Contents

Series Preface xiii
Acknowledgements xv
Introduction xvii

1 Tracked Vehicle Running Gear and Suspension Systems 1
1.1 General Arrangement 1
1.2 Transverse Torsion Bars 2
1.3 Coil Springs 6
1.4 Hydrogas Suspensions 8
1.4.1 Challenger MBT Hydrogas Unit 8
1.4.2 Measured Characteristics of a Challenger Unit 9
1.4.2.1 Spring Characteristics 9
1.4.2.2 Damper Characteristic 11
1.4.2.3 Differential Pressure Across the Damper Valve 11
1.4.2.4 Force/Displacement Loop 11
1.4.2.5 Flow Rig 12
1.4.2.6 Suspension Damping of a Multi-Wheeled Vehicle 13
1.4.3 Temperature Effects 13
1.4.3.1 Two-Stage Units 15
1.4.3.2 Counter-Spring Units 17
1.4.4 Other Types of Hydrogas Suspension 18
1.4.4.1 Twin-Cylinder Units 18
1.4.4.2 In-Arm Units 18
1.5 Dampers 20
1.5.1 Hydraulic Dampers 20
1.5.2 Friction Dampers 20
References 22

2 Vehicle Track Systems 23
2.1 Link Tracks 23
2.1.1 Single-Pin Tracks 26
2.1.1.1 Dry-Pin Tracks 26
2.1.1.2 Rubber-Bushed Tracks 27
2.1.2 Double-Pin Tracks 28
2.1.3 Rubber Track Pads, Road Wheels and Track Tensioners 31
2.1.3.1 Rubber Track Pads 31
2.1.3.2 Road Wheels 32
2.1.3.3 Track Tensioners 33
2.1.4 Track Loadings 33
2.1.4.1 Centrifugal Tension 33
2.1.4.2 Final-Drive Torque Measurements 34
2.1.4.3 Lateral Horn Load 35
2.1.5 Rolling Resistance: Analytical Methods 35
2.1.5.1 On a Metal Wheel Path 35
2.1.5.2 On a Rubber Wheel Path 36
2.1.6 Rolling Resistance: Experimental Measurements 37
2.1.6.1 Chieftain 38
2.1.6.2 FV 432 39
2.1.6.3 Scorpion and Spartan 40
2.1.6.4 Summary 42
2.1.7 Noise and Vibration 42
2.1.8 Approaches for Reducing Noise and Vibration 43
2.1.8.1 Finite Element Analysis and Experimental Sprockets 43
2.1.8.2 Fully Decoupled Running Gear 44
2.1.8.3 Flexible Rubber Tracks 44
2.1.9 Reducing Noise and Vibration 44
2.1.9.1 Stage (a): Establishing the Principal Noise Sources 45
2.1.9.2 Stage (b): Design and Production of the Resilient Mountings 46
2.1.9.3 Stage (c): Test Results with the Resilient Mountings 47
2.2 Flexible Tracks 48
2.2.1 Earlier Flexible Tracks 49
2.2.2 Contemporary Flexible Tracks 50
2.2.3 ‘Proof-of-Principle’ Flexible Tracks for a Spartan APC 51
2.2.3.1 Mark 1 Tracks 53
2.2.3.2 Mark 2 Tracks 54
2.2.3.3 Mark 3 Tracks 55
2.2.3.4 Durability Trials 57
2.2.4 Later Developments 57
References 58

3 Tracked Vehicle Suspension Performance: Modelling and Testing 59
3.1 Human Response to Whole-Body Vibration (WBV) and Shock 59
3.1.2 Further Standards Relating to WBV 61
3.1.2.1 Absorbed Power 61
3.1.2.2 The European Physical Agents (Vibration) Directive 2002/44/EC 64
3.1.2.3 ISO 2631-5 (2004) 64
3.2 Terrain Profiles 64
3.2.1 Characterisation 64
3.2.2 DERA Suspension Performance Test Courses 65
3.2.3 Response of Multi-Wheel Vehicles 66
3.2.4 Quarter-Car Model 68
3.2.5 Computer Modelling 71
3.2.5.1 Parameter Specification 73
3.2.5.2 Assumptions 74
3.5.2.3 Examples of Use of the Model 74
3.5.2.4 Comparison with Trials Data 75
3.5.2.5 Upgrading the Suspension Performance of the Scorpion Family of Vehicles 76
3.2.6 Ride Performance Trials of a Challenger Suspension Test Vehicle 76
3.2.7 Pitch Response to Braking and Accelerating 79
3.2.7.1 Compensating Idler 83
3.2.8 Sprung Idler Test Vehicle (SITV) 85

References 88

4 Controllable Suspensions 89
4.1 Height and Attitude Control 89
4.1.1 Tracked Vehicles 89
4.1.2 Wheeled Vehicles 91
4.2 Actively Controlled Damping (Semi-Active Suspensions) 91
4.2.1 Adaptive Damping 91
4.3 Active Suspension Systems 91
4.4 DERA Active Suspension Test Vehicles 93
4.4.1 Narrow-Bandwidth Systems 93
4.4.1.1 Wheeled Vehicle 95
4.4.1.2 Tracked Vehicle 97
4.4.1.3 Laboratory Test Rig 97
4.4.2 Broad-Bandwidth System 97
4.5 Conclusions 100

References 101

5 Wheeled Vehicle Drivelines and Suspensions 103
5.1 Unarmoured Vehicles 103
5.1.1 Leyland DAF DROPS 8×6 Logistic Load Carrier 103
5.1.2 MAN SX 8×8 High-Mobility Load Carrier 105
5.1.3 Pinzgauer 4×4 and 6×6 Light Trucks 105
5.1.4 Range Rover 106
5.1.5 Alvis Stalwart 107
5.1.6 Caterpillar Mining/Dump Truck 108
5.1.7 Euclid (Later Hitachi) Mining/Dump Trucks 110
5.2 Armoured Vehicles 112
5.2.1 H-Drive 112
5.2.2 I-Drive 113
5.3 Interconnected Suspensions 116
5.3.1 Methods of Interconnection 116

References 122
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Wheeled Vehicle Suspension Performance</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>Quarter-Car Model</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>Wheelbase Filter</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
<td>DROPS Truck Ride Measurements</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>Steering Performance of Tracked and Wheeled Vehicles</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Tracked Vehicles</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>7.1.1</td>
<td>Skid Steering Mechanisms</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>7.1.2</td>
<td>Skid Steering Models</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>7.1.3</td>
<td>The Magic Formula</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>7.1.4</td>
<td>Deriving the Magic Formula Parameters for the Track</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>7.1.5</td>
<td>Steering Performance Model</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>7.1.6</td>
<td>Results from the Model</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>7.1.6.1</td>
<td>Driver Control Arrangements</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>7.1.6.2</td>
<td>Pivot Turn</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>7.1.6.3</td>
<td>Effect of Radius of Turn on Slewing Moment</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>7.1.6.4</td>
<td>Driving on a 15 m Radius Turn at Varying Speed to Show the Effects of Track Tension and a Suspension System</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>7.1.6.5</td>
<td>Driving on a 15 m Radius Turn at Varying Speeds with New and Worn Pads and on a Low-Friction Surface</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>7.1.6.6</td>
<td>Driving at 15 m s⁻¹ on Turns of Varying Radii</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>7.1.6.7</td>
<td>Effect of the Centre of Gravity (CG) Position</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>7.1.6.8</td>
<td>Model Validation</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>Comparing Skid and Ackermann Steered Wheeled Vehicles</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>7.2.1</td>
<td>Tyre Force-Slip Data</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>7.2.2</td>
<td>Choice of Tyre Model</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>7.2.2.1</td>
<td>The Skid Steered Vehicle: Vehicle Model</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>7.2.3</td>
<td>Results from the Model</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>7.2.3.1</td>
<td>Neutral Turn</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>7.2.3.2</td>
<td>Variation of Slewing Moment with Radius of Turn</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>7.2.3.3</td>
<td>Cornering on 15 m and 30 m Radius Turns at Different Speeds</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>7.2.4</td>
<td>Ackermann Steered Vehicle Model</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>7.2.5</td>
<td>Model Results</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>7.2.5.1</td>
<td>Steering Performance</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>7.2.5.2</td>
<td>Power Requirements</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>7.2.5.3</td>
<td>Tyre Wear</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>7.2.6</td>
<td>Torque Vectoring</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>7.2.6.1</td>
<td>Individual Wheel Motor Control</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>7.2.6.2</td>
<td>Articulated Vehicles</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix A: Equations of Motion</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix B: Equations of Motion</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>References</td>
<td>175</td>
</tr>
<tr>
<td>8</td>
<td>Soft-Soil Performance of Wheeled and Tracked Vehicles</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>Basic Requirements</td>
<td>177</td>
</tr>
</tbody>
</table>
10.2 Articulated Wheeled Vehicles 222
10.2.1 Steering Behaviour with Ackermann, Skid and Articulated Steering 225
10.2.1.1 Hard Surfaces 225
10.2.1.2 Soft Soils 225
References 226

11 Vehicle Rollover Behaviour 227
11.1 Basic Considerations 227
11.2 Methods to Reduce the Likelihood of Rollover 229
11.2.1 Warning Systems 229
11.2.2 Electronic Stability Programmes 230
11.2.3 Active Anti-Roll Bars 230
11.2.4 Driver Training 230
11.3 Truck Rollover: A Case Study 230
11.3.1 Calculating the Rollover Angle 231
References 233

Notation 235
Abbreviations 243
Bibliography 245
Index 247