Index

1 RM see one repetition maximum
3D body scanning 323
abdominal skinfold 326
absolute measures 267
AC see anaerobic capacity
acceleration 90, 368–9
acceleration speed 271–2
acetyl CoA 57
acetylcholine (ACh) 7
ACTN3 allelic variants 78–9
active stretching 390, 417–18
actin 6, 7–9
ACL see anterior cruciate ligament
activator of protein kinase B (Akt) 12, 132–3
active insufficiency 96
active stretching 390, 417–18
ACTN3 allelic variants 78–9
acute stretching 390–1
adaptive processes
biochemical markers 155–64
bone adaptation 34, 35–7, 137–41
cardiovascular adaptations 165–77
circulatory adaptations 170–2
electrical stimulation and vibration
exercise 193–208
immobilization 138–9, 144, 146–7
myocardial adaptations 167–70
neural adaptations 105–24
overtraining syndrome 243–52
pulmonary adaptations 172–3
repeated-sprint ability 223–41
reversibility 299
repeated-sprint ability 234–5
reversibility 299
specificity and aerobic overload 297
total volume of training 298–9
VO2 kinetics testing 300–1
youth strength training 431
AGES see advanced glycation end-products
agility assessment 273–5
agility belts 372
agility training 363–76
anthropometrics 369–70
gain 370–2
change-of-direction speed 363–6, 368–70
organization of training 363–5
perceptual and decision-making factors 370–3
specificity 370
technique development 366–9
training drills 371–4
agonist muscles 215
air-displacement plethysmography (ADP) 321–2
Akt see activator of protein kinase B
anaerobic capacity (AC) 321–2
anaerobic capacity (AC) 125–36
anaerobic capacity (AC) 80, 81–2, 132
adolescents see youth strength training
ADP see adenosine diphosphate/triphosphate
ageing 172
anaerobic glycolysis 225, 227, 234
androgens 427
see also testosterone
angiogenesis 172
anterior–posterior chest breadth 329
anthropometrics 324–30, 369–70
assessment methodologies 281, 283
assessment measures 279–84
athlete testing 255–70
athletik 255–70
aerobic training prescription 291, 297–301
agility assessment 273–5
anaerobic capacity 277–84
ballistic testing 259–65
biochemical monitoring 305–15
body composition 317–33
cardiovascular assessment 291–7
cardiovascular adaptations 291–7
cardiovascular adaptations 227–29
change-of-direction speed 363–6, 368–70
maximum strength tests 266–7
equipment 256, 264–5
general principles 255–6
maximum strength tests 257–9
reactive strength tests 265–6
reliability 255, 282, 283, 286
repeated-sprint ability 277, 284–6
scheduling 256
scheduling 256
selection of movement under test 256
specificity 255–6
speed assessment 271–3
stretch tests 256
INDEX

total athlete management 335–43
validity 255, 282, 283–4
ATP see adenosine diphosphate/triphosphate
atrophy 125, 127–8
autistic spectrum disorders 448
autonomic control 71
B-mode ultrasonography 180, 181, 185
balance 96–7
ballistic testing 259–65
basic multicellular units (BMU) 35–6
BCAAs see branched-chain amino acids
bed-rest studies see immobilization
BIA see bioelectric impedance analysis
bicrural breadth 329
bicarbonate buffer system 230–1
biceps skinfold 326
biepicondylar femur breadth 329
biepicondylar humerus breadth 329
biiliocristal breadth 329
binding proteins (BP) 12
biochemical monitoring 155–64, 305–15
advantages and disadvantages 308–9, 310
age and gender 156–8
catecholamines 306
cortisol 156, 159–60, 305, 307–8, 311–12
fatigue 311
growth hormones 157–8, 159, 306–7
hormones 155–7, 159–60, 305–8, 311–12
immunological and haematological monitoring 309–10
leptins 307
limitation and interpretation 159
metabolic monitoring 308–9
methodologies 308
muscle biopsy analysis 308–9
practical applications 310–12
recommendations 311–12
research in sporting environments 307–8
resistance training 155–64
specific biochemical tests 309
testosterone 155–6, 157, 159–60, 305–6, 307–8, 311–12
training effects 310–11
training history 156–8
training workloads 311
biodynamics 197–8
bioelectric impedance analysis (BIA) 323–4
bioenergetics of exercise 53–61
aerobic metabolism 57
energy sources 54–6
energy stores 58–60
energy, work and power 53–4
glycotic system 56
oxygen delivery 58
oxygen demand 53–4, 56, 57–8
phosphagen metabolism 55–6
tricarboxylic acid cycle 54, 57–8
biomechanics 89–101
active and passive insufficiency 96
agility training 367–8
applications for sport 89
balance and stability 96–7
body composition 318–19
body type and power-to-weight ratio 96
bone adaptation 137–8
force–velocity–power relationship 91–2
friction 91
initiation or change of movement 97
length–tension effect 93
lever systems 92–3
line and magnitude of resistance 95
mechanical variables 89–91
multiartricular muscles 96
muscle angle of pull 93–4
muscle architecture, strength and power 95–6
muscle function 93–6
musculoskeletal machines 92–3
resistance training 98–100
sticking regions 95
strength curves 94
stretch–shortening cycle 97–8
tendon adaptation 141–2
total athlete management 338
wheel-axle systems 93
biopsy analysis 308–9
bipennate muscle fibres 10–11
blood
cardiovascular adaptations 170–2
cardiovascular system physiology 72–3
distribution/redistribution 46–7, 170, 172
muscle damage 180–2, 185–8
pressure 172
volume 171
blood-flow capacity 171–2
BMC see bone mineral content
BMU see basic multicellular units
BOD POD system 321–2
body composition 317–33
3D body scanning 323
air-displacement plethysmography 321–2
anthropometry 324–30
assessment methods 319–30
bioelectric impedance analysis 323–4
biomechanics 318–19
breadth measurements 329–30
densitometry 319–21
dual-energy X-ray absorptiometry 322–3
field assessment methods 323–30
fractionation models 317–18
girth measurements 327–9
historical development of methods 317
laboratory assessment methods 319–23
profiling 330
skinfold measurements 324–7
body type 96
bone adaptation 137–41
age and gender 140–1
exercise 140
immobilization 138–9
musculoskeletal forces 137–8
youth strength training 431
bone losses 138–9
bone mineral content (BMC) 138, 140
bone physiology 29–43
adaptive processes 34, 35–7
anatomy of bone 29–32
ARF sequence 35–6
biology of bones 32–3
bone tissue 30–1
bones as organs 29–30
calcium homeostasis 37–8
endocrine factors 37–8
material properties 33–4
mechanical functions 33–5
mechanostat theory 36–7
mechanotransduction 37
modelling 35, 37
oestrogens 38
organic and inorganic constituents 31–2
osteoblasts 32–3
osteoclasts 32, 35–6
osteocytes 33
phosphorous homeostasis 38
remodelling 34, 35–7
structural properties 34–5
bone tissue physiology 30–1
BP see binding proteins
bradycardia 169–70
branched-chain amino acids (BCAAs) 380–1
breadth measurements 329–30
Ca2+ flux 4, 7–9, 37–8, 141, 227
Ca2+-activated proteases 84
caffeine 231–2
calf girth 329
calluses 31
cam-based resistance machines 98–9
capillary exchange 71–2
carbohydrates
bioenergetics of exercise 57–9
repeated-sprint ability 230
strength training 379, 382, 383–4
cardiac output 165–6, 167
cardiopulmonary fitness 291–2, 299
cardiocerebral adaptations 165–7
arteriogenesis and angiogenesis 172
blood distribution/redistribution 170, 172
blood-flow capacity 171–2
blood pressure 172
cardiac output 165–6, 167
cardiocerebral function 165–7
circulatory adaptations 170–2
contractility 169
endurance exercise 166, 167
exercise-induced arterial hypoaxemia 173
Frank–Starling mechanism 169
left-ventricular eccentric hypertrophy 169
left-ventricular end-diastolic volume 167–9, 171
mitochondria 173
myocardial adaptations 167–70
overload 166–7
oxygen uptake 165–8, 172–4
plasma-volume expansion 171
pulmonary adaptations 172–3
red blood cell count 171
respiratory control 173–4
skeletomuscular adaptations 173–4
stroke volume 167
total blood volume 171
training-induced bradycardia 169–70
training stimulus 167–72
ventilatory efficiency 173
cardiovascular assessment 291–7
cardiorespiratory fitness 291–2
critical power 295–6
economy 293
health screening and risk stratification 291
lactate/gas-exchange threshold 293–4
lactate turnover/maximal lactate steady state 295
maximal constant-load exercise testing 295
maximal exercise testing 292–7
maximal oxygen uptake 292–7
step/ramp incremental exercise testing 292–3
submaximal exercise testing 292
VO2 kinetics testing 296–7
cardiovascular risk profiles 431
cardiovascular system physiology 68–73
anatomy 68–9
autonomic control 71
blood and haemodynamics 72–3
capillary exchange 71–2
cardiac function and control 70–1
heart 70–1
vascular system 71–2
catecholamines 306
central fatigue 22–3
central nervous system (CNS) 246–7, 399
centre of gravity (CG) 366–7
centre of mass (COM) 96–7
cerebral palsy (CP) 446–7
CG see centre of gravity
change of movement 97
change-of-direction (COD) speed tests 273–5, 363–6, 368–70
chest girth 329
children see youth strength training
chronic stretching 390–1
circulatory adaptations 170–2
CK see creatine kinase
closed kinetic chain exercises (CKCE) 350–1, 352
CMJs see countermovement jumps
CNS see central nervous system
COD see change-of-direction
collagen 45, 47, 49, 147
COM see centre of mass
compact bone 30–1
competitive athletes 301, 338–9
computed tomography (CT) 319
concentric muscle contraction 105–6, 113
correlated contraction 214
concurrent strength and endurance training 132–3
conduction velocity 18
constant-load exercise testing 295
contractile mechanisms 212–16
contractile rate of force development see rate of force development
contractile strength 130
contractility 169
corticospinal pathways 116
corticospinal pathways 116
cortisol 156
corticospinal pathways 116
critereon (COM) 96
countermovement jumps (CMJs) 259
CP see cerebral palsy; critical power
creatine 230, 383, 414
creatine kinase (CK) 180–2, 185–8, 309
crimp 48–50
critical power (CP) 282–4, 286, 295–6
cross-linking 47–8
cross-sectional area (CSA) 155, 159–60, 414
cross-sectional studies 143–5
CSA see cross-sectional area
CT see computed tomography
cytokines 309, 312
cytoskeleton 6–7
data collection 341
deceleration 368–9
decision-making factors 370–3
delayed-onset muscle soreness (DOMS) 179–80, 183–6, 188–9
density, 319–21
descending corticospinal pathways 116
de-training 429
diffusion distance 63–4
disability see paralympic athletes
discharge rates 21, 22
distance 90
dual-energy X-ray absorptiometry (DXA) 138, 322–3
Duchenne muscular dystrophy 78
dwarfism 449
DXA see dual-energy X-ray absorptiometry
dynamic lung volumes 67
dynamic stretching 391, 393
E-C see excitation–contraction
EAAs see essential amino acids
eccentric muscle contractions
muscle damage 185, 187
neural adaptations 105–6, 110–14
eccentric strength
agility training 366
rehabilitation 414, 417–19
tests 266–7
eccentric–concentric action sequence 369, 414
ECF see extracellular fluid
ECG see electrocardiograms
education 342
effective movement model 393–4
efficiency 405–6
EIAH see exercise-induced arterial hypoxaemia
elastic energy storage 141, 209–12
elastic mechanisms 209–12, 216–17
elastic potential energy 209
elastic recoil 216–17
elastic resistance machines 100
elastic (Young’s) modulus 33–4, 142–5
elastin 48
electrical muscle/nerve stimulation (EMS) 181, 184
electrical-stimulation exercise 193–7
adaptive processes 193–7
motor unit recruitment 194–5
muscle fatigue 194–5
parameters and settings 193–4
practical suggestions 196–7
sports performance 196
strength training 195–6
electrically elicited contractions 22
electrocardiograms (ECG) 70–1
electromyography (EMG)
near adaptations 105, 108–9, 112–13
nervous muscular physiology 23, 24–5
rehabilitation 415, 416
sensorimotor training 402
stretch–shortening cycle 214–16
vibration exercise 201–2
EMG see electromyography
EMS see electrical muscle/nerve stimulation
endocrine factors 37–8
endomysium 3–4
endurance training
biochemical markers 156
bioenergetics of exercise 58
cardiovascular adaptations 166, 167
concurrent with strength training 132–3
resistance training 354
signal transduction 82
structural and molecular adaptations 127, 132–3
energy balance 378–9
energy stores 58–60
environmental conditions 273
epimysium 3–4
equipment calibration/standardization 256
ergogenic aids 229–32
essential amino acids (EAAs) 377, 379–82
excitation–contraction (E-C) coupling 7–8
exercise economy 182, 293, 300
exercise-induced arterial hypoxaemia (EIAH) 173
exercise-induced muscle damage see muscle damage
explosive strength 348–9
extracellular fluid (ECF) 38
FAD see adenine nucleotides
fascial network 390
fast-twitch motor units 17
fat-free mass (FFM) 319–21
fat-free soft tissue (FFST) 322–3
fat mass (FM) 319–21
fat tissue (FT) 322–3
fatigue
biochemical monitoring 311
electrical-stimulation exercise 194–5
repeated-sprint ability 227–8, 229
resistance 229
see also repeated-sprint ability
fatigue fractures 140
fats
bioenergetics of exercise 57–60
strength training 382–3, 384
female athlete triad 140
FFAs see free fatty acids
FFM see fat-free mass
FFST see fat-free soft tissue
fibroblasts 49
fibrodysplasia ossificans progressiva 456
foot starts 272
FM see fat mass
force plates (FP) 264
force
force plates (FP) 264–6
force–length relationship
stretch–shortening cycle 210
tendon adaptation 141–2, 145
force–velocity relationship
athlete testing 260
neural adaptations 110, 112
resistance training 349, 350
stretch–shortening cycle 212
force–velocity–power relationship 91–2
tearm girth 329
FP see force plates
fractionation models of body
composition 317–18
fractures 140
Frank-Starling mechanism 169
free fatty acids (FFAs) 59
free weights 98–100, 347–8, 351–7
frequency of training 297–8, 435
friction 91
front thigh skinfold 327
FT see fat tissue
functional overreaching (FO) 243–4
fusiform muscle fibres 10–11
GAGs see glycosaminoglycans
GAS see general adaptation syndrome
gas-exchange 63–6
gas-exchange threshold (GET) 293–4
GCT see ground-contact time
general adaptation syndrome (GAS) 297
genetic testing 79
genetics
biochemical markers 156
muscle mass 77–9
polygenic model 78–9
strength and trainability 77–9
GET see gas-exchange threshold
GH see growth hormone
girth measurements 327–9
glucose-6-phosphate 54
glutamine/glutamate 309, 312
glucose 47
glycogen stores 59–60
glycolysis
anaerobic 225, 227, 234
bioenergetics of exercise 56
glycosaminoglycans (GAGs) 47, 48
gravity 90–1
gravity-based resistance machines 98
He see heart-rate variability
helium dilution spirometry 66
hip girth 329
Hoffman (H) flex amplitude 113–14, 402
homoeostatic perturbations 229
hormones
biochemical monitoring 305–8, 311–12
overtraining syndrome 246, 247
strength training 383
youth strength training 427
HRV see heart-rate variability
hyaluronate 48
hydraulic resistance machines 99
hydroxylysine 47
hydroxyproline 47
hyperplasia 11–12
hypertrophy
biochemical markers 155–6, 159–60
cardiovascular adaptations 168, 169
genes 78
metabolic basis 377, 383–4
muscle damage 187–8
neural adaptations 110
rehabilitation 414
signal transduction 82, 84
skeletal muscle physiology 11–12
structural and molecular adaptations 125,
126, 127–8, 131
tendon adaptation 146, 148
iEMG see integrated electromyography
IGF-1 see insulin-like growth factor 1
iliac crest skinfold 326
immobilization
bone adaptation 138–9
tendon adaptation 144, 146–7
immune system 246
immunological monitoring 309–10
impulse 91
IMTG see intramuscular triglyceride
in vivo testing 143
inertia 90
initiation of movement 97
injuries
biomechanics 89
resistance training 356
youth strength training 427–8, 432
see also muscle damage; rehabilitation
inorganic phosphate 227
insulin 158
insulin-like growth factor 1 (IGF-1)
biological markers 159
biochemical monitoring 306–7
signal transduction 81–2
skeletal muscle physiology 12–13
tendon physiology 49
integrated electromyography (iEMG) 108
intellectual disabilities 448–9
intensity of training 298, 416–17
intramuscular triglyceride (IMTG) 59–60
ion regulation 232–3
isoinertial strength testing 257–8
isokinetic strength testing 259, 351–2
isometric strength testing 258
isometric training 349, 415
joint angle specificity 349–50
joint receptors 18
jump squats 260–1
knee extensor strength 414
Krebs cycle see tricarboxylic acid cycle
lactate 56, 309
lactate dehydrogenase (LDH) 309
lactate threshold (LT) 293–4, 300
lactate turnpoint (LTP) 295, 300
LDH see lactate dehydrogenase
left-ventricular eccentric hypertrophy 169
left-ventricular end-diastolic volume
(LVEDV) 167–9, 171
leg strength and power 366
length–tension relationship 93, 169
leptins 307
les autres category 449
lever-based resistance machines 98–9
lever systems 92–3
ligaments 114, 116, 118, 413–22
line of resistance 95
linear position transducers (LPT) 264–5
lips 57–60
longitudinal studies 145–7
lower-extremity amputees 445
LPHC see lumbopelvic hip complex
LPT see linear position transducers
LT see lactate threshold
LTP see lactate turnpoint
lumbopelvic hip complex (LPHC)
 muscles 421–2
M-wave amplitude 224
magnetic resonance imaging (MRI) 319
muscle damage 180, 185
neuromuscular physiology 23–4
magnitude of resistance 95
mammalian target of rapamycin (mTOR)
 biochemical markers 158, 159–60
 signal transduction 80, 81–2
 skeletal muscle physiology 12
 structural and molecular adaptations 132–3
MAOD see maximal accumulated oxygen deficit
mass 90
mass fractionation 317–18
matrix metalloproteinases (MMPs) 147
maximal accumulated oxygen deficit
 (MAOD) 279–82, 286
maximal constant-load exercise testing 295
maximal exercise testing 292–7
maximal lactate steady state (MLSS) 295
maximal oxygen uptake (VO2max) 224
anaerobic capacity 279–82
bioenergetics of exercise 53, 56, 58
cardiovascular adaptations 165–8, 172–4
cardiovascular assessment 291–7
repeated-sprint ability 226, 232–5
maximal voluntary isometric contraction strength (MVC)
electrical-stimulation exercise 194, 196
muscle damage 181–2, 185, 188
neural adaptations 114–16
 stretch–shortening cycle 216
maximum power (MP) 349
maximum speed 271, 272
maximum strength tests 257–9
MCTs see monocarboxylate transporters
 mechanical output production 18–20
mechano-growth factor (MGF) 13
mechanostat theory 36–7
mechanotransduction 37
medial calf skinfold 327
menopause 141
MEPs see motor-evoked potentials
metabolic monitoring 308–9
metabolite accumulation 227
MGF see mechano-growth factor
MHCs see myosin heavy chains
minute ventilation 67–8
mitochondria 173
MLCs see myosin light chains
MLSS see maximal lactate steady state
MMPs see matrix metalloproteinases
 modelling bone physiology 35, 37
 molecular adaptations 125–36
 concurrent strength and endurance
 training 132–3
 hypertrophy and atrophy 125, 126,
 127–8, 131
 muscle fibres 125–6, 128–31
 protein synthesis and degradation 125–7, 133
 satellite cells 131–2
 moment 91
monitoring see athlete testing; biochemical monitoring
monocarboxylate transporters (MCTs) 232–3
motor neurons 110, 114–16
motor performance skills 432
motor unit action potentials (MUAPs) 25, 109
motor units
 discharge rates 21, 22
 neural adaptations 110
 muscle fibres 112–13
 structural and molecular adaptations 125–6, 128–31
 types 9–10
 muscle force 20–2, 215–16
 muscle function
 biomechanics 93–6
 neuromuscular physiology 23–5
 strength training 105–7
 muscle mass 77–9
 muscle metabolites 279
 muscle receptors 17–18
 muscle recruitment strategies 229
 muscle stiffness 215–16, 229
 muscle–tendon interactions 214, 216
 muscle–tendon units (MTUs) 209–12,
 215–18
 muscular factors 224–7, 235
 musculoskeletal forces 137–8
 musculoskeletal machines 92–3
 musculotendinous junctions 46
 MVC see maximal voluntary isometric contraction strength
 myocardiad adaptations 167–70
 myofilaments 3, 4–7
 myonuclear domain 131
 myosin heavy chains (MHCs)
 skeletal muscle physiology 4, 6, 9–10
 structural and molecular adaptations 129–31
 myosin light chains (MLCs) 4
 myostatin–Smad signalling 83
 NAD see adenine nucleotides
 NEAAs see non-essential amino acids
 neck girth 328
 negative pressure 66
 nerve supply 46
neural adaptations 105–24
antagonist muscle coactivation 116–19
concentric muscle contraction 105–6, 113
eccentric muscle contraction 105–6, 110–14
electromyography 105, 108–9, 112–13
excitability in descending corticospinal pathways 116
force steadiness and accuracy 118–19
mechanical muscle function 105–7
rate of force development 107–8, 109–11
resistance training 105–24
spinal motor neurons 114–16
strength training 107–19
neural drive 227–9
neuroendocrine system 246
neuromechanical factors 225, 227–9
neuromuscular physiology 17–27
contraction mechanism 22
discharge rates 21, 22
electrologically elicited contractions 22
force–frequency relations 19
force–length relations 19
force–velocity relations 19–20
joint receptors 18
mechanical output production 18–20
motor units 17, 19–22
muscle fatigue 22–3
muscle force modulation 20–2
muscle function assessment 23–5
muscle receptors 17–18
muscle spindles 17–18
muscle twitch 17, 19
nervous and muscular conduction velocity 18
oxygen supply and demand 23
rehabilitation 414–23
tendon organs 18
NFO see nonfunctional overreaching
NMPB see net muscle protein balance
non-essential amino acids (NEAAs) 377, 379
nonfunctional overreaching (NFO) 244, 248
non-isokinetic devices 352
number of trials 273
nutrition acute responses to supplementation 379–83
bone adaptation 141
co-ingestion of nutrients 382–3
dose of supplementation 382
energy balance 378–9
hypertrophy 377, 383–4
optimal protein intake 377–9
resistance training 383–4
strength training 377–87
timing of supplementation 381
total athlete management 335–6
type/source of supplementation 379–81
ostrogens 38, 141
OI see osteogenesis imperfecta
OKCE see open kinetic chain exercises
one repetition maximum (1RM) tests 257–8, 263, 267, 430
open kinetic chain exercises (OKCE) 350–1, 352
optimal protein intake 377–9
optimal technique 367–8
OR see overreaching
osteoporosis 29
osteoblasts 32–3
osteoclasts 32, 35–6
osteocytes 33
osteogenesis imperfecta (OI) 36
neuromuscular
mechanical muscle function 105
force steadiness and accuracy 118–19
mechanical muscle function 105–7
rate of force development 107–8, 109–11
resistance training 105–24
spinal motor neurons 114–16
strength training 107–19
neural drive 227–9
neuroendocrine system 246
neuromechanical factors 225, 227–9
neuromuscular physiology 17–27
contraction mechanism 22
discharge rates 21, 22
electrologically elicited contractions 22
force–frequency relations 19
force–length relations 19
force–velocity relations 19–20
joint receptors 18
mechanical output production 18–20
motor units 17, 19–22
muscle fatigue 22–3
muscle force modulation 20–2
muscle function assessment 23–5
muscle receptors 17–18
muscle spindles 17–18
muscle twitch 17, 19
nervous and muscular conduction velocity 18
oxygen supply and demand 23
rehabilitation 414–23
tendon organs 18
NFO see nonfunctional overreaching
NMPB see net muscle protein balance
non-essential amino acids (NEAAs) 377, 379
nonfunctional overreaching (NFO) 244, 248
non-isokinetic devices 352
number of trials 273
nutrition acute responses to supplementation 379–83
bone adaptation 141
coon ingestion of nutrients 382–3
dose of supplementation 382
energy balance 378–9
hypertrophy 377, 383–4
optimal protein intake 377–9
resistance training 383–4
strength training 377–87
timing of supplementation 381
total athlete management 335–6
type/source of supplementation 379–81
ostrogens 38, 141
OI see osteogenesis imperfecta
OKCE see open kinetic chain exercises
one repetition maximum (1RM) tests 257–8, 263, 267, 430
open kinetic chain exercises (OKCE) 350–1, 352
optimal protein intake 377–9
optimal technique 367–8
OR see overreaching
osteoporosis 29
osteoblasts 32–3
osteoclasts 32, 35–6
osteocytes 33
osteogenesis imperfecta (OI) 36
 INDEX 459

power
agility training 366
biomechanics 91–2, 95–6
resistance training 348–9
strength training 106–7
structural and molecular adaptations 130
power-loading workouts 160
power-to-weight ratio 96
power–velocity relationships 260
PP see peak power
pre-load effect 213–14
pre-surgery interventions/strategies 417
pressure gradients 64–6
pro-hormones 383
profiling 330
programme variation 435
progression 299
proline 47
proprioceptive neuromuscular facilitation (PNF) 391
prostaglandins (PG) 49
proliferation 47
protectase 330
psychometric measures 247
PTBGs see patellar tendon bone grafts
PTH see parathyroid hormone
pulmonary adaptations 172–3
pulmonary diffusion capacity 172
pulmonary function tests 67
pyruvate dehydrogenase (PDH) 57
quantitative trait loci (QTL) 78
radar plots see spider charts
range of motion (ROM)
flexibility 389, 391–4
muscle damage 182
rehabilitation 417, 419–21
rapid muscle strength 108
rate of force development (RFD)
athlete testing 258, 261, 266
neural adaptations 107–8, 109–11
resistance training 349
sensorimotor training 401
structural and molecular adaptations 129–30
rate–pressure product (RPP) 170
rating of perceived exertion (RPE) 340, 445
RCP see respiratory compensation threshold
RDA see recommended daily allowance
reactive agility tests 274, 363–4
reactive strength tests 265–6
real-time reporting 341–2
recommended daily allowance (RDA) 377–8
red blood cell count 171
reflex activation 214–16
rehabilitation 413–25
active stretching 417–18
eccentric strength 414, 417–19
lumbopelvic hip complex muscles 421–2
neuromuscular effects of injury 414–15
passive stretching 419–21
pre-surgery interventions/strategies 417
retraining of the neuromuscular system 415–23
sport-specific movement patterns 422–3
targeted muscle overload 415–17
training intensity and volume 416–17
vibration exercise 203
relative measures 267
relaxed arm girth 328
reliability 255, 282, 283, 286
remodelling bone physiology 34
Renshaw inhibition 113
interpretation of scores 286
repeatability 255
energy supply 225–6, 233–5
ergogenic aids 229–32
indices of RSA 223
interpretation of scores 286
limiting factors 223
interpretation of scores 286
repeats test 223–5
repetition velocity 435
residual lung volume (RV) 320
resistance machines 98–9, 100, 347–8, 351–7
resistance training
advantages and disadvantages 355–7
age and gender 156–8
applications 159–60
basic principles 348
biochemical markers 155–64
biomechanics 98–100
cortisol 156–7, 159–60
definitions 347–8
flexibility 393
genetics 78
growth hormones 157–8, 159
injuries 356
joint angle specificity 349–50
machines vs free weights 351–7
maximum strength gains 351–2
mixed protocols 355
movement-pattern specificity 350–1
neural adaptations 105–24
nutrition 383–4
overload 348
practical applications 347–62
rehabilitation 414
signal transduction 80–2
specificity 348–51, 353, 357
strength, explosive strength and power 348–57
structural and molecular adaptations 125–33
study length and trained state 353–4
testosterone 155–6, 157, 159–60
training history 156–8
transfer of training effects 351–3
variation 348
work equalization 354
respiratory compensation threshold (RCP) 295
respiratory system physiology 63–8
anatomy 63
cardiovascular adaptations 173–4
chemical receptors 68
diffusion distance and surface area 63–4
dynamic lung volumes 67
gas exchange 63–6
mechanical receptors 68
minute ventilation 67–8
negative pressure 66
pressure gradients 64–6
static lung volumes 66–7
ventilation mechanics/control 66–8
rest and recovery 336, 434–5
reversibility 299
RFD see rate of force development
risk stratification 291
ROM see range of motion
RPE see rating of perceived exertion
RPP see rate–pressure product
RSA see repeated-sprint ability
RV see residual lung volume
S-IgA see salivary immunoglobulin A
safety considerations 203–4
salivary immunoglobulin A (S-IgA) 309–10, 312
sarcolemma 3–4, 12
sarcomere 3, 4–7
sarcoplasmic reticulum (SR) 7
satellite cells (SCs)
muscle damage 187–8
signal transduction 84
skeletal muscle physiology 12–13
structural and molecular adaptations 131–2
scheduling 256
SCI see spinal cord injury
SCs see satellite cells
SECs see series elastic components
sedentary populations 144, 355–6
segmental muscles 45
sEMG see surface EMG
semi-isokinetic devices 351–2
sensor proteins 79–80
sensorimotor training 399–409
activities 402–3
adaptive processes 402
characteristics 402–6
definitions 399
efficiency 405–6
healthy adults 401, 404–5
healthy children and adolescents 401, 404–5
healthy seniors 401–2, 404–5
load dimensions 403–5
postural control and strength 400–2
supervision 405
series elastic components (SECs) 209
signal transduction
hypertrophy 82, 84
muscle protein breakdown 83–4
myostatin–Smad signalling 83
practical applications 82
protein synthesis and breakdown 80–2, 83–4
regulation 79–80
satellite cells 84
strength training 79–84
single nucleotide polymorphisms (SNPs) 77
skeletal muscle physiology 3–16
bioenergetics of exercise 59
contraction mechanism 7–9
excitation–contraction coupling 7–8
hypertrophy and hyperplasia 11–12
macrostructure 3–4
microstructure 3–7
muscle architecture 10–11
muscle fibre types 9–10
sarcomere and myofilaments 3, 4–7
sarcoplasmic reticulum and transverse tubes 7
satellite cells 12–13
structural and molecular
adaptations 125–7, 131–2, 173–4
three-state model for actin activation 7–9
skinfold measurements 324–7
slow-twitch motor units 17
SNPs see single nucleotide polymorphisms
spastic cerebral palsy (CP) 446
spinal stress 373–4
specialist equipment 443–4
specificity
agility training 370
athlete testing 255–6, 297
resistance training 348–51, 353, 357
speed assessment 271–3
speed endurance 271, 272–3
spider charts 267–8, 340–1
spinal cord injury (SCI)
bone adaptation 138–9
paralympic athletes 443–5
tendon adaptation 144–5
spinal motor neurons 114–16
sport-specific movement patterns 422–3
sprint profiles 224
SR see sarcoplasmic reticulum
SSC see stretch–shortening cycle
strength 96–7
standardized speed tests 273
standing starts 272
static lung volumes 66–7
static stretching 391
steady state, sub-maximal MAOD tests 281
step/ramp incremental exercise testing 292–3
sticking regions 95
strength curves 94
strength and trainability 77–9
strength training
acute responses to supplementation 379–83
agility training 366
children and adolescents 427–40
co-ingestion of nutrients 382–3
concurrent with endurance training 132–3
dose of supplementation 382
electrical-stimulation exercise 195–6
energy balance 378–9
flexibility 392–4
genetics 77–9
hypertrophy 377, 383–4
mechanical muscle function 105–7
muscle damage 187–8
neural adaptations 107–19
nutrition 377–87
optimal protein intake 377
– nutrition 377
– energy balance 378–9
– genetics 77–9
– hypertrophy 377, 383–4
– mechanical muscle function 105–7
– muscle damage 187–8
– neural adaptations 107–19
– nutrition 377–87
– optimal protein intake 377
– technique analysis 89
tendon adaptation 137, 141–8
age and gender 145
cross-sectional studies 143–5
functional and mechanical properties 141–2
immobilization 144, 146–7
in vivo testing 143
longitudinal studies 145–7
mechanical loading 143–7
tendon organs 18
tendon physiology 45–52
anatomy of tendons 45–6
blood supply 46–7
cell processes 45, 48, 49
collagen 45, 47, 49
composition 47
crimp 48–50
cross-linking 47–8
elastin 48
ground substance 48
musculotendinous junctions 46
nerve supply 46
neural adaptations 110
osteocondensations junctions 46
tendon-aponeuroses 144
tenoblasts 45, 48
tenocytes 45, 48
tensile testing machines 142
TES see transcranial electrical stimulation
test control measures 256
test–retest cycle 338
testing athletes see athlete testing
testosterone 155–7, 159–60, 305–8, 311–12
testosterone/cortisol ratio (T/C) 160, 246, 308, 311–12
thermoregulation 445
thigh girth 329
thumb starts 272
thyroid hormones 10

T tubes see transverse tubes
T/C see testosterone/cortisol ratio
TAM see total athlete management
TCA see tricarboxylic acid
team training 371–2
technique analysis 89
technique development 366–9
temporal phase analysis 261–4
temporal stress 373–4
tendinopathy 49–50
Tendon adaptation 137, 141–8
age and gender 145
cross-sectional studies 143–5
functional and mechanical properties 141–2
immobilization 144, 146–7
in vivo testing 143
longitudinal studies 145–7
mechanical loading 143–7
tendon organs 18
tendon physiology 45–52
anatomy of tendons 45–6
blood supply 46–7
cell processes 45, 48, 49
collagen 45, 47, 49
composition 47
crimp 48–50
cross-linking 47–8
elastin 48
ground substance 48
musculotendinous junctions 46
nerve supply 46
neural adaptations 110
osteocondensations junctions 46
tendon-aponeuroses 144
tenoblasts 45, 48
tenocytes 45, 48
tensile testing machines 142
TES see transcranial electrical stimulation
test control measures 256
test–retest cycle 338
testing athletes see athlete testing
testosterone 155–7, 159–60, 305–8, 311–12
testosterone/cortisol ratio (T/C) 160, 246, 308, 311–12
thermoregulation 445
thigh girth 329
thumb starts 272
thyroid hormones 10
INDEX 461

time 90
TMS see transcranial magnetic stimulation
tonic vibration reflex (TVR) 197
total athlete management (TAM) 335–43
 assessing imbalances 339
 equipment and costs 340–1
 key performance characteristics 338–9
 performance diagnosis 336–42
 presentation of results 340
 rating of perceived exertion 340
 recent and future developments 340–2
 rest and recovery 336
 specific performance qualities 339
 strength and conditioning 335
 training programme design 337–8
 travel schedules 336
 window of adaptation 337–8
 total blood volume 171
 total volume of training 298–9, 416–17
 trabecular bone 30–1, 32
 trainability 77–9
 training drills 371–4
 training frequency 297–8, 435
 training-induced bradycardia 169–70
 training intensity 434
 training volume 434
 transcranial electrical stimulation (TES) 116
 transcranial magnetic stimulation (TMS) 116–17, 402
 transcription 79–80
 transition times 218
 transverse chest breadth 329
 transverse tubes 7
 transverse tubules (T tubules) 7
 travel schedules 336
 TREK-1/2 50
 tricarboxylic acid (TCA) cycle 54, 57–8
 triceps skinfold 325
 triglycerides 59–60
 tropomyosin 4, 6
 troponins 4, 7
 TVR see tonic vibration reflex
 ultraspinography
 muscle damage 180, 181, 185
 neuromuscular physiology 24
 tendon adaptation 143
 unipennate muscle fibres 10–11
 upper respiratory tract infections (URTIs) 244, 246, 310, 312
 upper-extremity amputees 445
 URTIs see upper respiratory tract infections
 V-wave amplitude 114
 validity 255, 282, 283–4
 variable-resistance machines 350
 variation 348
 VAS see visual analogue scale
 vascular system 71–2
 velocity 90, 91–2
 ventilation mechanics/control 66–8
 ventilatory efficiency 173
 verbal rating scale (VRS) 183
 vibration exercise 197–204
 acute effects 201–2
 adaptive processes 197–204
 chronic effects 202–3
 flexibility 391–2
 natural stimuli 200–1
 rehabilitation 203
 safety considerations 203–4
 strength training 201
 viscoelasticity 49
 visual analogue scale (VAS) 183–4
 visual impairment 447–8
 vitamin D 38
 VO2max see maximum oxygen uptake
 VO2 kinetics testing 296–7, 300–1
 voltage-operated calcium channels (VOCCs) 50
 volume of training 298–9, 416–17
 W-wave amplitude 115
 waist girth 329
 warm-up procedures 256, 273
 WBV see whole-body vibration
 web-based report and support 342
 wheel-axle systems 93
 whole-body vibration (WBV) 139, 197–8, 201–3
 whole protein sources 379–80
 window of adaptation 337–8
 wireless networking 341
 work
 biomechanics 91
 equalization 354
 workloads 311
 workout design
 biochemical markers 155–7, 158, 160
 total athlete management 337–8
 wrist girth 329
 X-linked hypophosphataemic rickets (XLHR) 36
 X-ray absorptiometry 138, 322–3
 Young’s modulus see elastic modulus
 youth strength training 427–40
 bone health 431
 cardiovascular risk profiles 431
 choice and order of exercise 433–4
 effectiveness 429–30
 guidelines 432–5
 injuries 427–8, 432
 instruction and supervision 432–3
 motor performance skills and sports performance 432
 persistence of strength gains 429
 physiological mechanisms 430
 potential health and fitness benefits 430–2
 programme evaluation and testing 429–30
 programme variation 435
 repetition velocity 435
 rest intervals 434–5
 risks and concerns 427–8
 training frequency 435
 training intensity and volume 434
 Z-scores 268, 340