td>Process sigma, 268, 275</td>
<td></td>
</tr>
<tr>
<td>Procurement, defined, 175</td>
<td></td>
</tr>
<tr>
<td>Product, 8</td>
<td></td>
</tr>
<tr>
<td>characteristics, 8</td>
<td></td>
</tr>
<tr>
<td>development strategies, 23</td>
<td></td>
</tr>
<tr>
<td>families, 84</td>
<td></td>
</tr>
<tr>
<td>flows, 137–138</td>
<td></td>
</tr>
<tr>
<td>ideas, generating new, 14–15</td>
<td></td>
</tr>
<tr>
<td>life cycle, 27, 121, 185</td>
<td></td>
</tr>
<tr>
<td>and process life cycle, 24, 106–108, 123</td>
<td></td>
</tr>
<tr>
<td>research, 14</td>
<td></td>
</tr>
<tr>
<td>Product and service development</td>
<td></td>
</tr>
<tr>
<td>stages of, 85</td>
<td></td>
</tr>
<tr>
<td>Production line, 90, 91, 92–93</td>
<td></td>
</tr>
<tr>
<td>balancing, 92–95</td>
<td></td>
</tr>
<tr>
<td>Production system, 5–6, 106, 242, 243, 248</td>
<td></td>
</tr>
<tr>
<td>components of, 7</td>
<td></td>
</tr>
<tr>
<td>Productivity, 14, 119, 122, 169, 267, 304, 306, 311</td>
<td></td>
</tr>
<tr>
<td>defined, 31</td>
<td></td>
</tr>
<tr>
<td>multifactor productivity, 31</td>
<td></td>
</tr>
<tr>
<td>productivity rates, 32–34</td>
<td></td>
</tr>
<tr>
<td>single measure of, 31</td>
<td></td>
</tr>
<tr>
<td>total factor productivity, 31</td>
<td></td>
</tr>
<tr>
<td>Product mortality curve, 86</td>
<td></td>
</tr>
<tr>
<td>Product-process matrix, 105</td>
<td></td>
</tr>
<tr>
<td>Product research, 88</td>
<td></td>
</tr>
<tr>
<td>Product/Service design, and lean, 307</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>categories of, 46</td>
<td></td>
</tr>
<tr>
<td>charter, 51, 267, 275</td>
<td></td>
</tr>
<tr>
<td>and critical paths, 56–57</td>
<td></td>
</tr>
<tr>
<td>defining a, 44–45, 103</td>
<td></td>
</tr>
<tr>
<td>design, 85–88</td>
<td></td>
</tr>
<tr>
<td>examples of, 44</td>
<td></td>
</tr>
<tr>
<td>expediting, 68–72</td>
<td></td>
</tr>
<tr>
<td>life cycle, 48–49</td>
<td></td>
</tr>
<tr>
<td>planning, 45–48</td>
<td></td>
</tr>
<tr>
<td>plans, 51–54</td>
<td></td>
</tr>
<tr>
<td>probabilities of completion, 60–61</td>
<td></td>
</tr>
<tr>
<td>as a process, 43–44</td>
<td></td>
</tr>
<tr>
<td>schedule, 51</td>
<td></td>
</tr>
<tr>
<td>scheduling, 55–63</td>
<td></td>
</tr>
<tr>
<td>simulating, 61–63</td>
<td></td>
</tr>
<tr>
<td>team organizing, 50–51</td>
<td></td>
</tr>
<tr>
<td>transformation system, 106, 107</td>
<td></td>
</tr>
<tr>
<td>Project buffer, 66</td>
<td></td>
</tr>
<tr>
<td>Projectized, 49</td>
<td></td>
</tr>
<tr>
<td>Project management</td>
<td></td>
</tr>
<tr>
<td>agile approach, 42</td>
<td></td>
</tr>
<tr>
<td>defined, 43</td>
<td></td>
</tr>
<tr>
<td>objectives, 52</td>
<td></td>
</tr>
<tr>
<td>software capabilities, 63</td>
<td></td>
</tr>
<tr>
<td>waterfall approach, 42</td>
<td></td>
</tr>
<tr>
<td>Project Management Body of Knowledge (PMBOK), 51</td>
<td></td>
</tr>
<tr>
<td>Project Management Institute (PMI), 51</td>
<td></td>
</tr>
<tr>
<td>Project Management Professional (PMP), 51</td>
<td></td>
</tr>
<tr>
<td>Project manager</td>
<td></td>
</tr>
<tr>
<td>major attributes, 50</td>
<td></td>
</tr>
<tr>
<td>Project plan, 42</td>
<td></td>
</tr>
</tbody>
</table>
Project planning, 45–48
 known activity times, 54–58
 outputs, 55
 unknown activity times, 58–63
Project portfolio, 22, 45–48
Project’s schedule status, 41
Pull systems defined, 160, 320–321
Purchasing/procurement, 11, 175–177
 effective practices, 177
Pure research, 14
Pure services, 9, 122, 141, 173
Q
 QFD, 275, 278–281, 312
 overview, 279
 Quality
 defining and measuring, 15–16
 dimensions, 15
 and lean, 310–311
 in services, 257–258
 statistical control of, 250–257
 Quality function deployment. See QFD
 Quebec City, relocating the blood bank, 172
 Queuing theory, 69
R
 RACI matrix, 52–53
 RAND Corporation, 200
 Random variation, 202
 Rapid prototyping, 87
 Raw materials, 8, 225, 312
 R&D. See Research and development
 Red Cross, 5, 172
 Red Wing Shoes, 196
 Reebok, 3
 Reengineering, 270–272, 295
 concept keywords, 271
 defined, 270
 Region, location decision and, 169–170
 Regression analysis, 267, 268, 275, 297
 assumptions, 215–216
 coefficient of determination, 215
 correlation coefficient, 215
 extrapolation, 216
 linear trend multiplicative model, 207–211
 multiple regression model, 211
 relationship between variables, 212
 simple regression, 211–215
 transforming data, 211
 using regression model, 216–217
 Reliability, 15
 Remainder cell, 101, 103
 Remanufacturing, 175
 Research
 applied, 14
 and development (R&D), 14–15
 product, 88
 projects, 45
 pure, 14
 Research and development (R&D), 85
 Reshoring, 13, 175
 Reshoring Initiative, 175
 Resources, scheduling in services, 129–134
 Responsiveness, 18–20, 162, 166, 174, 197
 Return on the investment (ROI), 54
 Revenue management, 122
 Reverse auctions, 176
 Reverse engineering, 30
 Reverse logistics, 175, 184–185
 RFID (radio frequency identification), 12, 324
 Right-to-work laws, 169
 Risk costs, 226
 Risk management, 52
 Risk priority number, 248
 Ritz-Carlton, 257
 Robotics, 3, 83
 ROIC, 181
 ROI, 54
 Sales and Operations Planning (S&OP), 196, 220–222
 Samsung, 157
 Sand cone model, 28–29, 84, 121, 155
 SAP, 181
 SAS, 196
 Scandinavian Airlines, overbooking, 133
 Schedule management, 128–134
 Scheduling
 capacity and, 128, 199
 projects, with PERT/CPM, 55–64
 Schonberger, Richard J., 15
 SCI Systems, 174
 Scope, 44
 ScottishPower, 296
 Sears, 26
 Seasonality, 124, 201, 209
 Second-to-market, 23
 Selectron, 170
 Sequential process, defined, 134
 Sequential production system, 320
 Service, 8
 blueprint, 108, 138
 capacity planning for, 141–143
 characteristics, 9
 controlling quality, 257–258
 defections, 258
 defined, 9
 flows, 137–139
 gaps, 111–112
 guarantees & fail safing, 112–113
 kanban/JIT in, 321
 life cycle, 22–24
 pure, 9, 141
 scheduling, 129–134
 Service level, 199, 220–222
 Service level agreements, 112
 Service matrix, 109–110
 Service organizations
 layout, 84–85
 locating, 173
 process design in, 108–113
 Servicecapes, 110–111
 Setup costs, 226
 7-Eleven, 17
 Simulation, 197, 275
 Single-sourcing, 310
 Site, and location decision, 172–173
 Six Sigma, 5
 becoming certified, 296
 common tools, 275
 customizing programs, 296–297
 defined, 273, 274
 and DMAIC, 273–276
 example project, 240–241, 274–276
 financial benefits, 269
 and lean, 305, 324–325
 phases
 analyze, 287–293, 325
 control, 295, 325
 define, 276–282, 325
 improve, 293–295, 325
 measure, 282–287, 325
 in practice, 295–297
 roles, 295–297
 tools and methodologies, 275
 training and benefits, 269
 Slack time, 58
 Smith, Bill, 273
 Solectron Corp., 162
 Sole-sourcing, 178
 Sony, 24, 29
 Southside Hospital, 268, 269, 294
 Southwest Airlines, 257
 Spaghetti chart, 308
 Speed. See Responsiveness
 Sport Obermeyer, 121, 184
 Spreadsheet analysis: simulating project
 completion times, 61–63
 Stability, of measurement system, 287
 Stakeholder, 41, 44, 52, 241
 Stakeholder analysis, 268, 275, 297
 Standard operating procedure, 305
 Stanton, Steven, 271
 Starbucks, 173
 Start times, and project completion, 57
 Station task assignments, 95
 Statistical quality (process) control, 250–253
 Stockless purchasing, 179
 Stockout costs, 226
 Stockouts, 121, 224
 Storage costs, 226
 Strategic sourcing, 13
 Strategy, 7, 42, 43, 121, 246
 formulation, 22
 frameworks, 22–29
 maps, 246–247, 257
 of mass customization, 17–18
 purchase, 88
 second-to-market, 23
Stretched-S curve, 22, 48, 49
Stretch goals, 278
Student syndrome, 65
Suboptimization, 7
Subtracting production techniques, 87
Sun Microsystems, 269
Supermarket, 314
Supplier
 audits, 179
 certification and audits, 178–179, 310
 characteristics of good, 177
 and lean, 309–310
 management, 177–179
 relationships, 178
 selection, 177–178
Supplies, 8
Supply chain
 closed-loop supply chains, 184–185
 defined, 158
 design, 165–173
 disruptions, 13, 156
 performance, measures, 163–165
 processes, 185
 simplified, 165
 strategy, 161–163
Supply chain analytics, 197
Supply Chain Council, 184
Supply chain management (SCM), 11–13, 122, 158–160, 306, 323
 benefits, 163
 defined, 158
 factors driving need for, 162
 goal, 159
 information technology, 179–183
 problems with poor planning, 198
 strategic need for, 161–163
 success, 184–185
Supply chain operations reference (SCOR) model, 184
Sustainability, 13, 85
Swatch, 83
Synchronous manufacturing, 306, 317
System, 5. See also Production system
System flow times, 95
Systems perspective, 7
T
Taguchi Methods, 295
Taiwan Semiconductor Manufacturing Company, 157
Takt time, 92, 316
Teams, and cellular layout, 100
Technology, 3, 4, 5, 29, 42, 43, 47, 54, 84, 85, 123, 131, 160, 162, 168, 175, 271, 272, 324
Technology push approach, 86
Telecom industry, 83
Telefónica, 241
Tesco, 197
Theory of constraints, 63, 275, 289, 317–319
 ten guidelines, 317–319
Third-party logistics (3PL), 161
Thompson, Leigh, 288
3M, 29, 268
Three R’s, 13
Throughput time, 135
Time–cost trade-off analysis, 68–72
Time series analysis, 200, 201–211
 components of, 201–203
To-be value stream map, 315–316
Toshiba, 157
Total cost minimization, 225
Total cost of ownership, 13, 178
Total productive maintenance (TPM), 323
Total quality management (TQM), 162, 290, 295
Toyota Motor Company, 159, 179, 281, 302, 306, 316
 kanban at, 321
Toyota Production System, 159, 306–307
TQC. See Total quality management (TQM)
Trade deficit, 20
Trade promotions, 168
Transfer batch, 318
Transformation processes
 defining basic forms, 84
 design considerations, 84
 forms of, 88–95
 selection of, 104–113
 volume/variety considerations, 104–106
Transport inventories, 224
Trend, 202
 Excel function, 209, 214
 Trends in operations management, 11–13
 Triple bottom line, 13
TRW, 268
Turns, 165
Tyco International, 269
U
United States Postal Service (USPS), 240
United States Veterans Health Administration (VHA), 41, 43
 unknown activity times, 58–63
 Upper control limit (UCL), 251
Upstream, in supply chain, 158
Upton, David, 16
Urban alarm services, resource scheduling, 132
U.S. Veterans Health Administration (VHA), 41
Utilization, 9, 134, 282
V
Valley Baptist Hospital, 304
Value, 2, 3, 4, 5, 6, 14, 161, 311
 defined, 14
 adding, 8, 312, 325
 analysis of purchases, 176–177
 chain, 159, 160
 creation processes, 8
 defining, 311–312
 flow of, 316–319
 proposition, 7
Value stream
 identifying, 311–316
 map, 138, 312–316
 symbols, 312–314
 and pull systems, 320–321
Variables, control charts for, 252–253
Vendor analysis, 177–178
Vendor-managed inventory, 168
Virginia Mason Medical Center, 303, 311
Virtual cell, 102
Visa, 3
Visual factory, 322
Voice of the customer (VOC), 268, 275, 279, 312

W
Waiting line theory, 85, 120
Walgreens, 173
Wal-Mart, 17, 26, 184, 223
Waste, 13, 304, 305, 312, 320
 categories of, 311–312
Watch industry, 83
Waterfall approach, 67
Web. See World Wide Web
Weighted moving average, 204
Weighted score location model, 172
Welch, Jack, 268
West Babylon school district, 290
Wheelwright, Steve, 105, 243
Whirlpool, 175
White elephant, 107
Work breakdown structure (WBS), 52, 53
Workforce, and lean, 308–309
Work-in-process, 83, 84, 91
 inventory, 311, 320
Work in process (WIP), 225
World-class suppliers, 179
World Trade Organization (WTO), 21, 174
World Wide Web (WWW), 180

X
Xerox, 278, 303–304, 324
Yellow belts, of six sigma, 296, 304
Yield, 122, 323
Yield management, 122, 133–134
Z
Zoran Corp, 157