Contents

About the Authors xv
Foreword xvii
Preface xix
Acknowledgements xxiii
List of Abbreviations xxv

1 Introduction 1
1.1 Types of Mobility 2
 1.1.1 Terminal Mobility 2
 1.1.2 Personal Mobility 5
 1.1.3 Session Mobility 6
 1.1.4 Service Mobility 7
1.2 Performance Requirements 7
1.3 Motivation 8
1.4 Summary of Key Contributions 9

2 Analysis of Mobility Protocols for Multimedia 13
2.1 Summary of Key Contributions and Indicative Results 13
2.2 Introduction 14
2.3 Cellular 1G 15
 2.3.1 System Architecture 15
 2.3.2 Handoff Procedure 17
2.4 Cellular 2G Mobility 17
 2.4.1 GSM 17
 2.4.2 IS-95 19
2.5 Cellular 3G Mobility 23
 2.5.1 WCDMA 24
 2.5.2 CDMA2000 26
2.6 4G Networks 27
 2.6.1 Evolved Packet System 28
 2.6.2 WiMAX Mobility 31
2.7 IP-Based Mobility
 2.7.1 Network Layer Macromobility
 2.7.2 Network Layer Micromobility
 2.7.3 NETMOB: Network Mobility
 2.7.4 Transport Layer Mobility
 2.7.5 Application Layer Mobility
 2.7.6 Host Identity Protocol
 2.7.7 MOBIKE
 2.7.8 IAPP
2.8 Heterogeneous Handover
 2.8.1 UMTS–WLAN Handover
 2.8.2 LTE–WLAN Handover
2.9 Multicast Mobility
2.10 Concluding Remarks

3 Systems Analysis of Mobility Events
 3.1 Summary of Key Contributions and Indicative Results
 3.2 Introduction
 3.2.1 Comparative Analysis of Mobility Protocols
 3.3 Analysis of Handoff Components
 3.3.1 Network Discovery and Selection
 3.3.2 Network Attachment
 3.3.3 Configuration
 3.3.4 Security Association
 3.3.5 Binding Update
 3.3.6 Media Rerouting
 3.4 Effect of Handoff across Layers
 3.4.1 Layer 2 Delay
 3.4.2 Layer 3 Delay
 3.4.3 Application Layer Delay
 3.4.4 Handoff Operations across Layers
 3.5 Concluding Remarks

4 Modeling Mobility
 4.1 Summary of Key Contributions and Indicative Results
 4.2 Introduction
 4.3 Related Work
 4.4 Modeling Mobility as a Discrete-Event Dynamic System
 4.5 Petri Net Primitives
 4.6 Petri-Net-Based Modeling Methodologies
 4.7 Resource Utilization during Handoff
 4.8 Data Dependency Analysis of the Handoff Process
 4.8.1 Petri-Net-Based Data Dependency
 4.8.2 Analysis of Data Dependency during Handoff Process
 4.9 Petri Net Model for Handoff
Contents

4.10 Petri-Net-Based Analysis of Handoff Event
4.10.1 Analysis of Deadlocks in Handoff
4.10.2 Reachability Analysis
4.10.3 Matrix Equations
4.11 Evaluation of Systems Performance Using Petri Nets
4.11.1 Cycle-Time-Based Approach
4.11.2 Floyd-Algorithm-Based Approach
4.11.3 Resource–Time Product Approach
4.12 Opportunities for Optimization
4.12.1 Analysis of Parallelism in Handoff Operations
4.12.2 Opportunities for Proactive Operation
4.13 Concluding Remarks

5 Layer 2 Optimization
5.1 Introduction
5.2 Related Work
5.3 IEEE 802.11 Standards
5.3.1 The IEEE 802.11 Wireless LAN Architecture
5.3.2 IEEE 802.11 Management Frames
5.4 Handoff Procedure with Active Scanning
5.4.1 Steps during Handoff
5.5 Fast-Handoff Algorithm
5.5.1 Selective Scanning
5.5.2 Caching
5.6 Implementation
5.6.1 The HostAP Driver
5.7 Measurements
5.7.1 Experimental Setup
5.7.2 The Environment
5.7.3 Experiments
5.8 Measurement Results
5.8.1 Handoff Time
5.8.2 Packet Loss
5.9 Conclusions and Future Work

6 Mobility Optimization Techniques
6.1 Summary of Key Contributions and Indicative Results
6.1.1 Discovery
6.1.2 Authentication
6.1.3 Layer 3 Configuration
6.1.4 Layer 3 Security Association
6.1.5 Binding Update
6.1.6 Media Rerouting
6.1.7 Route Optimization
6.1.8 Media-Independent Cross-Layer Triggers
6.2 Introduction

6.3 Discovery
 6.3.1 Key Principles
 6.3.2 Related Work
 6.3.3 Application Layer Discovery
 6.3.4 Experimental Results and Analysis

6.4 Authentication
 6.4.1 Key Principles
 6.4.2 Related Work
 6.4.3 Network-Layer-Assisted Preauthentication
 6.4.4 Experimental Results and Analysis

6.5 Layer 3 Configuration
 6.5.1 Key Principles
 6.5.2 Related Work
 6.5.3 Router-Assisted Duplicate Address Detection
 6.5.4 Proactive IP Address Configuration
 6.5.5 Experimental Results and Analysis

6.6 Layer 3 Security Association
 6.6.1 Key Principles
 6.6.2 Related Work
 6.6.3 Anchor-Assisted Security Association
 6.6.4 Experimental Results and Analysis

6.7 Binding Update
 6.7.1 Key Principles
 6.7.2 Related Work
 6.7.3 Hierarchical Binding Update
 6.7.4 Experimental Results and Analysis
 6.7.5 Proactive Binding Update

6.8 Media Rerouting
 6.8.1 Key Principles
 6.8.2 Related Work
 6.8.3 Data Redirection Using Forwarding Agent
 6.8.4 Mobility-Proxy-Assisted Time-Bound Data Redirection
 6.8.5 Time-Bound Localized Multicasting

6.9 Media Buffering
 6.9.1 Key Principles
 6.9.2 Related Work
 6.9.3 Protocol for Edge Buffering
 6.9.4 Experimental Results and Analysis
 6.9.5 Analysis of the Trade-off between Buffering Delay and Packet Loss

6.10 Route Optimization
 6.10.1 Key Principles
 6.10.2 Related Work
 6.10.3 Maintaining a Direct Path by Application Layer Mobility
 6.10.4 Interceptor-Assisted Packet Modifier at the End Point
 6.10.5 Intercepting Proxy-Assisted Route Optimization
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.6 Cost Analysis and Experimental Analysis</td>
<td>226</td>
</tr>
<tr>
<td>6.10.7 Binding-Cache-Based Route Optimization</td>
<td>229</td>
</tr>
<tr>
<td>6.11 Media-Independent Cross-Layer Triggers</td>
<td></td>
</tr>
<tr>
<td>6.11.1 Key Principles</td>
<td>232</td>
</tr>
<tr>
<td>6.11.2 Related Work</td>
<td>232</td>
</tr>
<tr>
<td>6.11.3 Media Independent Handover Function</td>
<td>233</td>
</tr>
<tr>
<td>6.11.4 Faster Link-Down Detection Scheme</td>
<td>238</td>
</tr>
<tr>
<td>6.12 Concluding Remarks</td>
<td>241</td>
</tr>
<tr>
<td>7 Optimization with Multilayer Mobility Protocols</td>
<td>243</td>
</tr>
<tr>
<td>7.1 Summary of Key Contributions and Indicative Results</td>
<td>243</td>
</tr>
<tr>
<td>7.2 Introduction</td>
<td>244</td>
</tr>
<tr>
<td>7.3 Key Principles</td>
<td>245</td>
</tr>
<tr>
<td>7.4 Related Work</td>
<td>245</td>
</tr>
<tr>
<td>7.5 Multilayer Mobility Approach</td>
<td>246</td>
</tr>
<tr>
<td>7.5.1 Policy-Based Mobility Protocols: SIP and MIP-LR</td>
<td>247</td>
</tr>
<tr>
<td>7.5.2 Integration of SIP and MIP-LR with MMP</td>
<td>248</td>
</tr>
<tr>
<td>7.5.3 Integration of Global Mobility Protocol with Micromobility Protocol</td>
<td>250</td>
</tr>
<tr>
<td>7.5.4 Implementation of Multilayer Mobility Protocols</td>
<td>250</td>
</tr>
<tr>
<td>7.5.5 Implementation and Performance Issues</td>
<td>252</td>
</tr>
<tr>
<td>7.6 Concluding Remarks</td>
<td>255</td>
</tr>
<tr>
<td>8 Optimizations for Simultaneous Mobility</td>
<td>257</td>
</tr>
<tr>
<td>8.1 Summary of Key Contributions and Indicative Results</td>
<td>257</td>
</tr>
<tr>
<td>8.2 Introduction</td>
<td>258</td>
</tr>
<tr>
<td>8.2.1 Analysis of Simultaneous Mobility</td>
<td>258</td>
</tr>
<tr>
<td>8.3 Illustration of the Simultaneous Mobility Problem</td>
<td>260</td>
</tr>
<tr>
<td>8.4 Related Work</td>
<td>262</td>
</tr>
<tr>
<td>8.5 Key Optimization Techniques</td>
<td>262</td>
</tr>
<tr>
<td>8.6 Analytical Framework</td>
<td>262</td>
</tr>
<tr>
<td>8.6.1 Fundamental Concepts</td>
<td>262</td>
</tr>
<tr>
<td>8.6.2 Handoff Sequences</td>
<td>263</td>
</tr>
<tr>
<td>8.6.3 Binding Updates</td>
<td>264</td>
</tr>
<tr>
<td>8.6.4 Location Proxies and Binding Update Proxies</td>
<td>265</td>
</tr>
<tr>
<td>8.7 Analyzing the Simultaneous Mobility Problem</td>
<td>267</td>
</tr>
<tr>
<td>8.8 Probability of Simultaneous Mobility</td>
<td>270</td>
</tr>
<tr>
<td>8.9 Solutions</td>
<td>272</td>
</tr>
<tr>
<td>8.9.1 Soft Handoff</td>
<td>273</td>
</tr>
<tr>
<td>8.9.2 Receiver-Side Mechanisms</td>
<td>273</td>
</tr>
<tr>
<td>8.9.3 Sender-Side Mechanisms</td>
<td>275</td>
</tr>
<tr>
<td>8.10 Application of Solution Mechanisms</td>
<td>276</td>
</tr>
<tr>
<td>8.10.1 Mobile IPv6</td>
<td>277</td>
</tr>
<tr>
<td>8.10.2 MIP-LR</td>
<td>279</td>
</tr>
<tr>
<td>8.10.3 SIP-Based Mobility</td>
<td>280</td>
</tr>
<tr>
<td>8.11 Concluding Remarks</td>
<td>282</td>
</tr>
</tbody>
</table>
10.13 An Alternative to Multicast

10.14 Conclusions and Future Work

11 System Evaluation

11.1 Summary of Key Contributions and Indicative Results
11.2 Introduction
11.3 Experimental Validation

11.3.1 The Media Independent Preauthentication Framework

11.3.2 Intratechnology Handoff

11.3.3 Intertechnology Handoff

11.3.4 Cross-Layer-Trigger-Assisted Preauthentication

11.3.5 Mobile-Initiated Handover with 802.21 Triggers

11.3.6 Network-Initiated Handover with 802.21 Triggers

11.3.7 Handover Preparation Time

11.4 Handoff Optimization in IP Multimedia Subsystem

11.4.1 Nonoptimized Handoff Mode

11.4.2 Optimization with Reactive Context Transfer

11.4.3 Optimization with Proactive Security Context Transfer

11.4.4 Performance Results

11.5 Systems Validation Using Petri-Net-Based Models

11.5.1 MATLAB®-Based Modeling of Handoff Functions

11.5.2 Petri-Net-Based Model for Optimized Security Association

11.5.3 Petri-Net-Based Model for Hierarchical Binding Update

11.5.4 Petri-Net-Based Model for Media Redirection of In-Flight Data

11.5.5 Petri-Net-Based Model of Optimized Configuration

11.5.6 Petri-Net-Based Model for Multicast Mobility

11.6 Scheduling Handoff Operations

11.6.1 Sequential Scheduling

11.6.2 Concurrent Scheduling

11.6.3 Proactive Scheduling

11.7 Verification of Systems Performance

11.7.1 Cycle-Time-Based Approach

11.7.2 Using the Floyd Algorithm

11.8 Petri-Net-Based Modeling for Multi-Interface Mobility

11.8.1 Multihoming Scenario

11.8.2 Break-Before-Make Scenario

11.8.3 Make-Before-Break Scenario

11.8.4 MATLAB®-Based Petri Net Modeling for Multi-Interface Mobility

11.9 Deadlocks in Handoff Scheduling

11.9.1 Handoff Schedules with Deadlocks

11.9.2 Deadlock Prevention and Avoidance in Handoff Schedules

11.10 Analysis of Level of Concurrency and Resources

11.11 Trade-off Analysis for Proactive Handoff

11.12 Concluding Remarks
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Conclusions</td>
<td>391</td>
</tr>
<tr>
<td>12.1 General Principles of Mobility Optimization</td>
<td>391</td>
</tr>
<tr>
<td>12.2 Summary of Contributions</td>
<td>393</td>
</tr>
<tr>
<td>12.3 Future Work</td>
<td>394</td>
</tr>
<tr>
<td>A RDF Schema for Application Layer Discovery</td>
<td>395</td>
</tr>
<tr>
<td>A.1 Schema Primitives</td>
<td>395</td>
</tr>
<tr>
<td>B Definitions of Mobility-Related Terms</td>
<td>399</td>
</tr>
<tr>
<td>References</td>
<td>409</td>
</tr>
<tr>
<td>Index</td>
<td>425</td>
</tr>
</tbody>
</table>