Contents

List of Contributors xv

1 Sperm Selection Techniques and their Relevance to
ART 1
Luke Simon, Monis B. Shamsi, and Douglas T. Carrell
1.1 Introduction 1
1.2 Need of Sperm Selection in ART 2
1.3 Methodology of Sperm Selection 3
1.3.1 Intracytoplasmic Sperm Injection 3
1.3.1.1 Methodology 4
1.3.1.2 Advantages and Limitations 4
1.3.1.3 Conclusion 6
1.3.2 Intracytoplasmic Morphologically Selected Sperm
Injection 6
1.3.2.1 Methodology 7
1.3.2.2 Advantages and Limitations 7
1.3.2.3 Conclusion 8
1.3.3 Annexin V Labeling 8
1.3.3.1 Methodology 10
1.3.3.2 Advantages and Limitations 10
1.3.3.3 Conclusion 11
1.3.4 Microfluidics 11
1.3.4.1 Methodology 12
1.3.4.2 Advantages and Limitations 13
1.3.4.3 Conclusion 14
1.4 Electrophoretic Sperm Separation 14
1.4.1 Methodology 15
1.4.2 Advantages and Limitations 16
1.4.3 Clinical Importance of Sperm Preparation by Electrophoresis 17
1.4.4 Conclusion 17
1.5 Zeta Test 18
1.5.1 Methodology 18
1.5.2 Advantages and Limitations 19
1.5.3 Clinical Importance 20
1.5.4 Conclusion 20
1.6 Microelectrophoresis Sperm Selection 21
1.6.1 Methodology 21
1.6.2 Advantages and Limitations 23
1.6.3 Clinical Importance 23
1.6.4 Conclusion 24
1.7 Raman Spectroscopy 24
1.7.1 Methodology 24
1.7.2 Advantages and Limitations 26
1.7.3 Clinical Importance 26
1.7.4 Conclusion 27
1.8 Hyaluronic Acid Binding Assay 27
1.8.1 Methodology 28
1.8.2 Advantages and Limitations 28
1.8.3 Clinical Importance 28
1.8.4 Conclusion 29
1.9 Future Perspective 30
References 31

2 In Vitro Maturation of Human Oocytes: Current Practices and Future Promises 45
Catherine M.H. Combelles
2.1 Introduction 45
2.2 Clinical Indications for IVM 46
2.2.1 Ovarian Hyperstimulation Syndrome (OHSS) 46
2.2.2 Polycystic Ovary Syndrome (PCOS) 46
2.2.3 Fertility Preservation 47
2.2.4 Other Indications: Poor Responders, Normo-Ovulatory Patients, and Other Unique Cases 49
2.2.5 Patient Selection 50
2.3 Ovarian Stimulation Approaches for the Retrieval of Immature Oocytes 51
2.4 Maternal Conditions that may Influence IVM 54
2.5 Follicular Origins of Immature Oocytes for IVM 55
2.6 Clinical Safety of IVM 57
2.7 Concluding Remarks towards the Optimization of IVM 58

References 61

3 Molecular Biology of Endometriosis 71
Jayasree Sengupta, G. Anupa, Muzaffer Ahmed Bhat, and Debabrata Ghosh
3.1 Introduction 71
3.2 Brief Background 71
3.2.1 Definition, Pathology, and Demography 71
3.2.2 Phenotypes and Classification 72
3.2.3 Theories of Endometriosis 73
3.2.4 Essential Cellular Pathology 74
3.3 Genetic Basis of Endometriosis 76
3.4 Molecular Mechanisms of Endometriosis 77
3.4.1 Estrogen Dependence and Progesterone Resistance 79
3.4.2 Inflammatory Dysfunction 81
3.4.3 Triad of Molecular Processes: Estrogen/Progesterone Balance, Apoptosis, and Inflammatory Function 82
3.5 Molecular Etiopathological Basis of Endometriosis: Leads in Genomics Era 83
3.5.1 Candidate Genes and Module-Based Studies 83
3.5.2 Large Scale Transcriptomic Studies 86
3.5.3 Genome-Wide Gene Expression Profiles 92
3.5.4 Genome-Wide Association Studies (GWAS) 96
3.6 Molecular Etiopathological Basis of Endometriosis: Leads in the Post-Genomics Era 99
3.6.1 Endometrial Proteome of Endometriosis 99
3.6.2 Epigenetic Landscape in Endometriosis 107
3.6.3 Biomarkers of Endometriosis 112
3.7 Future Targets 113
Acknowledgments 115
Conflicts of Interest 116
References 116
4 Novel Immunological Aspects for the Treatment of Age-induced Ovarian and Testicular Infertility, Other Functional Diseases, and Early and Advanced Cancer Immunotherapy 143
Antonin Bukovsky

4.1 Introduction 143
4.2 Ovarian Infertility 145
4.2.1 Rationale for Using In Vitro Developed Oocyte-like Cells (OLCs) and Possible IVM/IVF Developments for Clinical Use 146
4.2.2 Formal Terms Related to Ovarian Cellular Conditions and Functions 147
4.2.3 Stem Cell Commitment by Embryonic Primordial Germ Cells 148
4.2.4 Role of the Immune System in Ovarian Function 148
4.2.5 Steps Required for Follicular Renewal in Adult Human Ovaries 148
4.2.6 Origin and Development of Ovarian Germ Cells 149
4.2.7 Ovarian Stem Cell Cultures 159
4.2.8 Perspectives of Advanced Age of the Woman, Premature Ovarian Failure, or Other Ovarian Infertility Etiologies by In Vitro Developed Oocytes in Ovarian Stem Cell Cultures 161
4.2.9 Nuclear Transfer 162
4.3 Novel In Vitro Proposals for Ovarian Infertility Treatment 163
4.3.1 Preliminary Strategies for In Vitro Approaches 163
4.3.1.1 Formation of Germ Cells 163
4.3.1.2 Formation of Granulosa Cells 164
4.3.1.3 Separation of Donor Mononuclear Cells 164
4.3.1.4 Collection of Ovarian Stem Cells for a Clinical Approach 164
4.3.2 Oocyte-like Cell Nuclear Transfer to Donor Oocyte 165
4.3.3 Donor Oocyte Cytoplasmic Transfer to Oocyte-like Cell 165
4.3.4 Transfer of Granulosa Cells or Their Components to an Established OSC Culture 165
4.3.5 Transfer of Granulosa Cells or Their Components to Fresh Secondary Ovarian Stem Cell Cultures During Early Steps of Oocyte Reconstruction 166
4.3.6 Fibroblasts in OSC Cultures Steal ZP3 Expression from OLCs 169
4.3.7 What May Be Next in Ovarian Tissue Cultures? 170
4.4 Novel In Vivo Proposal for Ovarian and Testicular Infertility Treatment 170
4.4.1 Systemic Treatment of Ovarian Infertility by Transfer of Compatible Blood or Separated Mononuclear Cells from Young Fertile Donor Women 172
4.4.2 Systemic Treatment of Testicular Infertility by Transfer of Compatible Blood or Separated Mononuclear Cells from Young Fertile Donor Men 174
4.5 Systemic Treatment of Other Functional Diseases by Tissue Rejuvenation 174
4.5.1 Utilization of Blood or Mononuclear Cell Transfusion from Young Individuals 174
4.5.2 Utilization of Sex Steroid Combinations for Altered Tissues in Younger Individuals without Altered Stem Cell Niche 175
4.6 Advantages of Local and Systemic Use of Honey Bee Propolis and Cayenne Pepper 175
4.6.1 Propolis and Alopecia 176
4.6.2 Propolis and Varicose Veins 178
4.6.3 Propolis and Dental Calculus 178
4.6.4 Systemic Use of Propolis Tincture 178
4.6.5 Benefits of Cayenne Pepper Systemic Treatment 180
4.7 The Promise of Pyramid Healing Systems 180
4.8 Raw Shiitake Causes Early Neoplasia Regression and Malignancy Recurrence Prevention 180
4.9 Immune Modulation for the Treatment of an Advanced Cancer 182
4.10 Advanced Ovarian Cancer Regression Case Report 184
4.10.1 Immune Modulation in Advanced Malignancy Should Be Attempted in Novel, Not Yet Treated Cancer Cases 184
4.10.2 Postoperative Development 184
4.11 Discussion 187
4.12 Conclusions 192
Abbreviations 193
Competing Interests 193
Author Contribution 193
References 194
5 Mitochondrial Manipulation for Infertility Treatment and Disease Prevention 205
Tetsuya Ishii
5.1 Introduction 205
5.2 The Roles of Mitochondria in Fertilization, Embryonic Development, and Disease 206
5.3 The Genetics of Mitochondria and Mitochondrial Diseases 209
5.4 Ooplasmic Transfer to Treat Infertility 210
5.5 Pronuclear Transfer to Achieve Pregnancy 214
5.6 Germinal Vesicle Transfer to Restore the Viability of Oocytes 216
5.7 Mitochondrial Diseases and Prevention of their Inheritance 217
5.8 Mitochondrial Replacement by Transferring Pronuclei and MII Spindle 218
5.9 Discussion 220
Acknowledgments 222
References 223

6 Novel Imaging Techniques to Assess Gametes and Preimplantation Embryos 231
Jason E. Swain
6.1 Introduction 231
6.2 Light and Impact on Mammalian Gametes and Embryos 232
6.3 Novel Imaging Approaches for Gametes and Embryos 233
6.3.1 Polarized Light Microscopy 233
6.3.1.1 Oocyte 235
6.3.1.2 Sperm 236
6.3.2 Multi-Photon Excitation Fluorescence Microscopy 237
6.3.2.1 Oocytes and Embryos 237
6.3.3 Harmonic Generation Microscopy 239
6.3.3.1 Oocytes and Embryos 239
6.3.4 Fourier Transformed Infrared 241
6.3.4.1 Oocytes 242
6.3.5 Raman Microspectroscopy 243
6.3.5.1 Sperm 243
6.3.5.2 Oocytes 244
6.3.6 Coherent Anti-Stokes Raman 246
6.3.6.1 Oocytes 247
6.3.7 Optical Quadrature Microscopy 247
6.3.7.1 Embryos 248
6.3.8 Phase Subtraction 248
6.3.8.1 Embryo 249
6.3.9 Optical Coherence Tomography (OCT) 250
6.3.9.1 Embryos 250
6.3.10 Quantitative Orientation Independent Microscopy 251
6.3.10.1 Sperm 251
6.3.11 Biodynamic Imaging 251
6.3.11.1 Oocytes 253
6.3.11.2 Embryos 254
6.3.12 Multi-Modal Microscopy 254
6.3.12.1 Embryo 254
6.4 Conclusion 255
References 256

7 Clinical Application of Methods to Select In Vitro Fertilized Embryos 267
Kirstine Kirkegaard, Thomas F. Dyrlund, and Hans Jakob Ingerslev
7.1 Introduction 267
7.2 Morphological Assessment 268
7.2.1 Traditional Morphological Evaluation 268
7.2.2 Time-Lapse Imaging 270
7.3 Genomic and Transcriptomic Analysis 279
7.3.1 Embryo Biopsy 279
7.3.2 Pre-Implantation Screening (PGS) 280
7.3.3 Gene Expression 283
7.3.3.1 Cumulus Cells 283
7.3.3.2 Embryos 284
7.4 Analysis of Conditioned Culture Medium 285
7.4.1 Metabolism 286
7.4.2 Proteomics 289
7.4.3 microRNA 293
7.5 Summary 294
References 295

8 New Horizons/Developments in Time-Lapse Morphokinetic Analysis of Mammalian Embryos 313
Munevver Serdaroğullari, Necati Fındıklı, and Mustafa Bahceci

8.1 Introduction 313
8.2 Utilization of Time-Lapse Morphokinetics in Mammalian Embryos: A Historical Perspective 314
8.3 What is TLM? 315
8.4 What are the Benefits of TLM? 316
8.5 Application of TLM in Human ART Practice 318
8.6 The Possible Utilization of TLM Analysis in Aneuploidy Detection 324
8.7 Expected Contributions of TLM Technology in the Future of Mammalian Embryology 327
References 328

9 The Non-Human Primate Model for Early Human Development 339
Stuart Meyers and Renee Riejo-Pera

9.1 Introduction 339
9.2 Why Primate Models Are Critical to Understanding Human Development and Subfertility 340
9.3 NHP Model of Assisted Reproductive Technology (ART) 342
9.4 NHP Model of Early Embryo Development 343
9.5 Research Perspective on NHP Embryo Development 345
9.6 Summary 347
References 348

10 Cytoskeletal Functions, Defects, and Dysfunctions Affecting Human Fertilization and Embryo Development 355
Heide Schatten and Qing-Yuan Sun

10.1 Introduction 355
10.2 Components of the Cytoskeleton and their Important Functions in Reproductive Biology 356
10.3 The Role of the Cytoskeleton in Oocyte Maturation 360
10.4 Maturation Failures and Oocyte Aging 369
10.5 Fertilization and First Mitosis/Cell Division 371
10.6 Cellular Differentiation/Polarization During
 Pre-Implantation Embryo Development/Compaction
 Stage 374
10.7 Perspectives and Future Directions 380
 References 381

Index 399