Index

Figures and tables are indicated by italic page numbers, boxes by bold numbers, and text in the Foreword shown as roman numbers (e.g. “xxiv”)

ABS (Anti-lock Braking System) 39, 59, 224
ACC (Adaptive Cruise Control) 208, 215
active safety systems 39
ad-hoc networking concept 40
adaptive background approach [to detection] 176
adaptive light control systems 210, 213–14
ADAPTIVE project xxviii
adaptive traffic control
with public transport priorities 284–5
cooperative approach used 285–7
adaptive traffic light control systems 264, 265
ADAS (Advanced Driver Assistance Systems) 108, 206–17
applications 211–17
classification of systems 235
control functions 207
control levels 207–8
eyear projects 208–10
future trends 226–7
legal aspects 227–37
liability issues 234–7
map-supported systems 216–17
and Vienna Convention 230
ADASE (Advanced Driver Assistance Systems in Europe), architecture compatibility 11
advanced vehicle systems 224, 225–6
AEB (Advanced Emergency Braking Systems) 224, 225
AID (Automatic Incident Detection) systems 257, 260–3
algorithms used 261–2
traffic-flow-based 263
video-based 260–1, 263
AIDE project xxvi
alarm showers [broadcast storm] 59, 60
ALINEA [ramp metering] algorithm 275
with other traffic management systems 278
AM radio [MW & LW]
antennas 132, 133, 134, 135, 145, 146
frequency bands 132
ANFIS (adaptive neural–fuzzy inference system) algorithm 277
ANN (artificial neural networks) 277
ANPR (Automatic Number Plate Recognition) systems 170, 256
antennas electronics adjacent to antenna 145–6
hidden/integrated antennas 131, 134–7, 140–1, 147
intelligent/smart antennas 145–6
locations within vehicles 107, 109, 119, 134–7, 140–1
antennas (cont’d)
EM field distribution affected by 118–22
radio antennas 132–7
roof-mounted antennas 132–3, 137–9, 145–6
Telematics antennas 137–41
Architecture and Standards Regulation [USA] 27–8, 34
ARIMA technique 191, 262
ASILs (automotive safety integrity levels) 87, 101, 240
ASV (Advanced Safety Vehicle) projects 208
ATIS (Advanced Traveller Information Systems) 316
attack potential
on ADAS 241
and attack success probability 95, 97, 103
ranking 95, 96
attack trees 90–2
risk evaluation using 97–100, 103
automatic parking systems 232
automotive cyber security vulnerabilities 84–6
electromagnetic vulnerabilities 85–6
information security 85
automotive security threats
controllability classification 95, 97
probability classification 95, 96, 97
risk classification 95, 97, 98
severity classification 93–5
autonomous driving systems
levels 208, 227, 228
liability issues 235–6
and Vienna Convention 233–4
see also ADAS
AVCS (advanced vehicle-control systems) 208
average image method [for detection] 176
AVS (advanced vehicle systems) 224, 225–6
‘backdoors’ [to computer systems] 85
bandjacking techniques 79–80
BAS (Brake Assist Systems) 223–4, 225
basic concepts, detection of 174
Basque Government, public transport data 316–17, 328
BASt, categorization of vehicle automation
levels 227, 229
billing and toll applications, video-based
systems 170
Bluetooth wireless technology
frequency bands 109
intra-car use 111, 141
Böhm, Annette 63, 64
broadcast radio
antennas 132–7
hidden glass 134–6
hidden and integrated 136–7
roof-mounted 132–3
frequency bands 132
BSW (Blind Spot Warning) system 208, 212
C2C-CC (Car-to-Car Communication Consortium) 8
reference architecture 12
CABINTEC project 291
CACC (Cooperative Adaptive Cruise Control) 215
CAM (Cooperative Awareness Messages) 62, 75
Campbell, J.L. 319
CAN (Controller Area Network) bus 108, 144, 145, 146, 207, 291
cyber security attack 84
Car2Car communications 141
antennas 141–3
standard covering 44, 49, 141
Carlink project 43
CARS 21 High Level Group 223
CAS (Collision Avoidance Systems) 225, 226
and Vienna Convention 230, 231
Castro, M. 299
CC (Cruise Control) systems 215, 230
CCW (Cooperative Collision Warning) systems 49, 60
CEIT, truck driving simulator 292
cellular communications 43
2G network, frequency bands 137
3G network 43, 45, 46
antennas 137, 138, 140, 144
frequency bands 137
4G network, antennas 137, 143
GPRS system 43, 45, 47
LTE network 43, 47, 54
see also mobile telephony
channel characterization experiments 109–11
CITRIC platform 154, 155, 172
closed-loop automated control systems 263, 264–5
CMBS (Collision Mitigation Braking Systems) 225–6
CMUcam embedded vision systems 172, 173
GO-GISTICS [Cooperative ITS pilot] 9
CO2 emissions, transportation sector 316, 317
CoAP (Constrained Application Protocol) 156, 157
resource-manipulation methods 157, 158, 160
collision avoidance/warning systems 49, 51, 60, 208, 210, 213, 225–6
collision-free MAC protocols 64
combined V2V + V2I communications access network 52–3
COMeSafety initiative 9, 10
CoMoSeF (Co-operative Mobility Services of the Future) project 44, 45
COMPASS4D [Cooperative ITS pilot] 9
complex systems development, best practice for 237–42
complexity, classification of 238
computer vision algorithms 173
congestion see traffic congestion
connectivity, factors affecting 42–3, 51–2, 60, 63
Contiki operating system 164, 182
controllability classification
 automotive safety hazards 230
 automotive security threats 95, 97, 103
cooperation, as form of organization 273
cooporative approach
 examples 274
 main characteristics 274
cooporative collision-avoidance/warning
 applications 49, 51, 60
Cooperative Cybernetics Transport System, architecture
design for 10–13
Cooperative ITS systems
 basic principles 281
 European policy framework 9
 and FRAME Architecture [Europe] 9–10
 and National ITS Architecture [USA] 35
 pilots and field operational tests 8–9
 research projects 7–8
 standardization framework 9
 traffic management data from 259–60
 use in urban traffic management 272–88
cooperative ramp metering 277–80
 cooperation between local ramp meters 277–8
 cooperation between ramp metering and other traffic
 management systems 278–80
COOPERS project xxvi, 8, 11
 'criticality', meaning of term 290
 cruise control systems 215, 230
CSMA/CA (Carrier Sense Multiple Access with
 Collision Avoidance) 47, 58
 use by IEEE 802.11p 58, 63
CST Microwave Studio model 116
 results compared with in-vehicle measurements 116,
 117–18
CST toolset 112
CTMSIM [cooperative ramp metering]
 simulator 277–8
CVIS project xxvii, 8, 10, 11
CVRIA (Connected Vehicle Reference Implementation
 Architecture) 35
CWS (Collision Warning System) 213
cyber security
 ADAS-related 241–2
 meaning of term 84
 cyber security risk management 102–3
 cyber security threats
 stakeholders involved 90, 90
 threat agents involved 89–90, 90
Cybercars-2 project 10–13
 architecture design
 Communication Architecture 12–13, 14
 Functional Architecture 12, 13
 Physical Architecture 12
 reference architecture 12

Cyclops sensor 172
DAB (Digital Audio Broadcasting) radio
 antennas 132, 134, 135
 frequency bands 132
 'dark-side scenarios’ 88, 90
DAS (Dynamic Spectrum Access) technology,
 frequency bands 109
'Day One' set of services [for ITS Cooperative
 Systems] 44, 50, 259–60
deadline miss ratio 62
delay, in active traffic safety applications 61
DESERVE project 207, 210
dielectric materials [in vehicles]
 electrical properties 115
 EM field distribution affected by 111
digital radio
 antennas 132, 133, 134, 135
 frequency bands 132
distributed architecture, transport-linked
 information 325–6
Doppler effect 41
Doppler spread 111
downstream bottleneck 275, 276
DRIVE C2X project xxvii
DRIVE Safely project 87, 95, 230
driver assistance systems
 definition 231
 implications of Vienna Convention 230–1
 see also ABS; ACC; BAS; CAS; CMBS; cruise
 control; ESC
driver distraction
 accidents caused by 207
 causes 207
driver fatigue
 assessment of 292, 295
 and warning level of messages 302,
 304, 311
driver-drowsiness detection systems 217
DSRC (Dedicated Short-Range Communications)
 service 49, 259, 273
 frequency bands 109
DVB (Digital Video Broadcasting), antennas 134, 135
E-Call (emergency call) system 84, 141, 146
 antennas 143–4
 cyber security attack 92
E-FRAME project 4, 10, 13
EALs (evaluation assurance levels) 88,
 101, 241
eavesdropping 85
EC Directive 85/374/EEC [on product liability] 234,
 235
Index

EC Directive 2007/46/EC [on whole vehicle type approval] 221
amendments 223, 239
‘Complex Electronic Systems’ requirements 240–1
vehicle subcategories 221
vehicle subcategory definitions 222
see also vehicle type approval
EC Regulation 78/2009 223, 224, 226
EC Regulation 661/2009 224, 225, 226, 240
ECBs (Emergency Call Boxes) 251, 257
ECOMOVE project xcviii
ECUs (electronic control units) 39, 108
ECWVTA (Whole Vehicle Type Approval) Directive 221–3
vehicle subcategory definitions 222
EDCA (Enhanced Distributed Channel Access) 64, 65
EDRM (European Digital Road Map) project 323
electromagnetic fields
human exposure to 122–4
interaction with vehicle structure 107, 116–18
reference levels 123
spatial distribution within vehicle 111–12
specific absorption rate levels 123
see also EM field distribution
electromagnetic security vulnerabilities 85–6
EM field distribution [in vehicle]
effect of dielectric furnishings 111
field mitigation methods 125–7
materials used 125, 126
in-vehicle measurements 111–12, 116–18
automated position system used 116, 117
results compared with CST Microwave Studio and Microstripes models 16, 117–18, 118
simulation of 112–16
and antenna placement optimization 118–22
frequency-domain approach 112, 113, 114
simplified CAD model used 112–13, 114
time-domain approach 112, 113, 114
embedded vision nodes [in VSNs]
available prototypes 172–3
computer vision logics 173–5
ITS applications
parking monitoring 178–80
traffic flow analysis 175–8
EMC (electromagnetic compatibility), analysis 110
emergency braking systems 210, 223, 224, 225
see also AEBS; BAS
emergency data broadcasting 42, 52
energy-harvesting module(s) 183
gene management sensors 108
eSafety Forum 8
ESC (Electronic Stability Control) systems 223, 224, 225–6
and Vienna Convention 231
EU Directive(s)
2010/40/EU 9, 151
see also EU Directive(s)
Euro NCAP (European New Car Assessment Programme) 210
European ITS Framework Architecture 3–7
and cooperative systems 282
see also FRAME Architecture
event data recorders 236–7
event(s), traffic management 260, 281
EVITA project 84, 103, 241
attack potential rating 95, 96
attack trees evaluation 91–2
risk levels 101
use cases 88–9
Exterior Lighting Control systems 210, 213–14
FCD (Floating Car Data) providers 258
FCW (Forward Collision Warning) system 226
FEKO software 112
Fielding, R. T. 157
Finnish Meteorological Institute, weather warning systems 43, 45
fleet managers, traffic management information from 258–9
FlexRay™ system 145
cyber security attack 84
floating data 253, 258
flow meters [traffic counting systems] 256
FM radio
antennas 132, 133, 134, 135, 136, 146
frequency bands 132
FMCSA (Federal Motor Carrier Safety Administration)
on event data recorders 237
forward-looking detection systems 213, 226
see also collision avoidance/warning systems
FPGA-based visual sensors 154, 155, 156, 160, 164
FRAME Architecture 3–7
content 6–7
impact of Cooperative Systems 7–10
and MoveUs platform 15
objectives 4
original creation 4
scope 5–6, 6
frame differencing 176
FRBS (Fuzzy Rule-Based Systems) 192, 193
gene (GFRBS) 192
genetic hierarchical (GHFRBS) 193, 194–7
hierarchical (HFRBS) 192, 193–4
frequency bands [for wireless technologies] 109
functional safety standards 86, 87
Fuzzy AdaBoost 199
compared with GHFRBS 200, 201
Fuzzy Chi-RW 199
compared with GHFRBS 200, 201, 202
fuzzy logic
Index

advantage 194
HFSS software 112
HMI (human–machine interface) aspects
 in ADAS 211
 in IIMS 293
Horizon 2020 project xxv
hotlines, incident-detection/reporting 257–8
Houda, M. 324
human-centric intelligent driver assistance systems 207
hybrid vehicular access networking 44, 53
I2V communications see V2I communications
IEC 61508 functional safety standard 86, 87, 101, 103, 239, 240, 241
IEEE 802.11 standards 44, 47–8
 IEEE 802.11a 47, 48, 58
 IEEE 802.11b 47–8
 IEEE 802.11bp 145
 IEEE 802.11e 49, 64
 IEEE 802.11g 47, 48
 IEEE 802.11n 47, 48
 IEEE 802.11p 44, 45, 46, 48, 49, 141
 MAC scheme 58, 64, 79
IEEE 802.15.4 standard 154, 156, 182
IEEE 1609 standards 49, 58
IEEE 1616 standard 236
IIMS (Intelligent Information Management System)
 case study 305–10
 HMI design methodology 292–304
Interpretation Model 293–4, 296, 298–302, 311
 case study 306–20
 Filter module 296, 298, 306
 Final Relevance calculation module 299, 307–10
 Message Relevance assessment module 298–9, 307
 Modified Fuzzy Logic module 301–2
 Representation Model 294, 302–4, 311
 ambient lighting colour profile 304
 case study 310
 implementation of 303–4
 warning levels of messages 303–4
Signal Model 293, 295–6, 311
 case study 305–6
 example 297
 validation framework for 291–2
In-Vehicle Information System messages, display of 291
incident detection 282, 283
incident-detection algorithms 261–2
incident management 280–3
 and cooperative systems 281–3
information security 85
infrastructure-based collision-free MAC protocols 63–5
infrastructure-based vehicle communications for safety applications, rationale for 59–61

in IIMS Interpretation Model 296, 299–302
ramp metering algorithms based on 277
see also FRBS

GAs (Genetic Algorithms) 192
Gaussian distribution method [for detection] 176
Gaussian Mixture Models [for detection] 176
GDF (Geographic Data File) 323
geographical data interoperability 323
Geonames 326, 328
GEONET project 8
GFRBS (Genetic Fuzzy Rule-Based System) 192
GHFRBS (Genetic Hierarchical Fuzzy Rule-Based System) 193, 194–4
 chromosome evaluation 197
 coded matrix for rule-base consequences 195–6
 compared with soft computing techniques 200, 201, 202
 congestion prediction problem model 199
 dataset configuration and simplification 197–8
 analysis of results 201–2
 experimental setup 199
 results 199–201
 genetic operators 196
 lateral tuning codification 195
 permutation encoding of hierarchical structure 194, 195
 steady-state genetic algorithm used 197
GIS (Geographic Information System) systems 323, 324
GNSS (Global Navigation Satellite Systems)
 antennas 138, 139, 140–1, 144, 146
 frequencies used 137
 jamming of 85
 traffic sign recognition 216
see also GPS systems
GNU/Linux operating system 181, 182
Google Transit 316
 example use interface for multimodal transport 317
GPS systems 137, 138
GSM wireless technology, frequency bands 109
GTFS (General Transit Feed Specification) 316, 319, 325
Gunay, A. 324
HAViEit project 207, 209
Hazardous Location Warning system 259
‘heartbeat messages’ 64, 74, 75
HELPER [cooperative ramp metering] algorithm 277
 with other traffic management systems 278, 279
HFRBS (Hierarchical Fuzzy Rule-Based System) 192, 193–4
INSPIRE (Infrastructure for Spatial Information in the European Community) 324
insurance firms, traffic management information from 259
integration of modal transport networks 315
‘intelligent’ antennas for broadcast radio 145–6
for satellite navigation systems 146
Intelligent Car Initiative 7, 223
Intelligent Transportation Systems (ITS) conceptual model xxiv
European Union policy framework 9, 151
main function xxiv
meaning of term xxv, 19, 220, 313
research projects xxvi–xxviii, 209
INTERACTIVE project xxviii, 207
Intermodal Surface Transportation Efficiency Act [1991, USA] 19, 26
intermodal transport 314
intermodality concept 314
Internet protocol suite, compared with IoT protocol stack 157
Internet of Things concept 156 see also IoT
INTERSAFE project 12, 207
intersection collision avoidance 52
interurban traffic environment 251–2
IoT-based communications 156
IoT-based VSNs middleware architecture for 158–61
mobility data as resources 152, 153
reconfigurable in-network processing 152, 159
IoT-based WSNs 152
REST paradigm in 157–8
with vision capabilities 158
IoT protocol stack, compared with Internet protocol suite 157
IoT protocols 156–7
IPERMOB project 155
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) 156
ISA (intelligent speed adaptation) systems 232
ISO 26262 standard 87, 93, 95, 101, 103, 239–40
ISO CALM architecture 8
compatibility 12
ISO/IEC 15408 standard 87, 88, 101, 103, 241
ISO/IEC 18045 standard 87, 103, 241
ISO/IEC TR 15446 standard 241
ISO/TS 16951 standard 290
IT security standards 87–8
Iteris, Inc. 20, 26
ITS architecture
Communications Viewpoint [sub-architecture] 6
elements 4
Europe reference 3–17
function 3–4
Functional Viewpoint [sub-architecture] 5–6, 21, 22–3
methodology to create 6
origins in USA 19–20
Physical Viewpoint [sub-architecture] 6, 23–5
US reference 18–35
User Needs/Services 5, 22
ITS development, Architecture and Standards Regulation 27–8
ITS planning 28–9
ITS project development 29–31
IVHS (Intelligent Vehicle-Highway Systems) 19
IWI (Information Warning Intervention) platforms 207, 213
Jonsson, M. 64
KAREN project 4, 7
keyless entry systems antennas 134, 135, 145
cyber security attack 84
KF (Kalman Filter) technique 191
lane change assistant systems 210, 212
lane control signals 251
law enforcement applications, camera-based systems 170
LCDAS (Lane Change Decision Aid System) 210, 212
LDWS (Lane Departure Warning System) 208, 210, 212, 224, 225
legal aspects 227–37
Lemmens, R. 323
liability issues 234–7
LIN (Local Interconnect Network) 108, 145
line-of-sight links 40, 41, 63
linked data 320–1
rating system 321
Linked Open Data 320–1
cloud diagram 322
integrating for multimodal transportation 321–8
Linkededgeodata 326
Liquid Applications 54
LKAS (Lane Keeping Assistance System) 210, 212, 232
LogitBoost 199
compared with GHFRBS 200, 201
long-distance/interurban/international traffic environment 252–3
loop detectors, values reported by 198
Lorenz, B. 323
LSCAS (Low Speed Collision Avoidance System) 208, 213
LTE [telephony] system 43, 47, 54
MAC (medium access control) protocols, vehicular safety applications 61–7
machine learning algorithms 174
Mak, Tony 64
malware 85
map-supported ADAS systems 216–17
master–multislave TDMA scheme 59, 67, 70
MeshEye mote/sensor 154, 155, 172
message prioritization 290–1
METRAN project 208
MFR (Most Forward within Range) propagation model 63
Microstripes model 116
results compared with in-vehicle measurements 116, 117–18, 118
microwave ‘weapons’ 85
MIDAS (Motorway [Highway] Incident Detection and Automatic Signalling) project 263
middleware, meaning of term 158
middleware architecture for IoT-based VSNs 158–61
components
Configuration Manager (CM) 159, 160, 162
Resource Processing Engine (RPE) 159, 160–1, 162
RESTful Web Service (RWS) 159–60, 162
‘parking lot monitoring’ use case 161–4
MISRA (Motor Industry Software Reliability Association)
guidance on safety analysis 87, 240
SILs (safety integrity levels) 101
mobile telephony
antennas 138, 139, 140, 143
EM fields emitted 111
frequency bands 47, 137
see also cellular communications
mobility-related data, extraction and sharing of 152
modes of transport 314
modified fuzzy logic 299–302
base rules 300, 301
fuzzification module 299–300
implementation in IIMS Interpretation Model 301–2
interpolation module 300–2
MoM (Method of Moments), computer modelling using 112, 134
monotonous driving 207
MOST (Media Oriented Systems Transport)
system 108, 145
motorways, RSU deployment in 68–9
MoveUs cloud-based platform architecture 10, 13–17
data flow diagram example 16
design methodology 15, 17
operational scenario 16, 17
reference architecture for 14
Moveuskadi website 316–17
MS-Aloha protocol 66–7
MTO (Multimodal Transport Ontology) 325, 326
multihop networking 40, 41, 51, 52
multimodal transport semantic information, management and provision of 324–8
multimodal transportation 314–15
Linked Open Data integrated for 321–8
multimodal trip planner 326–8
multimodality concept 314
MVEDRs (motor vehicle event data recorders) 236–7
National ITS Architecture [USA] 18–35
and Cooperative ITS 35
development process 20–2
equipment packages 24
evolution of 34–5
guidance documentation 34
impact on ITS development 26–34
Logical Architecture 19, 22–3
Network Surveillance Service package 25, 26, 27
Physical Architecture 19, 23–5
physical partitioning of functions 21–2
planning aspects 28–9
planning and project development application [example] 28–9, 30, 33
Roadway subsystem, relationship between architecture flows and data flows 24
service packages 25
software tool 33–4
standards mapping 25–6
traceability among components 25
User Services 22
website 32
Neural Networks 192
NHTSA (National Highway Traffic Safety Administration, USA)
Automated Vehicles Policy 241
categorization of vehicle automation levels 227, 228
on electronic stability control systems 225
on event data recorders 237
Toyota vehicles investigation 236, 237
on tyre pressure monitoring systems 225
night vision systems 208, 215
Noika Liquid Applications 54
nomadic devices, traffic management information from 258
Nwagboso, C. 291
OBUs (on-board units) 58, 260
role in V-FTT protocol 71
traffic management information from 258
OFDM (orthogonal frequency-division multiplexing) 48, 58
Oliveira, K.M. 324
on-board sensors, increase in numbers 108
ontological geospatial data management 323–4
ontologies 320
OpenStreetMap project 326
ORT (Open Road Tolling) systems 256
OTP (OpenTripPlanner) 317–18, 328
Panoptes sensor 172
park assist systems 214
parking
 automatic systems 232
 monitoring 171, 178–80
‘parking lot monitoring’ use case
 IoT-based VSNs used 161–4
 exposed resources 162–3
 middleware implementation 163–4
parking lot occupancy algorithm 178–9
parking lot occupancy status, VSN applications 152,
 153, 171, 178–80, 184, 185
parking service providers, traffic management
 information from 258
passenger detection system 170
pattern-recognition algorithms 262–3
 deployments 262–3
PCB-based antennas 136, 137, 146
PDTO (Public Transport Domain Ontology) 324
pedestrian detection systems 212–13, 215
PeMS (Performance Measurement System), traffic data
 from 197–8
perception modules 207
perception of road traffic signalization, factors
 affecting 289
Pingatoro, L. 290
‘platoon’ concept 233–4
POIs (points of interest) 326
portable connected infotainment devices 108
PRE-DRIVE C2X project xxvii, 8
PREVENT project xxvi, 11
printed planar inverted F antenna 138
prioritization of messages 290, 308–10
 standards on 290
probability classification, automotive security
 threats 95, 96, 97
Process Traffic Sensor Data specification 23
PROMETHEUS project 7, 209
PT (public transport) cooperative priorities 284–7
public transport, as viable alternative 313
public transport information, semantic modelling
 of 324
Python, in middleware application 161, 163, 164
radar-based technologies 170, 171
radio antennas
 hidden glass 134–6
 hidden and integrated 136–7
 roof-mounted 132–3
ramp metering algorithms 275, 277
 comparison of various algorithms 278–9
 with other traffic management systems 278–9
reference ITS architectures
 Europe 3–17
 see also FRAME
 USA 18–35
 see also National ITS Architecture
regional ITS architectures 27, 28
rejection cascade process 174
reliability, in active traffic safety applications 61
RESPONSE 3 project 230, 237
response plans, traffic management systems 260
REST (REpresentational State Transfer)
 paradigm 157
 use in IoT-based WSNs 157–8
RESTful Web Service 159–60
RFID (radio frequency identity) devices
 channel characterization studies 110–11
 frequency bands 109
risk analysis, security and safety risks 93–102
road signalization
 interaction of drivers 290
 prioritization for various driving
 situations 309
 standards on 290
road traffic
 Geneva Convention 227, 229, 232
 Vienna Convention 227, 229–34
road weather services 43–4
‘road-trains’ 233
roadside inputs [to Traffic Management
 Systems] 255–7
roadside units see RSUs
roadworks signs 296, 297
roadworks warning service 50, 259
roof-mounted antennas 132–3, 137–9
RPE (Resource Processing Engine) 152, 160–1
RPL (Routing Protocol for Low-power and Lossy
 Networks) 156
RSUs (roadside units) 50–1, 58
 deployment on motorways 68–9
 infrastructure window(s) 69–71
 roles 60–1, 64
 in V-FTT protocol 71
 safety zone(s) covered by 68–9
 traffic management data from 259
RT-WiFi protocol 65, 67
 with added TDMA layer 65
RTTI (Real-time Traffic and Travel Information)
 systems 289
rule engines, events dealt with by 260
RWS (Road Weather Station) system 45, 46
SA (Situation Awareness) 289
 factors affecting 290
SAE J2395 standard 290
SAE J3016 standard, categorization of vehicle automation levels 227, 229
SAFESPOT project xxvi, 8, 11, 13
SAFETRIP project xxvii
’safety case’ concept 102, 238–9
safety development process 239–40
safety functional requirements 101, 239
safety implications, effect of cyber security threats 83, 86
safety integrity requirements 101–2, 239
safety messages 59, 74
safety and security, combined analysis 88
safety and security applications, camera-based systems 170
safety severity classification 93
SARTRE project 233
satellite navigation systems
antennas 138–9, 139, 140–1, 146
frequency bands used 137
SCNs (Smart Camera Networks) 168
reasons for introducing distributed intelligent systems 168
see also VSNs (Visual Sensor Networks)
SCOOT (Split Cycle Offset Optimization Technique) 264
’security assurance case’ concept 102, 242
security assurance requirements 101–2
security functional requirements, prioritizing 100–1, 102–3
security requirements, identifying 93
security risk analysis 102–3
security risk graph 97, 98
Seed-Eye board 154, 155, 164, 182
semantic concepts, automatic detection of 173–4
semantic modelling of transport information 324
semantic trip planner 326–8
Semantic Web 320
severity classification, automotive security threats 93–5, 103
ships, collision avoidance system 66
SIFT (Scale Invariant Feature Transform) descriptors 173
SILs (safety integrity levels) 87, 101, 239
SiriusXM® Radio 132
antennas 133
SITI (Information System Inter modal Transport) project 318
smart antennas 145–6
smart cameras
computer vision algorithms used 173–5
urban applications 169–71
see also SCNs
Smart Cities 10, 14
Smartphones, traffic management information from 258
SMS services 44
social networks, traffic management information from 259
Sohn, H. 291
SOS call boxes 257
see also ECBs
speed limit signs 251, 291
spillback effect 274
standards, ITS 9, 26
static background approach [to detection] 176
STDMA (self-organizing TDMA) 66, 67
stopped vehicles, detection of 261
styling requirements [of vehicles], and antenna positioning 131, 134
supervised learning methods 174
sustainable transportation 315
SVM (Support Vector Machines) technique 192
SWARM [ramp metering] algorithm 277
compared with other algorithms 279
systems engineering approach, ITS project development 29–31
T-Res [task resource abstraction mechanism] 160–1
TCCs see traffic control centres
TDM (Travel Demand Management) policies 170
TDMA (time division multiple access) 59, 67
self-organizing 66
Telematics
antennas 137–41
hidden 140–1
intelligent/smart 146
roof-mounted 137–9
frequency bands used 137
see also mobile telephony; satellite navigation systems
threat identification 88–93
TLM (transmission-line matrix) method, computer modelling using 112, 116–18
TMCs see traffic management centres
TMS see traffic management systems
toll charging systems 252
electronic 92
traffic flow data from 256
video-based 170
Toyota vehicles, unintended acceleration of 236, 237
TPMS (tyre pressure monitoring systems) 108, 141, 224–5
traffic congestion
business costs caused by 191
speed categorization 199
traffic congestion prediction problem, experimental study of GHFRBS 199–202
traffic counters 255–6
traffic environments 251–3
interurban 251–2
long-distance/interurban/international 252–3
urban 251
traffic flow analysis, VSN applications 175–8, 184, 186
traffic flow measurement 255–7
traffic forecasting techniques 191–3
traffic-light optimizing/prioritization 50, 264, 265, 281
traffic-light recognition system 215–16, 259
traffic lights 251, 265
traffic management
definitions 250
stakeholders 250, 266
traffic management centres 266–70
operation platforms 268–70
scope 267–8
traffic management framework 253–65
analysis 254, 260–5
inputs 254, 255–60
roadside inputs 255–7
outputs 254, 265
overview of concept 254
traffic management services
analysing stage 250
benefits 250
operating stage 250
planning stage 250
Traffic Management System
architecture 269–70
data-store-based TMS 270
dispersed TMS 270
event-based TMS 269
role of 249, 268–9
TMS levels 269
unified TMS platform 270
traffic management systems 249–71
traffic monitoring, in urban environment 167, 170–1
traffic sensor data, process for collecting 23
Traficam system 171
Trans-European Network 253
transit information
formats and standards 319
new trends 320–1
Transit Signal Priority project architecture
[example] 28, 29
functional requirements 30, 31
standards to be considered 30, 32
subsystem mapping 33
transmission power, dynamic adaptation of 63
transport chain 314
transport information, semantic
modelling of 324
Transportation Improvement Plan (TIP) 28
transportation projects, planning horizons 28
TransXChange system 319
travel planning information systems 316–21
new trends in transit information 320–1
standard travel planning services 316–18
transit information formats and standards 319–21
travel use services 315–16
TSR (Traffic Sign Recognition) products 216
TTE (travel time estimation) service 263–4
Turbo Architecture™ software tool 33–4
tyre pressure monitoring systems 108, 141, 224–5
security vulnerabilities in 84
UNECE (United Nations Economic Commission for Europe)
proposed amendments to Vienna Convention 231, 232
regulations 221, 225, 239, 240
urban highway congestion
consequences 275
sources 275
urban highways 274
effect of on- and off-ramps 274–5
urban traffic environment 251
urban traffic management, Cooperative ITS used in 272–88
urban traffic monitoring and management 170–1
'Urgency', meaning of term 290
USA
laws for autonomous vehicles 233
reference ITS architecture 18–35
see also National ITS Architecture
UWB (ultra-wideband) wireless technology, frequency bands 109
V2I (vehicle-to-infrastructure) communications 50–1
advantages 60–1
meaning of term 42, 50
PVD (Probe Vehicle Data) process 259
standard covering 44, 49, 141
V2V (vehicle-to-vehicle) communications 51–2
advantages and disadvantages 59–60
meaning of term 42
standard covering 44, 49, 141
V2X communications see V2I communications; V2V communications
VANETs (Vehicular Ad-hoc Networks) 50
variable speed limit control systems 264–5
variable speed limit signs 251
VDA (Vehicular Deterministic Access) protocol 65–6, 67
vehicle automation
EU policy 9, 223
levels 208, 227, 228
trends 223–7
see also ADAS
vehicle control systems 206–7
factors influencing consumer market 210
see also ADAS
vehicle interior observation systems 217
vehicle network architecture 88, 89
vehicle stability systems 210
vehicle type approval 221–3
 procedures 222–3
 steps in WVTA process 222
vehicle wiring harness
 replacement by wireless technology 108
 weight 108
vehicular ad-hoc networking 40, 48–50
 advantages 41
vehicular flow analysis 175–8
vehicular networking
 history 39–46
 taxonomy 41–2
types 41
V-FTT (vehicular flexible time-triggered) protocol 59, 67, 68–80
 details 75–80
 and IEEE 802.11p/WAVE standard 78–80
 information flow diagram 71, 72
 overview 71–5
 safety zone 68–9
 characteristics 75
 synchronous messages 74, 75
 time [elementary] cycle
 free period 72, 73, 77
 infrastructure window 69–71, 72, 73
 synchronous OBU window 72, 73, 77
 trigger messages 70, 72, 73–4, 75–7
 warning messages 74
VIC (virtual instrument cluster) display, messages 303, 304
video-based systems
 incident-detection systems 260–1, 263
 law-enforcement 170
 tolling 170
 traffic management 257, 260–1, 263
 and autonomous driving systems 233–4
 definitions 229–30
 and driver assistance systems 230–1
 proposed amendments 231–3
VII (Vehicle Infrastructure Integration) project 49
Viola-Jones detector 173, 174
Virtual Machine based design 154, 155
Vision Mesh board 154, 155
visual sensor node(s)
 available prototypes 154, 155, 172–3
 prototype 180–5
 networking board 182
 power supply and energy harvesting system 182–3
 sensor 182
 vision board 181–2, 183, 184
visual sensors
 installation of 152
 see also VSNs (Visual Sensor Networks)
VMS (Variable Message Signs) 158, 169, 251, 260, 265, 267, 291
VSC (Vehicle Safety Communications) project 12, 49
VSLC (Variable Speed Limit Control) systems 264–5
 cooperation with ramp metering 278–80
VSNs (Visual Sensor Networks) 153–6
 ITS applications 155–6, 175–80
 parking monitoring 178–80, 184, 185
 traffic flow analysis 175–8, 184–5, 186
RoIs (Regions of Interest) 162, 175, 177, 178
 see also SCNs (Smart Camera Networks); visual sensors
WAVE (Wireless Access in Vehicular Environments) system 44, 49
 standards for 58, 78
 weather stations 43–4, 256–7
 weather warning systems 43, 45, 257
WFS (Web Feature Service) Interface Standard 319
WGS84 standard 325
WiCa platform 154, 155
WiFi-based networking 44, 141
 combined with GPRS networking 43
 limitations 49
 standard for 48
WIM (weigh-in-motion) stations 256
wing mirror antennas 137, 144
wireless channel characterization experiments 109–11
 parameters studied 110
 wireless communication(s)
 compared with wired systems 108
 meaning of term 39–40
WiSafeCar project 44, 45
WLAN (Wireless Local Area Networking) 43, 47
wrong-way drivers, detection of 261
WSNs (Wireless Sensor Networks)
 IoT-based 152
 middleware 158
 with vision capabilities 152, 168
 see also VSNs (Visual Sensor Networks)
WVTA (Whole Vehicle Type Approval) Directive 221–3
 requirements 222, 240–1
Xerox, vehicle passenger detection system 170
Zagreb [Croatia]
 city bypass, simulation model 278
 PT demonstration corridor [street] 287
Zhang, A. 291
Zhao, T. 323
ZigBee wireless technology
 frequency bands 109
 intra-car use 111