Index

Note: Page numbers in italic denote figures, those in bold denote tables.

2-SPFA (two-wavelength single-particle fluorescence analyzer) 87–88

a
abrasive damage, source of bioaerosols 120
abrasive dislodgement, source of bioaerosols 120
acridine orange (AO), fluorochrome 55
active impactors 29, 30
active release, source of bioaerosols 119–120
adenosine 5’-triphosphate (ATP), quantification and characterization of bioaerosols 66–67
Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber 201–202
aerosol mass spectrometer (AMS) 97
aerosols, defining 3
aerosol time-of-flight mass spectrometer (ATOFMS) 96
African desert dust, atmospheric dispersion 158–159
agricultural activity, atmospheric dispersion 159–160
agriculture invasion
colonization of habitats 274–277
research opportunities 276–277
AIDA see Aerosol Interaction and Dynamics in the Atmosphere cloud chamber
aircraft, atmospheric dispersion 160–161
All-Glass Impinger AGI-30: 35, 36
amplified ribosomal DNA restriction analysis (ARDRA), quantification and characterization of bioaerosols 59
AMS see aerosol mass spectrometer analysis of the diversity, quantification and characterization of bioaerosols 58–59
Andersen sampler 31–32, 39
anthrax, bioterrorism 259–262
anthropogenic sources, atmospheric dispersion 159–161
arabitol/mannitol, biomarker 61
archaea 9–10
ARDRA see amplified ribosomal DNA restriction analysis
Asian desert dust, atmospheric dispersion 159
asthma 256–258
astrobiology 174–178
atmospheric dispersion 155–178
African desert dust 158–159
agricultural activity 159–160
aircraft 160–161
anthropogenic sources 159–161
Asian desert dust 159
biomass burning 157–158
earthquakes 157–158
Ferrel cell 156
Hadley cell 156
historical context 155–156
microorganisms 161–167
atmospheric dispersion (contd.)
 natural sources 156–159
 Polar cell 156
 rockets 160–161
 traffic aerosols 160
 ubiquity 161–162
 volcanic aerosols 157–158
 wind 156–157
atmospheric ice nucleation
 processes 197–210
 see also ice-nucleating particles (INPs)
atmospheric implications, ice-nucleating
 particles (INPs) 207–210
ATOFMS see aerosol time-of-flight mass
 spectrometer
automated pollen counting, quantification
 and characterization of
 bioaerosols 98

b
Bacillus anthracis, bioterrorism 259–262
bacteria
 biodiversity 9
 biofilms 8
 genetic material 7–8
 overview 7–9
 prevalence 8–9
 structure 7–8
bioaerosol mass spectrometry
 (BAMS) 96
biodegradation
 cf. radical chemistry 230–232
 cloud chemistry 227–232, 238
biofilms 8
biofluorophores, biomarker 61–62
biogenic INPs 206–207, 208, 209–210
biological activity-based methods
 adenosine 5’-triphosphate (ATP) 66–67
 enzymatic activity 66
 quantification and characterization of
 bioaerosols 65–67
 supplementation with nutrients 65
 supplementation with radiolabeled
 precursors of anabolism 65–66
 virus infectivity 67
biological tracers see chemical and
 biological tracers
biomarkers
 biofluorophores 61–62
 endotoxins 61
 ergosterol 61
 fluorescent biological aerosol particles
 (FBAPs) 62, 91
 mannitol/arabitol 61
 quantification and characterization of
 bioaerosols 61–62
biomass burning, atmospheric
 dispersion 157–158
bioprecipitation hypothesis, ice-nucleating
 particles (INPs) 207–208
BioSampler® 35, 36
biosurfactants, cloud chemistry 237–238
bioterrorism 258–263
 anthrax 259–262
 Bacillus anthracis 259–262
 botulism 262
 classification of bioterrorism
 agents 259–263
 Clostridium botulinum 262
 exposure limit values (ELVs) 263
 Francisella tularensis 262–263
 point detection of biological agents 263
 tularemia 262–263
BLAST (Basic Local Alignment Search
 Tool), microbial isolates 52
botulism, bioterrorism 262
bubble bursting, source of bioaerosols 121
Burkard™ high throughput “jet” spore and
 particle sampler 28, 29
Burkard™ seven day volumetric spore
 trap 29, 31
c
CALMET model, transport of
 bioaerosols 145–146
CALPUFF model, transport of
 bioaerosols 145–146
carboxylic acids degradation, cloud
 chemistry 227–229
CCN see cloud condensation nuclei
centrifugal impactors 29, 33–34
CFDCs see continuous flow diffusion
 chambers
CFUs see colony-forming-units
chamber measurements, emission fluxes 123–124
characterization of bioaerosols see quantification and characterization of bioaerosols
chemical and biological tracers 60–65
biomarkers 61–62
ice nucleation activity 62–63
immunoassay method 65
mass spectrometry 63–64
quantification and characterization of bioaerosols 60–65
spectroscopy 64–65
chemical composition of clouds 222–225
Clostridium botulinum, bioterrorism 262
cloud chemistry 221–239
biodegradation 227–232, 238
biodegradation cf. radical chemistry 230–232
biosurfactants 237–238
carboxylic acids degradation 227–229
chemical composition of clouds 222–225
cloud condensation nuclei (CCN) 221
cloud oxidants interactions 232–234
dissolved organic carbon (DOC) 223–224
exopolymeric substances (EPSs) 236–237
Field Investigations of Budgets and Conversion of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO) 225
formaldehyde degradation 229–230
free radicals 225–227
glycerol derivatives 236
high molecular weight compounds (HMWCs) 235–239
Hill Cap Cloud Thuringia (HCCT) campaign 225
inorganic compounds 224
iron interactions 233–234
methanol degradation 229–230
microbial concentrations 222
oligosaccharides 236–237
organic compound functionalization 235–238
oxidants 224
oxidative reactors, clouds as 225–227
pyoverdines 234
reactive oxidant species 232–233
secondary organic aerosol (SOA) 222
siderophores 234
water-soluble organic compounds (WSOCs) 223
cloud condensation nuclei (CCN) 221
cloud droplet impactor 29, 30
cloud simulation laboratories, ice-nucleating particles (INPs) 201–202
colonization of habitats
agriculture invasion 274–277
ecosystems 270–274
fungi 270
high-altitude/latitude environments 273–274
lakes 273–274
lichen 272–273
research opportunities 276–277
rocks 272–273
volcanic eruption deposits 270–272
colony-forming-units (CFUs), microbial isolates 50–51
concentration factors, sources of bioaerosols 122–123
contact freezing measurements, ice-nucleating particles (INPs) 202
contamination filtration 27
planetary exploration implications 175–176
continuous flow diffusion chambers (CFDCs), ice-nucleating particles (INPs) 200
Coriolis® μ sampler 29, 33
COSMO-ART model, transport of bioaerosols 145–146
CTC, fluorochrome 54–55
cultivation of microorganisms 27
culture-based methods, transport of microorganisms 165–166
cultures
fungi 51–52
microbial isolates 49–51
viruses 52–53
cyclones 29, 33–34
d
DAPI, fluorochrome 54
data analysis strategies, single‐particle fluorescence spectroscopy 94, 95
DCECC see Dynamically Controlled Expansion Cloud simulation Chamber
denaturing or thermal gradient gel electrophoresis (DGGE/TGGE), quantification and characterization of bioaerosols 58–59
deposition processes, transport of bioaerosols 138–140
DGGE/TGGE see denaturing or thermal gradient gel electrophoresis
diffusion chambers, ice‐nucleating particles (INPs) 199–200
Digitel DHA‐80 high‐volume filter sampler 25–27
dispersal patterns, transport of bioaerosols 147–148
dispersal scales, transport of bioaerosols 140–142
dispersion, atmospheric see atmospheric dispersion
dissolved organic carbon (DOC), cloud chemistry 223–224
DNA extraction and amplification, quantification and characterization of bioaerosols 56–57
DOC see dissolved organic carbon
downwind dispersion modelling, emission fluxes 125–126
dry deposition, transport of bioaerosols 139
dust fall collectors 24–25
Dynamically Controlled Expansion Cloud simulation Chamber (DCECC) 202
e
earthquakes, atmospheric dispersion 157–158
ecological advantages, ice‐nucleating particles (INPs) 207–208
ecosystems 269–277
colonization of virgin and extreme habitats 270–274
EDC see electrostatic dust fall collectors
EDX see energy‐dispersion X‐ray spectroscopy
electron microscopy 55
electrostatic dust fall collectors (EDC) 25
electrostatic sampling 36–40
concerns 39–40
Electrostatic Aerosol Sampler 37
ELPI® (Electrical Low Pressure Impactor) 38
improved detection sensitivity 37–38
native microorganism charges 39
personal/portable samplers 38–39
wet electrostatic precipitator (WEP‐2) 37
ELPI® (Electrical Low Pressure Impactor) 38
ELVs see exposure limit values
emission fluxes
bacterial emission fluxes 149
chamber measurements 123–124
downwind dispersion modelling 125–126
flux‐grade relationships 124–125
source of bioaerosols 123–126
transport of bioaerosols 149
vertical atmospheric fluxes 125
emission mechanisms 119–123
abrasive damage 120
abrasive dislodgement 120
active release 119–120
bubble bursting 121
concentration factors 122–123
erosion 120
man‐made systems 121–122
passive release 119–120
selection during aerosolization 122–123
sources of bioaerosols 119–123
emission models,
microorganisms 167–174
endotoxins, biomarker 61
energy-dispersion X-ray (EDX) spectroscopy 65
ENVI BIOSCOUT 93–94
enzymatic activity, quantification and characterization of bioaerosols 66
epidemiological data in documented environments, hazardous potential of bioaerosols 252–253
epifluorescence microscopy 54–55
EPSs see exopolymeric substances
ergosterol, biomarker 61
erosion, source of bioaerosols 120
Eulerian models, transport of bioaerosols 145–146
exopolymeric substances (EPSs), cloud chemistry 236–237
exposure limit values (ELVs), bioterrorism 263
flux-grade relationships, emission fluxes 124–125
formaldehyde degradation, cloud chemistry 229–230
Fourier transform infrared spectroscopy (FTIRS) 64
Francisella tularensis, bioterrorism 262–263
free radicals, cloud chemistry 225–227
FTIRS see Fourier transform infrared spectroscopy
fungal spore surveillance 255–256
fungi
colonization of habitats 270
cultures 51–52
diversity 6
global emission rate 5–6
health issues 6–7
overview 5–7
Gaussian dispersal models, transport of bioaerosols 143–144
glycerol derivatives, cloud chemistry 236
Hadley cell, atmospheric dispersion 156
Field Investigations of Budgets and Conversion of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO), cloud chemistry 225
filter collection, ice-nucleating particles (INPs) 200
filtration
contamination 27
cultivation of microorganisms 27
Digitel DHA-80 high-volume filter sampler 25–27
sampling technique 25–27
fingerprint techniques, quantification and characterization of bioaerosols 58
FLAPS see fluorescence aerodynamic particle sizer
flow cytometry, quantification and characterization of bioaerosols 56
fluorescence aerodynamic particle sizer (FLAPS) 88–90, 263
fluorescent biological aerosol particles (FBAPs), biomarker 62, 91
fluorochromes, epifluorescence microscopy 54–55
fluorochromes, epifluorescence microscopy 54–55
fluorochromes, epifluorescence microscopy 54–55
fluence-grade relationships, emission fluxes 124–125
formaldehyde degradation, cloud chemistry 229–230
Fourier transform infrared spectroscopy (FTIRS) 64
Francisella tularensis, bioterrorism 262–263
free radicals, cloud chemistry 225–227
FTIRS see Fourier transform infrared spectroscopy
fungal spore surveillance 255–256
fungi
colonization of habitats 270
cultures 51–52
diversity 6
global emission rate 5–6
health issues 6–7
overview 5–7
Gaussian dispersal models, transport of bioaerosols 143–144
glycerol derivatives, cloud chemistry 236
Hadley cell, atmospheric dispersion 156
Field Investigations of Budgets and Conversion of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO), cloud chemistry 225
filter collection, ice-nucleating particles (INPs) 200
filtration
contamination 27
cultivation of microorganisms 27
Digitel DHA-80 high-volume filter sampler 25–27
sampling technique 25–27
fingerprint techniques, quantification and characterization of bioaerosols 58
FLAPS see fluorescence aerodynamic particle sizer
flow cytometry, quantification and characterization of bioaerosols 56
fluorescence aerodynamic particle sizer (FLAPS) 88–90, 263
fluorescent biological aerosol particles (FBAPs), biomarker 62, 91
fluorochromes, epifluorescence microscopy 54–55
fluence-grade relationships, emission fluxes 124–125
formaldehyde degradation, cloud chemistry 229–230
Fourier transform infrared spectroscopy (FTIRS) 64
Francisella tularensis, bioterrorism 262–263
free radicals, cloud chemistry 225–227
FTIRS see Fourier transform infrared spectroscopy
fungal spore surveillance 255–256
fungi
colonization of habitats 270
cultures 51–52
diversity 6
global emission rate 5–6
health issues 6–7
overview 5–7
Gaussian dispersal models, transport of bioaerosols 143–144
glycerol derivatives, cloud chemistry 236
Hadley cell, atmospheric dispersion 156
Field Investigations of Budgets and Conversion of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO), cloud chemistry 225
filter collection, ice-nucleating particles (INPs) 200
filtration
contamination 27
cultivation of microorganisms 27
Digitel DHA-80 high-volume filter sampler 25–27
sampling technique 25–27
fingerprint techniques, quantification and characterization of bioaerosols 58
FLAPS see fluorescence aerodynamic particle sizer
flow cytometry, quantification and characterization of bioaerosols 56
fluorescence aerodynamic particle sizer (FLAPS) 88–90, 263
fluorescent biological aerosol particles (FBAPs), biomarker 62, 91
fluorochromes, epifluorescence microscopy 54–55
fluence-grade relationships, emission fluxes 124–125
formaldehyde degradation, cloud chemistry 229–230
Fourier transform infrared spectroscopy (FTIRS) 64
Francisella tularensis, bioterrorism 262–263
free radicals, cloud chemistry 225–227
FTIRS see Fourier transform infrared spectroscopy
fungal spore surveillance 255–256
fungi
colonization of habitats 270
cultures 51–52
diversity 6
global emission rate 5–6
health issues 6–7
overview 5–7
Gaussian dispersal models, transport of bioaerosols 143–144
glycerol derivatives, cloud chemistry 236
Hadley cell, atmospheric dispersion 156
Field Investigations of Budgets and Conversion of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO), cloud chemistry 225
filter collection, ice-nucleating particles (INPs) 200
filtration
contamination 27
cultivation of microorganisms 27
Digitel DHA-80 high-volume filter sampler 25–27
sampling technique 25–27
fingerprint techniques, quantification and characterization of bioaerosols 58
FLAPS see fluorescence aerodynamic particle sizer
flow cytometry, quantification and characterization of bioaerosols 56
fluorescence aerodynamic particle sizer (FLAPS) 88–90, 263
fluorescent biological aerosol particles (FBAPs), biomarker 62, 91
fluorochromes, epifluorescence microscopy 54–55
fluence-grade relationships, emission fluxes 124–125
formaldehyde degradation, cloud chemistry 229–230
Fourier transform infrared spectroscopy (FTIRS) 64
Francisella tularensis, bioterrorism 262–263
free radicals, cloud chemistry 225–227
FTIRS see Fourier transform infrared spectroscopy
fungal spore surveillance 255–256
fungi
colonization of habitats 270
cultures 51–52
diversity 6
global emission rate 5–6
health issues 6–7
overview 5–7
Gaussian dispersal models, transport of bioaerosols 143–144
glycerol derivatives, cloud chemistry 236
Hadley cell, atmospheric dispersion 156
Field Investigations of Budgets and Conversion of Particle Phase Organics in Tropospheric Cloud Processes (FEBUKO), cloud chemistry 225
filter collection, ice-nucleating particles (INPs) 200
filtration
contamination 27
cultivation of microorganisms 27
Digitel DHA-80 high-volume filter sampler 25–27
sampling technique 25–27
fingerprint techniques, quantification and characterization of bioaerosols 58
FLAPS see fluorescence aerodynamic particle sizer
flow cytometry, quantification and characterization of bioaerosols 56
fluorescence aerodynamic particle sizer (FLAPS) 88–90, 263
fluorescent biological aerosol particles (FBAPs), biomarker 62, 91
fluorochromes, epifluorescence microscopy 54–55
fluence-grade relationships, emission fluxes 124–125
formaldehyde degradation, cloud chemistry 229–230
Fourier transform infrared spectroscopy (FTIRS) 64
Francisella tularensis, bioterrorism 262–263
free radicals, cloud chemistry 225–227
FTIRS see Fourier transform infrared spectroscopy
fungal spore surveillance 255–256
fungi
colonization of habitats 270
cultures 51–52
diversity 6
global emission rate 5–6
health issues 6–7
overview 5–7
Gaussian dispersal models, transport of bioaerosols 143–144

health issues (contd.)
 infectious diseases 253–254
 mucous membrane irritation syndrome (MMIS) 258
 non-infectious agents 256–258
 occupational environments 251–252
 pollen grain surveillance 255–256
 size of bioaerosol particles 252
 toxic disease-associated bioaerosols 254–258
high-altitude/latitude environments, colonization 273–274
high molecular weight compounds (HMWCs)
 cloud chemistry 235–239
 via microbial activity vs. radical chemistry 235–238
Hill Cap Cloud Thuringia (HCCT) campaign, cloud chemistry 225
Hirst spore traps 30–31
historical context, atmospheric dispersion 155–156
HMWCs see high molecular weight compounds
hypersensitivity disease-associated bioaerosols 254–258
HYSPLIT model, transport of bioaerosols 145–146

i
ice-nucleating particles (INPs) 197–210
 Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber 201–202
 atmospheric implications 207–210
 biogenic INPs 206–207, 208, 209–210
 bioprecipitation hypothesis 207–208
 cloud simulation laboratories 201–202
 compositional analyses 203
 contact freezing measurements 202
 diffusion chambers 199–200
 Dynamically Controlled Expansion Cloud simulation Chamber (DCECC) 202
 ecological advantages 207–208
 field studies 203–207
 filter collection 200
 individual INPs analysis 203
 laboratory experiments 203–207
 Leipzig Aerosol Cloud Interaction Simulator (LACIS) 202
 measuring 197–203
 oceans 206–207
 Pantoea spp. 204, 205
 precipitation collection 200–201
 precipitation correlation 208–209
 precipitation formation 209–210
 Pseudomonas spp. 199, 204, 205, 208
 secondary ice generation 209–210
 ice nucleation activity, quantification and characterization of bioaerosols 62–63
 immunoassay method, quantification and characterization of bioaerosols 65
 immunogenic responses
 airborne agents 254–255
 microbe-associated molecular patterns (MAMPs) 254–255
 impaction 28–34
 active impactors 29, 30
 Andersen sampler 31–32, 39
 Burkard™ seven day volumetric spore trap 29, 31
 centrifugal impactors 29, 33–34
 cloud droplet impactor 29, 30
 Coriolis® µ sampler 29, 33
 cyclones 29, 33–34
 Hirst spore traps 30–31
 MOUDI™ Cascade Impactor 32–33
 passive impactors 29–30
 Reuter Centrifugal Sampler (RCS®) 29, 33–34
 rotating arm collectors 29, 30
 sampling technique 28–34
 six-stage Andersen sampler 29, 31–32, 39
 string collectors 29, 30
 impingement 34–36
 All-Glass Impinger AGI-30: 35, 36
 BioSampler® 35, 36
 sampling technique 34–36
 SASS-2300 36
 indoor sources of bioaerosols 117–119
 inertia-based samplers 28–34
infectious diseases, bioaerosols association 253–254
inorganic compounds, cloud chemistry 224
INPs see ice-nucleating particles iron interactions, cloud chemistry 233–234

L
LACIS see Leipzig Aerosol Cloud Interaction Simulator
Lagrangian stochastic models, transport of bioaerosols 144–146
lakes, colonization 273–274
LAMB see Life's Atmospheric Microbial Boundary
Leipzig Aerosol Cloud Interaction Simulator (LACIS) 202
lichen, rocks colonization 272–273
LIDAR see Light Detection and Ranging
Life's Atmospheric Microbial Boundary (LAMB) 176
Light Detection and Ranging (LIDAR) Bacillus anthracis 263
quantification and characterization of bioaerosols 97
light microscopy 53–54
Live/Dead® (Baclight™), fluorochrome 55

M
MALDI see matrix assisted laser desorption/ionization
MAMPs see microbe-associated molecular patterns
man-made systems, sources of bioaerosols 121–122
mannitol/arabitol, biomarker 61
mass spectrometry aerosol mass spectrometer (AMS) 97
aerosol time-of-flight mass spectrometer (ATOFMS) 96
bioaerosol mass spectrometry (BAMS) 96
bioaerosols 94–97
quantification and characterization of bioaerosols 63–64, 94–97
matrix assisted laser desorption/ionization (MALDI), mass spectrometry 63
MDA see multiple displacement amplification
MESO-NH model, transport of bioaerosols 145–146
metabolic characterization, microbial isolates 49–53
meteorological factors, impact of sources of bioaerosols 128–129
methanol degradation, cloud chemistry 229–230
METRAS model, transport of bioaerosols 145–146
microarrays, quantification and characterization of bioaerosols 60
microbe-associated molecular patterns (MAMPs), immunogenic responses 254–255
microbial concentrations, cloud chemistry 222
microbial diversity, impact of sources of bioaerosols 127–128
microbial isolates
BLAST (Basic Local Alignment Search Tool) 52
colony-forming-units (CFUs) 50–51
cultures 49–51
metabolic characterization 49–53
most probable number (MPN) 50
phenotypic characterization 49–53
quantification and characterization of bioaerosols 49–53
trypticase soy agar (TSA) 51
viable-but-not-culturable (VBNC) state 49
microbial loads, impact of sources of bioaerosols 126–127
microbial source tracking (MST) 129–130
microorganisms atmospheric dispersion 161–167
emission models 167–174
life in other atmospheres 176–178
Life's Atmospheric Microbial Boundary (LAMB) 176
long-range transport studies 165–167
planetary exploration implications 174–178
residence time 167–174
microorganisms (contd.)
 survival during transport 142–143, 146
 survival in the atmosphere 162–165
 transport history 172–174
 ubiquity 161–162
 Venus 176–178
microscopy 53–56
 electron microscopy 55
 epifluorescence microscopy 54–55
 flow cytometry 56
 light microscopy 53–54
 quantification and characterization of bioaerosols 53–56
MM5 model, transport of bioaerosols 145–146
MMIS see mucous membrane irritation syndrome
modeling tools, transport of bioaerosols 143–146
molecular-based methods, transport of microorganisms 166–167
molecular tracer techniques, quantification and characterization of bioaerosols 98
most probable number (MPN), microbial isolates 50
MOUDI™ Cascade Impactor 32–33
MPN see most probable number
MST see microbial source tracking
mucous membrane irritation syndrome (MMIS) 258
multiple displacement amplification (MDA) 57

n
native microorganism charges, electrostatic sampling 39
NMR see nuclear magnetic resonance spectroscopy
non-infectious agents 256–258
nuclear magnetic resonance (NMR) spectroscopy 64
nucleic acid-based methods 56–60
 amplified ribosomal DNA restriction analysis (ARDRA) 59
 analysis of the diversity 58–59
denaturing or thermal gradient gel electrophoresis (DGGE/TGGE) 58–59
DNA extraction and amplification 56–57
fingerprint techniques 58
microarrays 60
quantification and characterization of bioaerosols 56–60
quantitative PCR (qPCR) 57–58
restriction fragments length polymorphism (RFLP) 58
ribosomal intergenic spacer analysis (RISA) 59
sequencing 58, 59–60
terminal restriction fragment length polymorphism (T-RFLP) 58

o
occupational environments, health issues 251–252
oligosaccharides, cloud chemistry 236–237
organic compound functionalization, cloud chemistry 235–238
outdoor sources of bioaerosols 117–119
oxidants, cloud chemistry 224
oxidative reactors, clouds as 225–227

p
Pantoea spp., ice-nucleating particles (INPs) 204, 205
particle dynamics, transport of bioaerosols 138–140
passive impactors 29–30
passive release, source of bioaerosols 119–120
passive sampling 24–25
PBA see primary biological aerosols
PBAP detection via elemental analysis, quantification and characterization of bioaerosols 98
PBL see planetary (or atmospheric) boundary layer
PCR see polymerase chain reaction
personal/portable samplers, electrostatic sampling 38–39
phenotypic characterization, microbial isolates 49–53
planetary (or atmospheric) boundary layer (PBL), transport of bioaerosols 141–142
planetary exploration implications aerobiology informs astrobiology 174 contamination 175–176 false positives 175–176 natural boundary of the biosphere 174–175 other planetary atmospheres 176–178 transport of bioaerosols 174–178 plant canopies, transport of bioaerosols 144–145 point detection of biological agents 263 Polar cell, atmospheric dispersion 156 pollen overview 4–5 size 4–5 pollen counting, automated 98 pollen grain surveillance 255–256 polymerase chain reaction (PCR) 57–60 quantitative PCR (qPCR) 57–58 precipitation collection, ice-nucleating particles (INPs) 200–201 precipitation correlation, ice-nucleating particles (INPs) 208–209 precipitation formation, ice-nucleating particles (INPs) 209–210 primary biological aerosols (PBA), overview 3–4 Pseudomonas spp., ice-nucleating particles (INPs) 199, 204, 205, 208 pyoverdines, cloud chemistry 234

sampling techniques 23–40
challenges 23–24
dust fall collectors 24–25
electrostatic dust fall collectors (EDC) 25
electrostatic sampling 36–40
filtration 25–27
impaction 28–34
impingement 34–36
inertia-based samplers 28–34
passive sampling 24–25
sedimentation samplers 28, 29
surface sampling 24–25
Sanger sequencing, quantification and characterization of bioaerosols 58, 59–60
SASS-2300, impingement 36
SBL see surface boundary layer
scanning electron microscopy (SEM) 55
near-edge X-ray absorption fine structure (STXM-NEXAFS) spectroscopy 65
SEM coupled to energy-dispersion X-ray (SEM/EDX) spectroscopy 65
secondary ice generation, ice-nucleating particles (INPs) 209–210
secondary organic aerosol (SOA), cloud chemistry 222, 224
sedimentation samplers 28, 29
Burkard™ high throughput “jet” spore and particle sampler 28, 29
selection during aerosolization, source of bioaerosols 122–123
SEM see scanning electron microscopy sequencing, quantification and characterization of bioaerosols 58, 59–60
seven day volumetric spore trap 29, 31
SIBS see spectral intensity bioaerosol sensor siderophores, cloud chemistry 234
SILAM model, transport of bioaerosols 145–146
single-particle fluorescence spectroscopy 84–94
classes of biofluorophores 84–85
data analysis strategies 94, 95
ENVI BIOSCOUT 93–94
fluorescence aerodynamic particle sizer (FLAPS) 88–90
limitations 85–86
single-particle fluorescence spectrometer (SPFS) 86–87, 95
spectral intensity bioaerosol sensor (SIBS) 90–93
two-wavelength single-particle fluorescence analyzer (2-SPFA) 87–88
ultraviolet aerodynamic particle sizer (UV-APS) 88–90, 91
wideband integrated bioaerosol sensor (WIBS+) 90–93
six-stage Andersen sampler 29, 31–32, 39
size of bioaerosol particles 252
SOA see secondary organic aerosol
sources of bioaerosols 117–131
emission fluxes 123–126
emission mechanisms 119–123
indicators for monitoring bioaerosol emission 129–130
indoor 117–119
meteorological factors 128–129
microbial diversity impact 127–128
microbial loads impact 126–127
microbial source tracking (MST) 129–130
monitoring bioaerosol emission 129–130
outdoor 117–119
predictors of airborne community composition 129–130
predictors of bioaerosol emission 129–130
spectral intensity bioaerosol sensor (SIBS) 90–93
spectroscopy
energy-dispersion X-ray (EDX) spectroscopy 65
Fourier transform infrared spectroscopy (FTIRS) 64
near-edge X-ray absorption fine structure (STXM-NEXAFS) spectroscopy 65
nuclear magnetic resonance (NMR) spectroscopy 64
quantification and characterization of bioaerosols 64–65, 84–94
SEM coupled to energy-dispersion X-ray (SEM/EDX) spectroscopy 65
single-particle fluorescence spectroscopy 84–94
X-ray photoelectron spectroscopy (XPS) 64
SPFS (single-particle fluorescence spectrometer) 86–87, 95
string collectors 29, 30
supplementation with nutrients, quantification and characterization of bioaerosols 65
supplementation with radiolabeled precursors of anabolism, quantification and characterization of bioaerosols 65–66
surface boundary layer (SBL), transport of bioaerosols 141
surface sampling 24–25
survival during transport, microorganisms 142–143, 146
survival in the atmosphere, microorganisms 162–165
survival of microorganisms, transport of bioaerosols 142–143, 146
SYBR® Green I and II, fluorochrome 54

TEM see transmission electron microscopy
terminal restriction fragment length polymorphism (T-RFLP), quantification and characterization of bioaerosols 58
total reflection X-ray fluorescence (TXRF) analysis 64–65
toxic disease-associated bioaerosols 254–258
tracers see chemical and biological tracers
traffic aerosols, atmospheric dispersion 160
transmission electron microscopy (TEM) 55
transport history, microorganisms 167–174
transport of bioaerosols 137–149
bacterial emission fluxes 149
CALMET model 145–146
CALPUFF model 145–146
concentration variations downwind from sources 147–148
COSMO-ART model 145–146
deposition processes 138–140
dispersal patterns 147–148
dispersal scales 140–142
emission fluxes 149
emission models 167–174
Eulerian models 145–146
Gaussian dispersal models 143–144
global models 168–172
HYSPLIT model 145–146
implications 137
Lagrangian stochastic models 144–146
landscape-scale patterns 148
larger scales 145–146
length scales 137
MESO-NH model 145–146
METRAS model 145–146
MM5 model 145–146
modeling tools 143–146
particle dynamics 138–140
planetary (or atmospheric) boundary layer (PBL) 141–142
planetary exploration implications 174–178
plant canopies 144–145
processes 140–142
regional models 168–172
release conditions 147
residence time 167–174
SILAM model 145–146
stages 138
surface boundary layer (SBL) 141
survival of microorganisms 142–143, 146
transport history 172–174
transport of microorganisms

culture-based methods 165–166
methods 165–167
molecular-based methods 166–167
T-RFLP see terminal restriction fragment length polymorphism
trypsinase soy agar (TSA), microbial isolates 51

TSA see trypsinase soy agar

tularemia, bioterrorism 262–263
two-wavelength single-particle fluorescence analyzer (2-SPFA) 87–88

TXRF see total reflection X-ray fluorescence analysis

u
ultraviolet aerodynamic particle sizer (UV-APS) 88–90, 91

v
Venus, microorganisms 176–178
vertical atmospheric fluxes, emission fluxes 125
viable-but-not-culturable (VBNH) state, microbial isolates 49
virus 10–11
cultures 52–53
quantification and characterization of bioaerosols 52–53, 67

VNBC see viable-but-not-culturable state

volcanic aerosols, atmospheric dispersion 157–158
volcanic eruption deposits, colonization 270–272

w
water-soluble organic compounds (WSOCs), cloud chemistry 223
wet deposition, transport of bioaerosols 139
wet electrostatic precipitator (WEP-2) 37
wideband integrated bioaerosol sensor (WIBS+) 90–93
wind, atmospheric dispersion 156–157
WSOCs see water-soluble organic compounds

x
X-ray photoelectron spectroscopy (XPS) 64