INDEX

Actin regulation:
atomic force microscopic imaging, inverted
optical microscopic assembly, 140–141
cell secretion and, 8–17
Adenylate cyclase, signal transduction, 55–56
Adhesion mapping:
microbial cell surface imaging, atomic force
microscopy analysis, 81–82
sonicated unilamellar vesicle bilayers, 192–197
Adsorption strategies:
microbial cell surface imaging, atomic force
microscopy analysis, 71
polymer-based nanodrug delivery, 120–121
Alkanethiol self-assembled monolayers,
microbial cell surface imaging:
atomic force microscopy analysis, 71
probe surface chemistry, 80–81
Ambisome, nanodrug delivery with, 131–132
Annexin A5 (AnxA5), antiphospholipid
syndrome, 277–279
atomic force microscopy, 279–282
Antibiotics, microbial cell surface effects, atomic
force microscopy analysis, 78–79
Anticoagulant effects, antiphospholipid
syndrome, 275
annexin A5, 277–279
Antigen presenting cell (APC), avidity
modulation, basic principles, 169–171
Antiphospholipid syndrome (APS), atomic force
microscopic imaging:
annexin A5 shield, 277–279
aPL antibodies, anticoagulation effects, 275
clinical applications, 279–282
β2GPI cofactor, 275–277
hemostatic proteins, 274–275
lipid analysis, 273–274
theoretical background, 267–272
Apolipoprotein (APL) antibodies:
anticoagulant effects, 275
antiphospholipid syndrome, annexin A5, 278–279
Aquaporins:
microbial cell surface imaging, atomic force
microscopy analysis, 74–75
immobilization strategies, 71
secretory vesicle content expulsion, basic
principles, 37–38, 40
Array detectors, atomic force microscopy
cantilevers, 240–241
Atomic-based membrane fusion processes,
calcium participation in, 27–34
Atomic force microscopy (AFM):
antiphospholipid syndrome:
annexin A5 shield, 277–279
aPL antibodies, anticoagulation effects, 275
clinical applications, 279–282
β2GPI cofactor, 275–277
hemostatic proteins, 274–275
lipid analysis, 273–274
theoretical background, 267–272
biomolecular motion:
basic principles, 221–223
biological applications, 242–243
cantilever properties:
limits, 232
resonant frequency, 232–233
small cantilevers, 233–235
thermal noise, 235–237
fast, low-noise detector, 239–241
fast feedback loop, 242
fast scanner, 241–242
focused spot size, 237–239
imaging speed, 228–231
feedback limit, 231
lateral dimension reduction, 229–230
tracking mechanisms, 228–229
video-rate imaging, 231
time-resolved imaging, 223–228
alignment, 225–227
moving images, 227–228

Atomic force microscopy (AFM) (continued)
 p53-DNA dynamic interactions, 224–225
 recording sequences, 223–224
cytogenetics applications:
 C-banding technique, 257
 genetic material imaging techniques, 250–253
 metaphase chromosome karyotyping, 253–257
 metaphase chromosome three-dimensional analysis, 257–259
 nanoeXtraction, 259–262
 nanomanipulation and dissection, 259
 theoretical background, 249–250
 electrophysiological techniques, 137–150
 inner ear tissue sections, 144–150
 inverted optical microscope, 137–141
 growth hormone fusion pore structure and dynamics, 59–60
 growth hormone secretory vesicles, 61–63
 historical evolution of, 2–3
 leukocyte adhesion molecules, 160
 avidity modulation:
 adhesive force measurements, 172–173
 basic principles, 169–171
 cells and reagents, 171
 clinical applications, 176–178
 elasticity measurements, 173
 integrin lateral redistribution, 173–175
 ionomycin/thapsigargin stimulation, 175–176
 protein immobilization, 172
 3A9 cell crosslinking, 171–172
 integrin activation, 162–166
 single-molecule unbinding, 160–166
 lipid bilayers, thickness and micromechanical properties, 181–197
 supported thickness, 182–183
 lipid membrane preparation, porosome reconstitution, 4
 microbial cell surface property analysis, 69–90
 Bacillus S-layers, 73
 basic principles, 69–70
 cell surface layer imaging, 73–75
 elasticity, 85–89
 layers stretching, 87
 single cell stretching, 87–89
 single macromolecules, 86–87
 external agent effects, 78–79
 future applications, 89–90
 hexagonally packed intermediate layer, 73
 imaging techniques, 70–79
 immobilization strategies, 71
 selection criteria, 71–72
 substrate requirements, 70–71
 microbial biofilms, 75–76
 nanostructures, 76–78
 physical properties measurement, 79–89
 force-distance curves, 80
 force measurements, 80–81
 functionalized probes, 80–81
 physicochemical properties and molecular interactions, 81–85
 adhesion mapping, 81–82
 cell probe technique, 85
 surface charges and electrostatic interactions, 83–85
 surface energy and solvation interactions, 82–83
 physiological changes, 78
 porin crystals, 74–75
 purple membranes, 73–74
 pancreatic acinar cell isolation, 3–4
 pancreatic plasma membrane isolation, 4
 plant cell wall imaging, 96–97
 cellulose, 99–100
 lignins, 103–108
 pectins, 97–99
 porosome imaging, 4–5
 structural analysis, 6–17
 secretory vesicle content expulsion, vesicle swelling in pancreatic acinar cells, 38–44
 SNARE-induced membrane fusion, bilayer interaction and conducting channel formation, 26–27
 soft tissue imaging, swollen polymer surfaces, 214–218
 sonicated unilamellar vesicle:
 bilayer thickness and morphology, 187–191
 micromechanical properties, 191–197
 synaptosome/synaptosomal/synaptic vesicle isolation, 4
 Avidity modulation, leukocyte adhesion molecules:
 adhesive force measurements, 172–173
 basic principles, 169–171
 cells and reagents, 171
 clinical applications, 176–178
 elasticity measurements, 173
 integrin lateral redistribution, 173–175
 ionomycin/thapsigargin stimulation, 175–176
 protein immobilization, 172
 3A9 cell crosslinking, 171–172
 Bacillus S-layers, microbial cell surface imaging, atomic force microscopy analysis, 73
 immobilization strategies, 71
 Bell single-molecule unbinding model, leukocyte adhesion molecules, 160–166
 integrin activation, 165–166
 Bending modulus, sonicated unilamellar vesicle bilayer micromechanics, 192–197
 “Bimetallic strip effect,” atomic force microscopy cantilevers, 233
Biocompatibility, polymer-based nanodrug delivery, 131–132
Biocorrosion studies, microbial cell surface imaging, atomic force microscopy analysis, 76
Biofilms, microbial cell surface imaging, atomic force microscopy analysis, 75–76
Biomembrane force probe (BFP), leukocyte adhesion molecules, 160
Biomolecular motion, atomic force microscopy (AFM):
 - basic principles, 221–223
 - biological applications, 242–243
 - cantilever properties:
 - limits, 232
 - resonant frequency, 232–233
 - small cantilevers, 233–235
 - thermal noise, 235–237
 - fast, low-noise detector, 239–241
 - fast feedback loop, 242
 - fast scanner, 241–242
 - focused spot size, 237–239
 - imaging speed, 228–231
 - feedback limit, 231
 - lateral dimension reduction, 229–230
 - tracking mechanisms, 228–229
 - video-rate imaging, 231
 - time-resolved imaging, 223–228
 - alignment, 225–227
 - moving images, 227–228
 - p53-DNA dynamic interactions, 224–225
 - recording sequences, 223–224
Bis(sulfosuccinimidyl) suberate (BS3), avidity modulation:
 - integrin lateral redistribution, 174–175
 - LFA-1 receptor cross-linking, 176–178
Boltzmann constant:
 - atomic force microscopy, thermal cantilever noise, 236–237
 - leukocyte adhesion molecules, single-molecule unbinding theory, 160–166
 - photonic force microscopy, 152–157
Brownian motion, atomic force microscopy, thermal cantilever noise, 236–237
Buffered fluid environment, atomic force microscopy, antiphospholipid syndrome, 269–272
Calcium ions:
 - leukocyte adhesion:
 - avidity modulation, 170–172
 - ionomycin/thapsigargin stimulation, 175–176
 - signal transduction mechanisms, 55–56
 - SNARE-induced membrane fusion:
 - atomic levels for, 27–35
 - cell-based mechanisms, 27
Cancer pathophysiology, nanodrug delivery systems, 115–116
 - liposome structure, 117–118
Cantilever structures:
 - atomic force microscopy:
 - antiphospholipid syndrome, 268–272
 - biological applications, 242–243
 - conventional sizes, 232
 - fast, low-noise detector, 239–241
 - fast feedback loop, 242
 - fast scanner, 241–242
 - focused spot size, 237–239
 - inverted optical microscope schematic, 137–141
 - resonant frequency, 232–233
 - small cantilever properties, 233–235
 - thermal noise, 235–237
 - leukocyte adhesion molecules, avidity modulation, 172–173
 - microbial cell surfaces, atomic force microscopy analysis, imaging modes, 71–72
 - photonic force microscopy, 151–157
 - scanning probe microscopy, soft surface imaging, 203, 210–211
 - supported lipid bilayer thickness measurements, 184–186
 - Capacitance measurements, SNARE-induced membrane fusion, atomic-level calcium participation in, 30–34
 - C-banding technique, metaphase chromosomes, 257
 - Cell-based fusion machinery, SNARE and calcium for, 27
 - Cell clustering, leukocyte adhesion, 177–178
 - “Cell probe” technique, microbial cell surface imaging, atomic force microscopy analysis, 85
 - Cell secretion:
 - growth hormone secretory vesicles, 61–63
 - molecular mechanisms for, 17, 19–20
 - porosome functions, 1–3
 - AFM imaging of, 6–17
 - secretory vesicle content expulsion, molecular mechanisms:
 - basic principles, 37–38
 - swelling process in cellular secretion, 38–44
 - swelling process in neuron secretion, 44–46
 - Cell spreading, leukocyte adhesion, 177–178
 - Cellulolytic microorganisms, cellulose digestion, atomic force microscopic imaging, 99–100
 - Cellulose:
 - atomic force microscopic imaging, 99–100
 - plant cell walls, basic properties, 96
Charge-coupled device (CCD) camera:
atomic force microscopy cantilevers, focused
spot dimensions, 238–239
time-resolved imaging, 227–228
Chloride channels, porosome structural analysis,
11–17
Cholesterol incorporation, sonicated unilamellar
vesicle bilayer micromechanics, 195–197
Conductance measurements, SNARE-induced
membrane fusion, atomic-level calcium
participation in, 30–34
Constant-deflection imaging, microbial cell
surfaces, atomic force microscopy analysis,
71–72
Constant force mode, scanning probe
microscopy, soft surface imaging, 203
Constant-height imaging:
antiphospholipid syndrome, 281–282
microbial cell surfaces, atomic force
microscopy analysis, 71–72
scanning probe microscopy, soft surface
imaging, 203–205
sonicated unilamellar vesicle bilayers,
thickness and morphology, 187–191
Contact mode imaging:
cytogenetics research, 251–253
microbial cell surfaces, atomic force
microscopy analysis, 71–72
scanning probe microscopy:
liquid droplets, 212–214
soft surface imaging, 203–205
swollen polymer surfaces, 214–218
sonicated unilamellar vesicle bilayers,
thickness and morphology, 188–191
Corticotropin-releasing hormone (CRH),
growth-hormone release and synthesis, 55
Covalent immobilization, microbial cell surface
imaging, atomic force microscopy analysis,
71
Critical micelle concentration (CMC), supported
lipid bilayer thickness measurements,
184–186
Cross-correlation alignment:
real-time correction algorithm, 229
time-resolved imaging, 225–227
Cross-linking mechanisms, leukocyte adhesion:
avidity modulation, 171–172
bis(sulfosuccinimidyl) suberate (BS3),
176–178
Cyclic AMP (cAMP), signal transduction, 55–56
Cyclooxygenase-2 (COX-2), nanodrug delivery
systems, dendrimer-ibuprofen nanodevices,
127
Cytochalasin B, cell secretion and, 8–17
Cytogenetics, atomic force microscopy:
C-banding technique, 257
genetic material imaging techniques, 250–253
metaphase chromosome karyotyping, 253–257
metaphase chromosome three-dimensional
analysis, 257–259
nanoextraction, 259–262
nanomanipulation and dissection, 259
theoretical background, 249–250
Cytotoxic T-lymphocyte response (CTL),
nanodrug delivery systems, 129–130
Daunoxome, nanodrug delivery with, 131–132
De-adhesion, leukocyte adhesion,
ionomycin/thapsigargin stimulation,
175–176
Degradation mechanisms, polymer-based
nanodrug delivery, 120–121
Dendrimers, nanodrug delivery systems,
122–130
chemistry, 124
drug conjugation, 126–129
free dendrimer interactions, 124–126
ibuprofen nanodevices, 126–127
methyl prednisolone nanodevices, 127–129
“Depression technique:” microbial cell surface
elasticity, atomic force microscopy imaging,
85–89
Differential interference contrast (DIC) light
microscopy, inner ear tissue studies,
144–150
Diffusion mechanisms:
membrane viscosity, thermal fluctuation
measurements, 155–157
polymer-based nanodrug delivery, 120–121
Dioleoyl phosphatidyl ethanolamine (DOPE),
nanodrug delivery systems, 118–120
Discrete Fourier transform (DFT), time-resolved
imaging, alignment techniques, 226–227
DNA:
atomic force microscopic imaging, 243
cytogenetics research, 250–253
metaphase chromosome karyotyping,
255–257
enzymatic degradation, atomic force
microscopic imaging, 222–223
p53 protein-DNA interaction, time-resolved
imaging, 224–226
Drift phenomena:
atomic force microscopy, real-time correction
algorithm, 229
biomolecular motion, time-resolved imaging,
223–228
time-resolved imaging:
alignment techniques, 226–227
thermal drift, 227–228
Dynamic force spectroscopy, leukocyte adhesion
molecules:
integrin activation, 162–166
selectin/sLeX complexes, 162
single-molecule unbinding theory, 161–166
Dynamic mode imaging. See Tapping mode
atomic force microscopy (TMAFM)

Egg yolk phosphatidylcholine (EggPC):
sonicated unilamellar vesicle bilayers:
micromechanical measurements, 192–197
thickness and morphology, 187–191
supported lipid bilayer thickness, 182–186

Elasticity:
atomic force microscopy imaging, inner ear
tissue studies, 147–150
leukocyte adhesion, avidity modulation, 173
microbial cell surfaces, atomic force
microscopy imaging, 85–89
layers stretching, 87
single cell stretching, 87–89
single macromolecules, 86–87
photon force microscopy, single molecules,
154–157
sonicated unilamellar vesicle bilayer
micromechanics, 192–197

Electron beam deposition (EBD), atomic force
microscopy cantilevers, 233
nanoextraction, 262

Electron microscopy:
metaphase chromosome karyotyping, 255–257
microbial cell surface imaging, nanostructures,
77–79
plant cell wall imaging, 97

Electrophysiology:
atomic force microscopy and, 137–150
inner ear tissue studies, 144–150
inverted optical microscope schematic,
137–141
patch-clamp integration into, 141–144
microbial cell surface imaging, atomic force
microscopy analysis, 83–85
porosome structure and function, 17
scanning probe microscopy, soft surface
imaging, 211
secretory vesicle content expulsion:
basic principles, 37–38
vesicle swelling in pancreatic acinar cells,
41–44
SNARE-induced membrane fusion,
atomic-level calcium participation in,
30–34

Electrostatic interactions, microbial cell surface
imaging, atomic force microscopy analysis,
83–85

Encapsulation efficiency, polymer-based
nanodrug delivery, 120–121

Endocrine pancreas, porosome structure and
function and, 8–17

Endocytosis, nanodrug delivery systems,
114–116

Enhanced permeability and retention (EPR),
nanodrug delivery systems, liposome
structure, 117–118

Enzyme activity, atomic force microscopic imaging, 222–223

ESEM imaging, lignin formation, 103–108

Exocytosis, atomic force microscopic imaging,
internal optical microscopic assembly,
140–141

External agents, microbial cell surface effects,
atomic force microscopy analysis, 78–79

Extracellular polymeric substances (EPS),
microbial cell surface imaging, atomic force
microscopy, 76

Extravasation, leukocyte adhesion molecules,
159

Feedback limits, atomic force microscopy, 231
fast feedback loop, 242

Fibrinogen, atomic force microscopic imaging:
anticoagulant effects, 275
antiphospholipid syndrome, 274–275

Field emission in lens scanning electron
microscopy (FEISEM), metaphase
chromosomes, 258–259

Fluorescein isothiocyanate (FITC), nanodrug
delivery systems:
cellular interactions, 125–126
dendrimer chemistry, 124
methyl prednisolone-dendrimer nanodevices,
128–129

Fluorescence in situ hybridization (FISH):
cytogenetics research, 250
nanoextraction, 261–262

Fluorescence lifetime imaging (FLIM), plant cell
walls, 108–109

Fluorimetric fusion assays, SNARE-induced
membrane fusion, atomic-level calcium
participation in, 30–34

Focused spot dimensions, atomic force
microscopy cantilevers, 237–239

Folate receptor ligand, nanodrug delivery
systems, 119–120

Force-distance curves:
atomic force microscopy, low-noise detection,
240–241
microbial cell surface imaging:
atomic force microscopy analysis, 80–81
elasticity measurements, 88
layered surface applications, 87
future applications, 89–90
soft tissue imaging, swollen polymer surfaces,
214–218
Force-distance curves (continued)
sonicated unilamellar vesicle bilayers, 192–197
supported lipid bilayer thickness, 183–186
Force measurements:
atomic force microscopic imaging:
inner ear tissue studies, 148–150
lateral dimension reduction, 230–231
lipid bilayers and vesicles, 181–182
leukocyte adhesion molecules:
avoid modulation, 172–173
integrin lateral redistribution, 174–175
single-molecule unbinding theory, 161–166
microbial cell surface imaging, atomic force
microscopy analysis, 80–81
sonicated unilamellar vesicle bilayers, 191–197
Fourier Transform infrared (FTIR) imaging,
lignin structures, 108
Freely jointed chain (FJC), microbial cell surface
elasticity, 87–88
Friction force microscopy (FFM), soft surface
imaging, 205
Fusion pores. See Porosomes
“Fusogenic liposomes,” nanodrug delivery
systems, 118–120
cytotoxic T-lymphocyte response, 129–130
Ghrelin:
growth-hormone release and synthesis, 53–54
signal transduction mechanisms, 55–56
Glass substrates, microbial cell surface imaging,
atomic force microscopy analysis, 70–71
Glucosides, lignin synthesis, 100–108
Gonadotropin-releasing hormone (GnRH),
growth-hormone release and synthesis, 54
β2GPI cofactor, antiphospholipid syndrome,
atomic force microscopy, 275–277
GroEL/GroES chaperonin proteins, atomic force
microscopy, 230–231
Growth-hormone (GH), cell fusion pores,
pituitary gland:
atomic force microscopy analysis, 59–60
hypothalamic hormone control, 50–55
ghrelin, 53–54
growth-hormone-releasing factor, 50–52
peptide regulation, 54–55
somatostatin, 52–53
immunochemical somatotroph
distribution, 57–58
overview, 49
post-secretion secretory vesicle amounts,
60–63
signal transduction mechanisms, 55–56
in vivo neuroendocrine regulation, 49–50
Growth-hormone-releasing hormone (GHRH):
growth hormone release and synthesis, 50–52
growth hormone secretory vesicles, secretion
effects, 62–63
signal transduction mechanisms, 55–56
GTG banding, atomic force microscopic
imaging:
 genetics research, 250–253
metaphase chromosome karyotyping, 253–257
nanoextration, 261–263
Guanosine triphosphate (GTP), secretory vesicle
content expulsion:
 basic principles, 37–38
vesicle swelling in neurons, 44–46
vesicle swelling in pancreatic acinar cells, 41–44
Harmonic oscillation, atomic force microscopy,
thermal cantilever noise, 235–237
Hemicelluloses, plant cell walls, basic properties, 96
Hemostatic proteins, atomic force microscopic
imaging, antiphospholipid syndrome, 274–275
Herzian model, sonicated unilamellar vesicle
bilayers, force mechanics, 191–197
Hexagonally packed intermediate layers,
microbial cell surface imaging, atomic force
microscopy analysis, 73
immobilization strategies, 71
layered surface applications, 87
High-definition television, atomic force
microscopy, 231
Highly-oriented pyrolytic graphite, scanning
tunneling microscopy, 242
High-pass frequency filter, plant cell walls,
atomic force microscopic imaging, 96–97
Hooke’s law:
force-distance curves, microbial cell surface
imaging, 80–81
scanning probe microscopy, soft surface
imaging, 211
Hydration mechanisms, SNARE-induced
membrane fusion, atomic-level calcium
participation in, 30–34
Hydrogels, scanning probe microscopy, swollen
polymer surfaces, 216–218
Hydroporphic interactions, plant cell wall imaging,
lignin structures, 106–108
Hydroporphic interactions, plant cell wall
imaging, lignin structures, 106–108
Hydroporphic substrates, microbial cell surface
imaging, atomic force microscopy analysis,
70–71
Hypothalamic deafferentiation, in vivo
growth-hormone secretion, 49–51
Hypothalamic hormone control, growth-hormone release and synthesis, 50–55
growth-hormone-releasing factor, 50–52
peptide regulation, 54–55
somatostatin, 52–53

Ibuprofen, nanodrug delivery systems:
chemistry, 124
dendrimer-ibuprofen nanodevices, 126–127

Image alignment techniques, time-resolved imaging, 225–227

Image tracking techniques, atomic force microscopy, biomolecular motion, 228–229

Imaging speed, atomic force microscopy:
biomolecular motion, 228–231
feedback limit, 231
lateral dimension reduction, 229–230
tracking mechanisms, 228–229
video-rate imaging, 231
cantilever resonant frequency, 232–233

Immobilization strategies:
leukocyte adhesion, avidity modulation, 172
microbial cell surface imaging, atomic force microscopy analysis, 71

Immuno-atomic force microscopy (ImmunoAFM):
fixed cells, 5
live cells, 5
secretory product imaging and, 10–17

Immunocytochemistry, growth hormone cells, 57

Immunogold localization, live pancreatic acinar cells, 5

Immunoprecipitation:
pancreatic plasma membrane, 5–6
porosome structural analysis, 11–17

Inner ear tissue, atomic force microscopy studies on, 144–150

Integrins, leukocyte adhesion molecules:
activation analysis, 162–166
basic properties, 159–160
lateral redistribution, 173–175

Intercellular adhesion molecule-1 (ICAM-1):
avidity modulation:
basic principles, 169–171
cells and reagents, 171
force measurements, 172–173
integrin lateral redistribution, 173–175
3A9 cell line adhesion, 176–178
ionomycin/thapsigargin stimulation, 175–176

Intermolecular forces:
leukocyte adhesion molecules:
basic principles, 159–160
integrin activation, 162–166
selectin/sLeX complexes, 162
single-molecule unbinding, 160–166

plant cell wall imaging, lignin structures, 107–108

Inverted optical microscope:
atomic force microscopy on, 137–141
photonic force microscopy and, 152–157

In vivo studies:
growth-hormone secretion, neuroendocrine regulation, 49–50
lignin synthesis, scanning probe microscopic imaging, 100–110
photonic force microscopy, 154–157

Ion channel formation:
atomic force microscopy, patch-clamp integration, 141–144
secretory vesicle content expulsion, basic principles, 37–38
SNARE-induced membrane fusion, 25–27

Ionomycin, leukocyte adhesion and, 175–176

Jump-in point, supported lipid bilayer thickness, 183–186

Karyotyping, atomic force microscopic imaging, metaphase chromosomes, 253–257

Kinesin structures, photonic force microscopy, single molecules, 153–157

Laemmli sample preparation, pancreatic plasma membrane, 5–6

Langmuir-Blodgett films, plant cell wall imaging, lignin structures, 108

Laser instrumentation, photonic force microscopy, 152–155

Lateral dimensions, atomic force microscopy, 229–230

Lateral drift, biomolecular motion, time-resolved imaging, 223–228

Lateral force microscopy (LFM), soft surface imaging, 205–206

LCAO-MO calculations, lignin formation, 101–108

Leptin, growth-hormone release and synthesis, 54

Leukocyte adhesion molecules:
avidity modulation studies:
adhesive force measurements, 172–173
basic principles, 169–171
cells and reagents, 171
clinical applications, 176–178
elasticity measurements, 173
integrin lateral redistribution, 173–175
ionomycin/thapsigargin stimulation, 175–176
Leukocyte adhesion molecules (continued)
protein immobilization, 172
3A9 cell crosslinking, 171–172
intermolecular forces:
basic principles, 159–160
integrin activation, 162–166
selectin/sLeX complexes, 162
single-molecule unbinding, 160–166
Leukocyte function-associated antigen-1 (LFA-1):
avidity modulation:
basic principles, 169–171
ionomycin/thapsigargin stimulation, 175–176
results and discussion, 176–178
leukocyte adhesion molecules:
basics, 159–160
integrin activation, 162–166
lateral redistribution, 173–175
Life mode, scanning probe microscopy, soft surface imaging, 210
Ligand-decorated liposomes, nanodrug delivery systems, 119–120
Light scattering analysis, SNARE-induced membrane fusion, atomic-level calcium participation in, 30–34
Lignin:
plant cell walls, basic properties, 96
scanning probe microscopic imaging, 100–108
Lipid bilayers:
atomic force microscopic imaging, antiphospholipid syndrome, 273–274
secretory vesicle content expulsion, vesicle swelling in pancreatic acinar cells, 41–44
SNARE-induced membrane fusion, 25–27
atomic-level calcium participation in, 27–34
thickness and micromechanical properties:
avoid force microscopic imaging, 181–197
supported thickness, 182–183
Lipid membrane:
porosome reconstitution on mica, 4
porosome structure and function and, 12–17
"raft" structures, viscosity measurements, 156–157
secretory vesicle content expulsion, vesicle swelling in pancreatic acinar cells, 42–44
SNARE-induced membrane fusion, bilayer interaction and conducting channel formation, 26–27
Liposomes, nanodrug delivery systems:
conventional structures, 116–118
modified liposomes, 118–120
Liquid droplets, scanning probe microscopy, soft surface imaging, 212–214
Lithium chloride, microbial cell surface effects, atomic force microscopy analysis, 79
Loading force measurements, sonicated unilamellar vesicle bilayers, micromechanical measurements, 192–197
Low-noise detection, atomic force microscopy cantilevers, 239–241
L-plastin, leukocyte adhesion, avidity modulation, 170–171
Lupus anticoagulant (LA) phenomenon, antiphospholipid syndrome, 275
annexin A5, 278–279
MacMARCKS substrate, leukocyte adhesion, avidity modulation, 170–171
Macromolecules:
avoid force microscopic imaging, hemostasis and thrombosis, 267–283
microbial cell surface elasticity, atomic force microscopy imaging, 86–87
pectin “raft structure,” atomic force microscopy imaging, 97–98
Macropinocytosis, nanodrug delivery systems, 114–116
Madin-Darby canine kidney (MDCK) cells, nanodrug delivery systems, dendrimer structures, 124
Major histocompatibility complex (MHC) molecules, nanodrug delivery systems, 129–130
Mechanical drift, biomolecular motion, time-resolved imaging, 223–228
Membrane fusion:
avoid force microscopic imaging, inverted optical microscopic assembly, 140–141
porosome functions, 1–3
SNARE-induced, molecular mechanisms, 25–34
bilayer interaction circular array, conducting channel formation, 25–27
calcium ion participation, 27–34
cell fusion machinery with, 27
Membrane viscosity, photonic force microscopy, thermal fluctuation measurements, 155–157
Metaphase chromosomes, atomic force microscopic imaging:
comprehensive three-dimensional morphological analysis, 257–259
genetic material, 250–253
GTG-banding patterns, 251–253
historical background, 249–250
karyotyping of, 253–257
Methyl prednisolone nanodevices, nanodrug delivery systems, dendrimer conjugates, 127–129
Mica substrates:
avoid force microscopic imaging, antiphospholipid syndrome, 273–274
microbial cell surface imaging, atomic force microscopy analysis, 70–71
Micelles, polymer-based nanodrug delivery, 121–122
Microbial cell surfaces, atomic force microscopy analysis, 69–90
bacillus S-layers, 73
basic principles, 69–70
cell surface layer imaging, 73–75
elasticity, 85–89
layers stretching, 87
single cell stretching, 87–89
single macromolecules, 86–87
external agent effects, 78–79
future applications, 89–90
hexagonally packed intermediate layer, 73
imaging techniques, 70–79
immobilization strategies, 71
selection criteria, 71–72
substrate requirements, 70–71
microbial biofilms, 75–76
nanostructures, 76–78
physical properties measurement, 79–89
force-distance curves, 80
force measurements, 80–81
functionalized probes, 80–81
physical properties and molecular interactions, 81–85
adhesion mapping, 81–82
cell probe technique, 85
surface charges and electrostatic interactions, 83–85
surface energy and solvation interactions, 82–83
physiological changes, 78
porin crystals, 74–75
purple membranes, 73–74
Microdissection, atomic force microscopy, 259–260
Microfibrils, plant cell walls, basic properties, 95–96
Micromechanical measurements:
atomic force microscopy imaging, inner ear tissue studies, 146–150
sonicated unilamellar vesicle bilayers, 191–197
Molecular mechanisms:
cell secretion, porosome structure and function and, 17, 19–20
microbial cell surface imaging, atomic force microscopy analysis, 81–85
photonic force microscopy, thermal fluctuation measurements, 153–157
plant cell walls, atomic force microscopic imaging, 96–97
secretory vesicle content expulsion:
base principles, 37–38
cellular secretion swelling, 38–44
neuron secretion swelling, 44–46
SNARE-induced membrane fusion, 25–34
bilateral interaction circular array, conducting channel formation, 25–27
calcium ion participation, 27–34
cell fusion machinery with, 27
Molecular weight calculations, lignin formation, 103–108
Monoclonal antibodies, antiphospholipid syndrome, annexin A5, 278–279
Motilin, growth-hormone release and synthesis, ghrelin mediation, 54
Multilamellar vesicle (MLV) solution, sonicated unilamellar vesicle bilayers, thickness and morphology, 188–191

Nanobioscience:
antiphospholipid syndrome, 268–272
atomic force microscopy, cytogenetic applications, 259–262
historical evolution of, 2–3
Nanodrug delivery systems:
cellular interactions:
base principles, 113–116
dendrimers, 122–130
chemistry, 124
drug conjugation, 126–129
free dendrimer interactions, 124–126
ibuprofen nanodevices, 126–127
methyl prednisolone nanodevices, 127–129
lipid-based systems, 116–120
polymer-based systems, 120–130
micelles, 121–122
nanoparticles, 120–121
clinical applications and future research, 130–132
Nanoextraction, atomic force microscopy, 259–262
Nanoparticles:
AFM manipulation and dissection, 259
polymer-based nanodrug delivery, 120–121
scanning probe microscopy, liquid droplets, 212–214
Nanostructures:
microbial cell surface imaging, atomic force microscopy analysis, 76–79
physiological changes, 78
photonic force microscopy imaging, 151–157
Near-field scanning optical microscopy (NSOM):
antiphospholipid syndrome, 268–272
lignin imaging, 104–108
plant cell wall imaging, 108–109
Neuroendocrine regulation, in vivo
growth-hormone secretion, 49–50
Neurons:
- porosome structure and function in, 8–17
- secretory vesicle content expulsion, 44–46
Neuropeptide Y (NPY), growth-hormone release and synthesis, ghrelin mediation, 54
Noncontact mode:
- cytogenetics research, 252–253
- scanning probe microscopy, soft surface imaging, 210
NSF-ATP assays, SNARE-induced membrane fusion, atomic-level calcium participation in, 31–34
Nyquist relation, atomic force microscopy, thermal cantilever noise, 236–237

OmpF porin, microbial cell surface imaging, atomic force microscopy analysis, immobilization strategies, 71
Opposing bilayers, SNARE-induced membrane fusion, 25–27
Optical beam deflection, atomic force microscopy cantilevers, low-noise detection, 239–241
Optical trapping techniques, photonic force microscopy, 151–157

Pancreatic acinar cells:
- immunogold localization, 5
- isolation, 3–4
- porosome structure in, 6–17
- secretory vesicle content expulsion:
 - basic principles, 37–38
 - vesicle swelling during secretion, 38–44
- transmission electron microscopy imaging, 5
Pancreatic plasma membrane:
- immunoprecipitation and Western blot analysis, 5–6
- isolation, 4
- porosome structural analysis, 10–17
- secretory vesicle content expulsion, basic principles, 37–38
- Patch-clamp integration, atomic force microscopy, 141–144
- inner ear tissue studies, 144–150
Pectins:
- atomic force microscopic imaging, 97–98
- basic properties, 96
PEO-b-poly(L-amino acids) (PLAA) block copolymers, polymer-based nanodrug delivery, 122
multidrug resistance and, 131
Phagocytosis, nanodrug delivery systems, 114–116
- liposome structure, 117–118
- Phase contrast microscopy, metaphase chromosome karyotyping, 254–257
Phase shift detection, scanning probe microscopy, soft surface imaging, 209–210
Phenolic alcohols, lignin synthesis, 100–108
Phorbol myristate acetate (PMA), leukocyte adhesion:
 - avidity modulation, 170–171
 - cell spreading, 177–178
 - integrin lateral redistribution, 174–175
Phosphatidylserine (PS), antiphospholipid syndrome, 269–272
Phospholipase C-IP3-protein kinase C, signal transduction, 55–56
Photodetection sensitivity, atomic force microscopy cantilevers, 240–241
Photonic force microscopy (PFM):
 - development of, 151–157
 - position-sensing systems, 151–153
 - thermal fluctuation measurements:
 - membrane viscosity, 155–157
 - single molecules, 153–155
- Physicochemical properties, microbial cell surface imaging, atomic force microscopy, 81–85
- Physiological changes, microbial cell surface imaging, atomic force microscopy analysis, 78
Phytohemagglutinin (PHA), cytogenetics applications, atomic force microscopy, 249
Piezoelectric crystals:
- atomic force microscopy:
 - antiphospholipid syndrome, 269–272
 - fast scanners, 241–242
- scanning probe microscopy, soft surface imaging, 202–203
Pipette structures, atomic force microscopy, 138–141
Pituitary adenylate cyclase-activating peptide (PACAP):
 - growth-hormone release and synthesis, 54
 - signal transduction mechanisms, 55–56
Pituitary gland, growth-hormone cell fusion pores:
- atomic force microscopy analysis, 59–60
- hypothalamic hormone control, 50–55
- ghrelin, 53–54
- growth-hormone-releasing factor, 50–52
- peptide regulation, 54–55
- somatostatin, 52–53
- immunocytochemical somatotroph distribution, 57–58
overview, 49
post-secretion secretory vesicle amounts, 60–63
signal transduction mechanisms, 55–56
in vivo neuroendocrine regulation, 49–50
Pixel acquisition, time-resolved imaging, 227–228
Planck’s constant, leukocyte adhesion molecules, single-molecule unbinding theory, 160–166
Plant cell wall:
 atomic force microscopy (AFM), 96–97
 cellulose, 99–100
 pectins, 97–99
 scanning probe microscopic imaging:
 basic properties, 95–96
 future research techniques, 108–109
 lignin, 100–108
Plasma membrane:
 growth hormone secretory vesicles, secretion effects, 61–63
 porosome structure and function and, 8–17
 Poisson’s ratio, sonicated unilamellar vesicle bilayer micromechanics
Poly(acrylic acid) (PAA), soft tissue imaging, swollen surfaces, 214–218
Polyamideamine (PAMAM) dendrimers, nanodrug delivery systems:
 basic properties, 123–124
 cellular interactions, 125–126
 dendrimer-drug conjugates, 126–129
Poly(DL-lactide-co-glycolide) (PLGA), polymer-based nanodrug delivery, 120–121
Poly(ethylene oxide) (PEO):
 polymer-based nanodrug delivery, 122
 supported lipid bilayer micromechanics, 195–197
 supported lipid bilayer thickness measurements, 184–186
Poly(lactides), polymer-based nanodrug delivery, 120–121
Polymer-based systems:
 nanodrug delivery, cellular interactions, 120–130
 micelles, 121–122
 nanoparticles, 120–121
 soft tissue imaging, swollen surfaces, 214–218
Polysaccharides:
 pectin macromolecules, atomic force microscopic imaging, 97–98
 plant cell walls, basic properties, 95–96
Porin crystals, microbial cell surface imaging, atomic force microscopy, 74–75
Porosomes:
 atomic force microscopy, 4–5
 basic properties, 1–3
 growth-hormone secretion in pituitary gland:
 atomic force microscopy analysis, 59–60
 hypothalamic hormone control, 50–55
 ghrelin, 53–54
 growth-hormone-releasing factor, 50–52
 peptide regulation, 54–55
 somatostatin, 52–53
 immunocytochemical somatotroph distribution, 57–58
 overview, 49
 post-secretion secretory vesicle amounts, 60–63
 signal transduction mechanisms, 55–56
 in vivo neuroendocrine regulation, 49–50
 immuno-atomic force microscopy:
 fixed cells, 5
 live cells, 5
 immunoprecipitation and Western blot analysis, 5–6
 lipid membrane reconstitution, mica-based, 4
 molecular-based cell secretion, 17–22
 pancreatic acinar cell isolation, 3–4
 pancreatic plasma membrane preparation, 4
 secretory vesicle content expulsion, vesicle swelling in pancreatic acinar cells, 41–44
 structural properties, 6–17
 synaptosome/synaptosomal/synaptic vesicle isolation, 4
 transmission electron microscopy, 5
 zymogen granule isolation, 5
PPO complexes, supported lipid bilayer micromechanics, 195–197
p53 protein-DNA interaction, time-resolved imaging, 224–226
Probe surface chemistry:
 atomic force microscopy, antiphospholipid syndrome, 269–272
 microbial cell surface imaging, atomic force microscopy, 81–82
 Proportional-integral-differential (PID) feedback loop, atomic force microscopy, 242
Prostaglandin (PGE₂), nanodrug delivery systems:
 dendrimer-ibuprofen nanodevices, 127
 methyl prednisolone-dendrimer nanodevices, 128–129
Protein immobilization, leukocyte adhesion, avidity modulation, 172
Protein kinase A, signal transduction, 55–56
Protein kinase C:
 leukocyte adhesion, avidity modulation, 170–171
 signal transduction, 55–56
Protein-protein interactions, atomic force microscopic imaging, 222–223
Proton nuclear magnetic resonance, plant cell wall imaging, lignin structures, 106–108
Pulronic copolymers, supported lipid bilayer thickness measurements, 184–186
Purple membranes, microbial cell surface imaging, atomic force microscopy analysis, 73–74
immobilization strategies, 71
Q-banding, cytogenetics research, 249–250
Q control:
atomic force microscopy:
cantilever resonant frequency, 232–233
thermal cantilever noise, 235–237
scanning probe microscopy:
liquid droplets, 214
soft surface imaging, 207–209
Quantitative analysis, growth hormone cells, 57–58

Rack1 phosphorylation, leukocyte adhesion, avidity modulation, 170–171
“Raft” lipids, viscosity measurements, 156–157
Raman spectroscopy, plant cell wall imaging, lignin structures, 106–108
Rayleigh range, atomic force microscopy cantilevers, focused spot dimensions, 238–239
Receptor affinity modulation, leukocyte adhesion, 169–171
Receptor-mediated endocytosis, nanodrug delivery systems, 114–116
Recrystallization techniques, microbial cell surface imaging, atomic force microscopy analysis, 71
Repulsive force, sonicated unilamellar vesicle bilayer micromechanics, 195–197
Resonant frequencies, atomic force microscopy cantilevers, 232–233
Reverse hemolytic plaque assay, growth hormone fusion pore structure and dynamics, 59–60
RMS-DC converter, atomic force microscopy: antiphospholipid syndrome, 270–272
fast feedback loop, 242
RPMI 1640 medium, leukocyte adhesion, avidity modulation, 171

Scanner design, atomic force microscopy, 241–242
Scanning electron microscopy (SEM):
metaphase chromosomes, 257–258
simultaneous AFM/patch-clamp recordings, 145–147
Scanning probe microscopy (SPM):
plant cell wall:
basic properties, 95–96
future research techniques, 108–109
lignin, 100–108
soft surface imaging:
basic principles, 201–202
cantilevers and probes, 210–211
contact mode, 203–205
dynamic mode, 205–209
experimental setup, 202–203
liquid droplets, 212–214

phase shift technique, 209–210
physics and methods, 202–211
swollen polymer surfaces, 214–218
Scanning tunneling microscopy (STM):
antiphospholipid syndrome, 268–272
cytogenetics research, 250
lignin structure, 101–108
scanner speed, 242
Secretagogue exposure, cell secretion and, 6–17
Secretory vesicles:
content expulsion, molecular mechanisms:
basal principles, 37–38
swelling process in cellular secretion, 38–44
cellular secretion, 44–46
growth hormone cells, secretion effects, 51–52
Somatostatin, 52–53
Silicon nitride cantilevers:
atomic force microscopy:
resonant frequency, 233
scanning probe microscopy, soft surface imaging, 210–211
Single molecule force spectroscopy, microbial cell surface elasticity, 86–88
Single-molecule unbinding theory, leukocyte adhesion molecules, 160–166
SNARE complex:
membrane fusion, molecular mechanisms, 25–34
bilayer interaction circular array, conducting channel formation, 25–27
calcium ion participation, 27–34
cell fusion machinery with, 27
perosome structure and function and, 13–17
Soft surface imaging, scanning probe microscopy:
atomic force microscopy:
basic principles, 201–202
cantilevers and probes, 210–211
contact mode, 203–205
dynamic mode, 205–209
experimental setup, 202–203
liquid droplets, 212–214
phase shift technique, 209–210
physics and methods, 202–211
swollen polymer surfaces, 214–218
Solvation interactions, microbial cell surface
 imaging, atomic force microscopy analysis, 82–83
Somatostatin (SRIF), growth-hormone release
 and synthesis, 52–53
Somatotrophs:
 growth-hormone release and synthesis, 55
 immunocytochemical distribution, 57–58
Sonicated unilamellar vesicle (SUV) bilayers:
 micromechanical properties, 191–197
 thickness and morphology, 187–191
Stalk sectioning techniques, in vivo
growth-hormone secretion, 49–50
“Stealth” liposomes, nanodrug delivery systems,
118–120
Stereoctilia properties, atomic force microscopy
 imaging, inner ear tissue studies, 144–150
 “Sterically stabilized” liposomes, nanodrug
 delivery systems, 118–120
Stiffness measurement, atomic force microscopy
 imaging, inner ear tissue studies, 148–150
Stokes drag, membrane viscosity, thermal
 fluctuation measurements, 156–157
Substrate requirements:
 leukocyte adhesion, avidity modulation, 170–171
 microbial cell surface imaging, atomic force
 microscopy analysis, 70–71
Supercritical fluids, polymer-based nanodrug
delivery, 120–121
Supermodule structural unit, lignin formation,
101–108
Supported lipid bilayer (SLB), thickness
 measurements, 182–186
Supramolecular activation clusters, leukocyte
 adhesion, avidity modulation, 170–171
Surface charges, microbial cell surface imaging,
 atomic force microscopy analysis, 83–85
Surface energy, microbial cell surface imaging,
 atomic force microscopy analysis, 82–83
Surface-enhanced Raman spectroscopy, plant
cell wall imaging, 108–109
Synaptic vesicles:
 isolation, 4
 porosome structure and function in, 12–17
Synaptosomal membrane:
 isolation, 4
 porosome structural analysis, 11–17
Synaptosome:
 isolation, 4
 porosome structure and function in, 12–17
Tapping mode atomic force microscopy
 (TMAFM):
 antiphospholipid syndrome, 271–272
 biomolecular motion, basic principles, 221–223
 feedback limits, 231
 genetic material imaging, 251–253
 microbial cell surface imaging:
 biofilms, 76
 external agent effects, 79
 purple membranes, 74
 pancreatic acinar cells, 5
 porosome imaging, 5
 soft surface imaging, 205–209
 swollen polymer surfaces, 216–218
 sonicated unilamellar vesicle bilayers,
 thickness and morphology, 188–191
Thapsigargin, leukocyte adhesion stimulation,
175–176
Thermal cantilever noise, atomic force
 microscopy, 235–237
 low-noise detection, 240–241
Thermal fluctuation measurements, photonic
 force microscopy, single molecules, 153–157
3A9 cell line, leukocyte adhesion:
 avidity modulation, 171–172
 force measurements, 172–173
 integrin clustering, 176–178
Three-dimensional morphological analysis,
 atomic force microscopic imaging,
 metaphase chromosomes, 257–259
Three-dimensional topographic imaging,
 supported lipid bilayer thickness, 183–186
Thyrotropin-releasing hormone (TRH),
growth-hormone release and synthesis, 54
Time-resolved imaging, biomolecular motion,
 alignment, 225–227
 moving images, 227–228
 p53-DNA dynamic interactions, 224–225
 recording sequences, 223–224
Tip effect, sonicated unilamellar vesicle bilayers,
 thickness and morphology, 190–191
Topographic imaging, scanning probe
 microscopy, soft surface imaging, 205
Transmission electron microscopy (TEM):
 growth hormone fusion pore structure and
dynamics, 59–60
 growth hormone secretory vesicles, 61–63
 metaphase chromosomes, 257–258
 pancreatic acinar cell isolation, 5
 plant cell walls, 97
 porosome structure and function and, 10–17
Ultraviolet (UV) radiation, plant cell wall
imaging, lignin structures, 106–108
Vertical drift, biomolecular motion,
time-resolved imaging, 223–228
Very late antigen-4 (VLA-4), leukocyte adhesion
molecules:
 basic properties, 159–160
 integrin activation, 165–166
Vesicles:
 secretory vesicle content expulsion, swelling
 mechanisms:
 basic principles, 37–38
 cellular secretion, 38–44
 neuron secretion, 44–46
 sonicated unilamellar vesicle:
 bilayer thickness and morphology, 187–191
 micromechanical properties, 191–197
 synaptic vesicles:
 isolation, 4
 porosome structure and function in, 12–17
Video-rate imaging, atomic force microscopy, 231
“Virosome,” nanodrug delivery systems, 118–120
Viscosity of membranes:
 photonic force microscopy, thermal fluctuation
 measurements, 155–157
 scanning probe microscopy, soft surface
 imaging, 212–214
Viscous damping, atomic force microscopy,
 thermal cantilever noise, 235–237
Water transport, plant cell wall imaging:
 basic properties, 96–97
 lignin mechanisms for, 105–108
Western blot analysis, pancreatic plasma
 membrane, 5–6
Worm-like chain (WLC) model, microbial cell
 surface elasticity, 87–88
X-ray diffraction, SNARE-induced membrane
 fusion, atomic-level calcium participation
 in, 27–34
Young’s modulus:
 leukocyte adhesion molecules:
 elasticity, 173
 integrin lateral redistribution, 174–175
 sonicated unilamellar vesicle bilayer
 micromechanics, 191–197
Zymogen granules (ZG):
 isolation, 5
 porosome structure and function and, 10–17
 secretory vesicle content expulsion:
 basic principles, 37–39
 neuron vesicle swelling, 44–46
 pancreatic acinar cell vesicle swelling, 38–44