Index

absorptive capacity, 138, 139, 242
achievement dimension in moral dilemmas, 71
active factor, 63
adaptive learning, 31
adhocracy quadrant of organisational culture, 73, 74
adoption of ideas, 97
advanced learning paradigms for exploitation, 409–10, 427–8
andragogy, definition, 411
collaborative training and education model, 223–7
deutero-learning, 31
developments and opportunities, 410–411
learning pedagogy, 411–12
learning styles and models, 412
learning through game theory, 412–13
double loop mode learning, 20, 31
pedagogy, definition, 411
single loop mode learning, 20, 31
triple loop mode learning, 20, 31
virtual reality (construction site simulation case study, 415–16
3D modelling, 422
data warehouse environment, 423
discussion, 425–7
human-computer interface, 423
programming environment, 423–4
project scheduling environment, 422–3
simulator development framework, 417–19
system architecture, 419–21
systems, 413
architecture, engineering and construction applications, 413–14
training applications, 414–15
alliances, 264–5
Analytical Hierarchical Process, 306–7, 309
architectural innovation, 212
behaviour modification, 66, 67, 86, 87
Benchmarking, 160, 165–6, 172, 174, 224, 262
benchmarking and Readiness Assessment, 286
benchmarking and Gap Analysis, 165–6, 175
blame culture, 210
bottom lines, financial and social, 128
Building Information Modelling, 14–15, 351–3, 383–7, 403–4
implementation planning, 390
interoperability and integration, 388–9
overview, 387–8
case study, 391–3
innovation through BIM, 399
adoption, 399–400
building and geo-information integration, 401–2
maturity, 400
process simulation and monitoring, 401
sensor networks, 403
web services, 402
build-own-operate-transfer projects, 136
business performance assessment, 165
benchmarking and Gap Analysis, 165–6
evaluation, 167–9
Business Process Redesign, 159–61
Business Process Reengineering, 160
Business Strategy, 161 *(see strategic management)*
buyer power force, 163
development, 162–5, 169, 173–5
key attributes, 164
Organisational Theory, 162
Scientific Management, 162
sustainable competitive advantage, 127–30
capability maturity model, 140, 182, 376
capacity building, 39, 375
case studies
BIM implementation, 391–3
Basingstoke Festival Place, 397
Enfield Town Centre Project, 398
complexity in building processes, 311–13
e-readiness case study, 376–8
innovation in small construction
professional service firm, 50–51
identified innovations, 52
key innovation management challenges, 58–9
knowledge-based innovation, 52–3
knowledge-based innovation, definition of success, 55–8
knowledge-based innovation, two forms, 53–5
lessons learned, 117–18
managing innovation for sustainable innovation in The Netherlands, 114–15
technological regime, 115–17
organisational e-readiness construction framework, 376–8
OSP-QFD collaborative training and education model, 223–7
supply chain management triggering total business transformation, 140–141
Atlantic Corridor, 147
Atlantic Corridor evolution, 141–2
Atlantic Corridor facilitating business transformation, 143–6
Atlantic Corridor facilitating efficiencies, 142–3
virtual reality construction site simulation, 415–16
3D modelling, 422
programming environment, 423–4
project scheduling environment, 422–3
simulator development framework, 417–19
system architecture, 419–21
Change Management, 19–21, 40–41
construction innovation, 36–7
initiatives for construction innovation, 39–40
reconstructing construction culture, 37–8
UK construction culture changes, 38–9
general framework, 32
strategic factors, 32–3
systemic approach, 33–6
innovation process, 21
linear approach, 21–3
non-linear approach, 23–7
role of culture, 27–8
innovation culture, 28
organisation and management culture, 28–32
change-responsive management system, 33
claims culture, 63
Client Requirements Processing Model, 287
client stakeholder category, 63
cloud computing, 15, 399, 402, 403
coalition building, 8, 34, 35
Code for Sustainable Homes, 47
cognitive approach to design, 14, 327–9, 330, 332, 334, 340
collaborative procurement strategy and practices, 251–2, 262–70, 271–2
conventional procurement methods, 254
Design and Build procurement system, 255
employer’s objectives, 256
management procurement system, 255–6
measurements, 259
organisational processes, 259
personal attributes, 259
traditional procurement system, 255
innovative procurement methods, 259–60
alliances, 264–5
comparison of collaborative methods, 262–71
comparison of conventional methods, 260–262
Framework Agreements, 269, 270
Joint Ventures, 263
Partnering, 263–4
Prime Contacting, 266–7
Public Private Partnerships, 267–8
Strategic Alliances, 265–6
Supply Chain Management, 269–71
collective mindfulness, 31
collectivism, 68
dimension in moral dilemmas, 71
community of practice, 135, 141, 243
competitive environment, 47
complexity theory, 12–13, 297, 314
complex innovation in organisations, 308–11
case study findings, 311–13
complexity in build environment, 301–2, 310
complexity in organisations, 302–3
entangled complexity, 297, 298, 314
overview, 297–301
toolkits, 303–8
Computer Aided Design, 279
conventional tools, 326
technical implications for developing tangible VR interfaces, 338–9
virtual reality interfaces within conceptual architectural design, 329–33
Computer Supported Collaborative Works, 322
conceptual architectural design
existing visualisation tools, 323–4
virtual reality interfaces, 329–33
Concurrent Engineering in construction, 277, 291–2
application in construction, 281–2
benefits of CE to construction industry, 290–291
concept of CE, 278–9
construction as a manufacturing process, 282–3
critical enablers, 286
implementation, 279–81, 284–6
framework for understanding, 280
savings in product development time, 281
support requirement matrix, 280
overcoming barriers to adoption, 289–90
conflict resolution, 35
construction as a manufacturing process, 282–3
construction innovation (see innovation in construction)
Contingency Theory, 162
Corporate Social Responsibility, 87, 174, 175
cost minimising, 97
cost of transacting business, 130–131
coupling model, 24
creative climate, 82–3
creativity, 82–3
critical success factors, 170, 172
culture, 63–4, 66–8, 87–8
construction industry, 66–8
national culture, 68–71
organisational culture, 74–5
organisational culture, 71–4
blame culture, 210
claims culture, 63
cultural readiness, 8
definition, 66
Denison’s model, 72
factors affecting innovation, 82
creativity and creative climate, 82–3
culture change, 86–7
empowerment, 85
leadership, 84
organisational development variables, 85–6
innovation, 75–6
learning culture, 78–9
macho culture, 63
market culture quadrant of organisational culture, 73, 74
project culture, 80–81
role in change management, 27–8
innovation culture, 28
organisation and management culture, 28–32
role in construction, 76–7
innovation culture, 77–8
learning culture, 78–9
project culture/project atmosphere, 80–81
triple helix culture, 79–80
culture change, 86–7
culture of innovation, 8–9, 77–8
debriefing, 109, 243, 418, 426
demand pull innovation, 8, 22–3, 27
Design and Build procurement system, 255
design collaboration, 321, 339
design creativity, 328
design ideas, 328
design innovation, 321–3
cognitive approach to design, 327–9
existing visualisation tools, 323
design innovation (cont’d)
communication culture within architectural design process, 324–5
conceptual architectural design process, 323–4
conventional computer aided design tools, 326
external design representation tools, 325
ICT and virtual reality, 326–7
technical implications for developing tangible VR interfaces, 338–40
virtual reality interfaces within conceptual architectural design, 329–33
design reasoning, 321, 327, 330
deutero-learning, 31, 32
distinctive capabilities, 48
double loop mode learning, 20, 31
dynamic capability, 48, 50
education for construction industry, 222–3
collaborative training and education model, 223–7
construction site simulator, 415–16
effectiveness, 126, 127, 147
efficiency, 126, 127, 147
Eigenvalues, 307–8
Eigenvectors, 307–8
electronic data interchange, 135
empowerment, 85, 366, 369, 372, 373, 375, 378
entangled complexity, 297, 298, 301, 302, 303, 313, 314
enterprise resource planning, 131, 135, 364, 394, 410
epistemology of terms, 236–7
episode-making innovations, 28
building ICT capability, 365–6
business dynamics and technology, 365
business process and ICT, 366–7
business process and implementation, 369
definitions, 371
organisational, 372–3
case study, 376–8
means of achieving e-readiness, 374–6
people, 373
process, 373–4
technology, 374
people and ICT, 367–9
evolution as a systemic phenomenon, 21
linear approach to innovation, 21–3
non-linear approach to innovation, 23–7
exchange of know-how contracts, 99
exploitative innovation, 54–5, 57
explorative innovation, 54–6
extrapolation trap, 36
financial bottom line, 128
Five Forces Model, 162–3, 165
Framework Agreements, 254, 269, 270
free of charge knowledge flow, 99
future technologies, 13–15
game theory, 410, 412–13, 428
Gap Analysis, 165–6, 174
generic needs, 170
Great Southern Common Market (Mercosur), 140
Atlantic Corridor, 147
evolution, 141–2
facilitating business transformation, 143–6
facilitating efficiencies, 142–3
Gross Domestic Product, 95, 209, 363, 409
hidden innovation, 76, 87–8
hierarchy quadrant of organisational culture, 73, 74
high-context cultures, 69, 70
higher level learning, 31
horizontal collectivists, 69
horizontal individualists, 68–9
human capital, 52–3
chains, 138–40
exploitative innovation, 57
explorative innovation, 56
impact, 126, 147
incremental innovation, 97, 104, 147, 212
individualism/collectivism, 68
industrialisation, five levels of, 215
Industry Foundation Classes, 353–4
information and communication technology, 14, 326
building capacity, 365–6
business process, 366–7
Information Systems Strategy, 172–3
Innovation
balanced innovation, 48–50
culture, 75–6
definitions, 97
derivation, 299
hidden innovation, 76, 87–8
incremental innovation, 212
influencing factors, 82
 creativity and creative climate, 82–3
culture change, 86–7
 empowerment, 85
leadership, 84
organisational development variables, 85–6
modular innovation, 212
process innovation, 5, 98, 160
non-linear approach to innovation, 23–7
technology and knowledge transfer, 97–100
innovation capability, 102
innovation culture, 28
innovation demand actors, 111
innovation in construction, 15–16
case studies
 Netherlands, 114–18
change management, 19–21, 40–41
 applied to construction, 36–40
evolution as a systemic phenomenon, 21–7
general framework, 32–6
role of culture, 27–32
future technologies, 13–15
innovation culture, 77–8
main influencing factors, 5
opportunities, appropriation and cumulative effect, 113–14
process drivers, 10–13
system, 110
 actor network, 110–111
 collaboration and capability, 112
theory and practice, 7–9, 45, 59–60
Innovation Index, 76
innovation studies, 22–6
innovation supply actors, 111
innovation support actors, 111
innovative procurement methods, 259–60
 alliances, 264–5
comparison of collaborative methods, 262–71
comparison of conventional methods, 260–262
Framework Agreements, 269, 270
joint ventures, 263
partnering, 263–4
Prime Contacting, 266–7
Public Private Partnerships, 267–8
strategic alliances, 265–6
 supply chain management, 269–71
intangible capital, 49
interaction environment, 48
International Alliance for Interoperability, 353–4
international initiatives to promote change in construction industry, 211
investment capability, 102
Investors in People, 51
ISO 9001 Quality Management Systems, 51
Japanese car manufacturing industry techniques, 125
Japanese quality movement, 35
job/employee orientation dimension for organisational analysis, 71
jockeying for position force, 163
Joint Ventures, 263
Just in Time approach, 132
knowledge and technology base, 102
knowledge base, 112
knowledge capital, 53
 exploitative innovation, 57
 explorative innovation, 56
knowledge chains, 137–8
knowledge management, 235–6, 247–8
 challenges facing project based organisations, 239–41
context and definition, 236–7
 operational knowledge, 55
project based environments, 238–9
strategy, 241–2
 techniques and technology, 242–5
 technological capability, knowledge and learning, 101–3
knowledge search innovation, 23
knowledge sharing, 34–5
knowledge spirals, 58–9
knowledge stickiness, 139
knowledge use innovation, 23
case study, 52–3
leadership, 84
lean construction, 125
learning culture, 78–9
learning mechanism, 109
life-cycle costing, 225, 305
linear approach to innovation, 21–3
long-termism/short-termism in cultures, 68
low-context cultures, 70
lower level learning, 31

maintenance policies, 306
management culture, 28–32
management procurement system, 255–6
man-made limits, 96
ManuBuild Project, 217–18, 300
market and risk dimension, 219–20
market culture quadrant of organisational

culture, 73, 74
market pull innovation, 22
market-based perspective on innovation,
47–8

Modern Method of Construction and
Offsite Production, 11, 209–10,
212–13, 227
classification, 213
international initiatives to promote change, 211
need for change, 210–212
open building manufacturing, 217–18
market and risk dimension, 219–20
people dimension, 219
process dimension, 218
product dimension, 219
technology dimension, 219
Off Site Production, 214–16, 220
cost of transacting business, 130–131
construction industry skill problem, 220–222
multidisciplinary training and education, 222–3
OSP-QFD collaborative training and education model, 223–7
strategies, 216–17
 modular innovation, 212
monoachronic action, 70
Movement for Innovation, 37, 38

National Endowment for Science,
Technology and the Arts, 75–6
national information system, 26–7

Netherlands
managing innovation for sustainable innovation, 114–15
lessons learned, 117–18
technological regime, 115–17
network transparency, 390
neutral dimension in moral dilemmas, 71
non-strategic learning, 31
normative commitment, 139

Offsite Construction, 213
Offsite Fabrication, 213
Offsite Manufacturing, 213
Offsite Production, 210, 213
cost of transacting business, 130–131
evolution and application, 214–16
strategies, 216–17
UK situation, 220
construction industry skill problem, 220–222
multidisciplinary training and education, 222–3
OSP-QFD collaborative training and education model, 223–7
virtual reality construction site simulation, 415–16
3D modelling, 422
data warehouse environment, 423
discussion, 425–7
human-computer interface, 423
programming environment, 423–4
project scheduling environment, 422–3
simulator development framework, 417–19
system architecture, 419–21
open/closed system dimension for organisational analysis, 71
openness to change, 20
operational knowledge, 55, 56
Organisation for Economic Co-operation and Development, 125
organisation values
cost of transacting business, 130–131
sustainable competitive advantage, 127–30
organisational climate, 74–5
organisational culture, 28–32, 71–4
organisational development variables, 85–6
Organisational Theory, 162
output maximising, 97
outsourcing, 126, 131–3, 266
over the brick wall/silo approach, 210, 282

partnering, 263–4
pedagogy, definition, 411
plan-do-check-act cycle, 189–92
planning, definition, 191
polychronic action, 70
Porter's Five Forces Model, 162–3
Positivism, 236
Post Occupancy Analysis, 305
Post-Project Reviews, 243
power distance in cultures, 68, 69
pragmatic/normative dimension for organisational analysis, 71
predictiveness, 299
pre-inventive structures, 328
Prime Contracting, 260, 266–7, 269, 272
Private Finance Initiative, 267, 268, 289
private investments, 99
probability, 299–300
process drivers, 10–13
process innovation, 5, 98, 160
definition of processes, 5
issues highlighted for improvement, 6–7
process technology, 100
process/results orientation dimension for organisational analysis, 71
procurement
 collaborative procurement strategy and practices, 251–2, 271–2
 conventional procurement methods, 254
 behaviour, 259
 build-own-operate-transfer projects, 136
 Design and Build procurement system, 255
 employer’s objectives, 256
 management procurement system, 255–6
 measurements, 259
 organisational processes, 259
 personal attributes, 259
time span, 257
 traditional procurement system, 255
 definition, 252
 innovative procurement methods, 259–60
 alliances, 264–5
 comparison of collaborative methods, 262–71
 comparison of conventional methods, 260–262
 Framework Agreements, 269, 270
 Joint Ventures, 263
 Partnering, 263–4
 Prime Contracting, 266–7
 Public Private Partnerships, 267–8
 strategic alliances, 265–6
 supply chain management, 269–71
procurement innovation, 12
product information tools or applications, 279
product innovation, 98
product technology, 100
production capability, 102
profit-maximising, 97
project atmosphere, 80–81
project culture, 80–81
Project Management Body of Knowledge Guide, 194–6
 qualitative risk analysis, 199–200
 quantitative risk analysis, 200
 risk identification, 198–9
 risk management planning, 196–8
 risk monitoring and control, 202
 risk response planning, 201
 project management plan, 193, 197
 project realisation process, 65
 promotion agents, 101
 prototyping systems, virtual see virtual prototyping systems
Public Private Partnerships, 267–8, 289
 qualitative risk analysis, 199–200
 Quality Function Deployment, 210
 training and education model, 223–7
 voice of the customer, 224
 quality movement, Japanese, 35
 quantitative risk analysis, 200
 radical innovation, 212
 reconceptualising supply chains, 137
 relationship capital, 52–3
 exploitative innovation, 57
 explorative innovation, 56
 relevance, 126, 147
 resource-based perspective on innovation, 48
 resource-based view, 127–8
 risk dumping, 210
 risk identification, 198–9
 risk management in planning process improvement, 181–4, 186–7, 204–6
 business process classification, 186
 business process definitions, 184–6
 integrating risk management into planning, 202–4
 planning, 191–3
 project and process improvement failures, 187–8
 qualitative risk analysis, 199–200
 quantitative risk analysis, 200
 risk identification, 198–9
 risk management planning, 196–8
 risk management process, 195–6
 risk monitoring and control, 202
 risk response planning, 201
 steps in process improvement model, 188–91
 risk monitoring and control, 202
Index

organisation values, 126–7
cost of transacting business, 130–131
sustainable competitive advantage, 127–30
value generation, 131–5
buy or outsource decision, 131–2
supply push innovation, 21–3, 27
sustainability, 126, 147
sustainable competitive advantage, 127–30
sustainable construction, 8, 37, 96–7
managing innovation in The Netherlands, 114–15
lessons learned, 117–18
technological regime, 115–17
symbolic information processing, 328
system innovation, 212
Systems Theory, 162
tangible user interfaces, 330–331
task environment, 47
technological opportunities, 104
technological regime, 103–5
construction industry, 112–13
technological routine, 103–4
technology and knowledge transfer, 9, 95, 98–100, 118
construction industry, 106
international transfer, 107–10
technologies and innovation, 106–7
construction performance and challenges, 95–6
innovation, 97–8
innovation system, 100–101
strategic niche management, 105–6
sustainable construction, 96–7
technological capability, knowledge and learning, 101–3
technological regime and routines, 103–4
technology intervention, 101
technology push innovation, 22–3
temporary multi-organisation, 64
theory and practice of construction innovation, 45, 59–60
case study, 51–2
identified innovations, 52
key innovation management challenges, 58–9
knowledge-based innovation, 52–3
knowledge-based innovation, definition of success, 55–8
knowledge-based innovation, two forms, 53–5

risk register, 198–200
risk response planning, 201

scale-thin, 301
Scientific Management, 162
selection mechanisms, 27
semantically enhanced object models, 354–5
sensor networks, 403
service elements, 224
single loop mode learning, 20, 31
skill shortages in construction industry, 220–222
Slimbouwen®, 115–17
social bottom line, 128
social capital, 129–31, 137–9, 147
Social Constructionism, 236–7
Stakeholder Perspective Management, 162
statement of work, 197
stickiness of knowledge, 139
strategic alliances, 265–6
strategic management in construction, 157–8, 175–6
business performance assessment, 165
benchmarking and Gap Analysis, 165–6
evaluation, 167–9
Business Process Redesign, 159–61
Business Strategy, 161
development, 162–9, 173–5
strategic challenge, 169–70
sector dynamisms and drivers, 158–9
supply chains, 158–9
strategic niche management, 105–6
Strengths, Weakness, Opportunities and Threats analysis, 165, 171–2
structure capital, 52–3
exploitative innovation, 57
explorative innovation, 56
Structure Process Improvement for Construction Enterprises, 5
Structured Process Improvement for Construction Environments, 182
supplier power force, 163
supply chain management, 8, 9, 37, 125–6, 147, 269–71
change of focus towards value chain management, 144–6
emerging issues, 135
human capital chains, 138–40
knowledge chains, 137–8
value chains, 135–7
Index

perspectives, 47
 balanced innovation, 48–50
 market-based perspective on innovation, 47–8
 resource-based perspective on innovation, 48
tight/loose control dimension for organisational analysis, 71
time perspectives, 70, 133
Total Quality Management, 224
training in construction skills, 222–3
 OSP-QFD collaborative training and education model, 223–7
training applications, 414–15
Transaction Cost Economics, 130, 131, 133
triple bottom line approach, 126
triple helix culture, 79–80
triple loop mode learning, 20, 31

UK
 Building Information Modelling, 393
 Basingstoke Festival Place, 397
 Enfield Town Centre Project, 398
evolutionary adoption, 393–9
construction culture changes, 38–9
definition of innovation, 46
Offsite Production, 220
 construction industry skill problem, 220–222
 multidisciplinary training and education, 222–3
 OSP-QFD collaborative training and education model, 223–7
uncertainty avoidance, 68
unexpected discoveries model, 329
unit of work, 355
universalism dimension in moral dilemmas, 71
value chain management, 135–7
value engineering, 37, 38, 262
value generation, 131
 buy or outsource decision, 131–2
 supply chain management, 132–5
Variance Analysis, 166
vertical collectivists, 69
vertical individualists, 69
virtual planning, 347–8, 359
 Building Information Modelling, 351–3
complex nature of construction projects, 348–9
construction planning and virtual prototyping, 349–51
interoperability and industry foundation classes, 353–4
knowledge-based decision support, 354
knowledge models, 355
semantically enhanced object models, 354–5
virtual prototyping systems, 14, 349–51, 356–7
knowledge-based decision support, 354
knowledge models, 355
semantically enhanced object models, 354–5
Virtual Reality, 322, 326–7, 413
 architecture, engineering and construction applications, 413–14
construction site simulation case study, 415–16
 3D modelling, 422
 data warehouse environment, 423
discussion, 425–7
human-computer interface, 423
programming environment, 423–4
project scheduling environment, 422–3
simulator development framework, 417–19
 system architecture, 419–21
 interfaces within conceptual architectural design, 329–33
technical implications, 338–9
training applications, 414–15
Virtual Reality Modelling Language, 339
 visualisation for design innovation
 existing tools, 323
 communication culture within architectural design process, 324–5
 conceptual architectural design process, 323–4
 conventional computer aided design tools, 326
 external design representation tools, 325
 ICT and virtual reality, 326–7
 voice of the customer, 224
Whole Life-Cycle Costing, 305
work breakdown structure, 197
World Information Technology and Services Alliance, 370
 ZERO, 171–5
zero-sum games, 65