Index

Abbreviations, 405–407
Absolute zero, 12
Absorber, 61
Absorption, gas absorption operations, 219
Acentric factor, 44
Acidic solution, 26
Activity, 26, 299
activity coefficient, 249, 250
as related to the standard free energy of reaction, 299
Adiabatic, 65
Adiabatic temperature change, 161
Adsorption
adsorption isotherm, 222
adsorption isotherm: for carbon tetrachloride on activated carbon, 223
Langmuir equations, 225
Langmuir isotherm, 223
Amagat’s law, 39
Analysis of Variance (ANOVA), 341
Antoine equation, 139, 243
Antoine equation coefficients, 140
API gravity, 20
Atomic weight, 15
of the elements, 16–18
Azeotrope, 260

Basis of calculation, 293
Batch process, 58
Blowdown, 60, 151
Boyle’s law, 32, 33
Bypass, 59

Carnot efficiency, 378
Carnot engine, 378
Charles’ law, 32, 33, 37, 77
Chemical equation, 74
Chemical kinetics, 292
Chemical potential, 380
Chemical reaction equilibrium, 269, 270
consecutive reactions, 294, 312–316
effect of temperature on equilibrium constant, 279
equilibrium conversion calculations:
rigorous approach, 306–312
simplified approach, 302–305
extent of reaction, 291, 293–295, 307
fractional conversion, 293, 294
gas phase reactions, 299–302
liquid phase reactions, 315
procedures to determine K, 286
rate vs. equilibrium considerations, 292
reaction coordinate, 295
reaction equilibrium constant (K), 276
based on partial pressures (K_p), 302
via a, b, c data, 283–286
via α, β, γ data, 280–283
simultaneous reactions, 293, 312
solid phase reactions, 316
yield, 295
Chemical reaction velocity constant, 276
Chen method, 145
Clapeyron equation, 139
Clapeyron equation coefficients, 139
Clausius–Clapeyron equation, 138
Code of ethics, 361, 362
Combustion
combustion constants, 78, 79
combustion reactions, 73
complete combustion of pure hydrocarbons, 74
enthalpy of combustion gases, 119, 120
standard heat of combustion, 172
Compressibility factor, 42
Condensation, 137
Conduction, 24
Conservation law, 53, 54
for energy, 65, 100
for mass, 58, 60, 157
for momentum, 56, 65
Continuous process, 59
Conversion factors, 7, 402–405
Costs
annualized capital costs (ACC), 322–324
capital cost analysis
factored method, 322
modified Lang method, 322
capital costs, 319, 322
Chemical Engineering Fabricated Equipment Cost Index (FECI), 320–322
Chemical Engineering Plant Cost Index, 320, 321
direct cost factor, 322
labor costs, 323
Marshall and Swift (M&S) Equipment Cost Index, 320–322
maintenance costs, 323
materials costs, 323
operating costs, 319, 323
perturbation analysis, 319, 325
preliminary cost analysis, 319
present worth analysis, 324
total capital costs (TCC), 322–324
utilities cost, 323
Critical properties, 40–42
critical pressure, 40
critical temperature, 202
“pseudo-critical” values, 48
Dalton’s law, 38
Degree of dissociation, 306
Degrees of freedom, 115–117
bivariant system, 116
monovariant system, 116
Density, 20
DePriester charts, 234–242
Differential element, 55
Economic evaluation, 319
Endothermic reaction, 172
Energy
accumulation, 65
ergy balance, 383
ergy conservation practices, 107, 108
energy degradation, 91
energy efficiency, 388, 389
Enthalpy, 67, 113, 118
available heat, 192
enthalpy-concentration diagram, 156, 158
for H₂SO₄–H₂O, 159
for NaOH–H₂O, 161
enthalpy effects, 113
gross heating value, 191–194, 367
infinite dilution, at, 162
integral enthalpy of solution, 155
latent enthalpy, 169
latent enthalpy effects, 137
law of constant enthalpy summation, 171
mixing effects: dilution effect, 155
mixing effects: solution effect, 155
net heating value, 191, 192, 195–197, 367
Dulong’s equation, 192, 196, 197
of adsorption, 224
of combustion gases, 119, 120
of formation, 270
of mixing, at infinite dilution, 162
of mixing, at infinite dilution with water, 163
of reaction, 169–171
of reaction: affect of temperature on, 178
of solution diagram: for HCl(g)–H₂O(l), 163
of vaporization, 139, 142, 148
predictive methods, 144
sensible enthalpy, 115
standard enthalpy of formation, 270
standard enthalpy of reaction, 287
standard heat of combustion, 172
standard heat of formation, 170, 171
standard heats of formation and combustion at 25 deg C, 173–175
Entropy, 91
standard entropy of reaction, 286
Entropy change, 92, 95
for liquids and solids, 92
of a system, 93
of gases, 94
of phase changes, 94
doverall entropy change, 93
Environmental management, 343
Equation of state
Lee/Kesler generalized correlation, 44
Pitzer’s correlation, 44
“B” approach, 44, 49
Redlich–Kwong, 46, 47
Van der Waals, 42
Van der Waals constants, 42
Van Vliet and Domato equations, 44
Virial equation, 43, 44
Virial coefficients, 43
Equilibrium constant, 26
Evaporators
evaporator design, 165
single-effect evaporator, 166
Excess air, 75
Excess oxygen, 75
Exergy, 91, 378, 379
environmental impact, 386–388
exergy consumption, 379
exergy efficiency, 388, 389
“heat death” of the universe, 387
quantitative exergy analysis, 379–386
reference environment, 379, 380
Exothermic reaction, 172
Extent of reaction, 291, 293–295, 307
Flame temperature, 185
adiabatic flame temperature, 77, 181, 192,
354, 355
Theodore–Reynolds equation, 193, 195
theoretical adiabatic flame temperature,
180–182, 192
theoretical flame temperature, 186
Fractional conversion, 293, 294
Free energy, 270
for calculating chemical reaction
equilibrium constant (K),
277–279
standard free energy of formation, 270,
274, 281
standard free energy of formation at
25 deg C, 271–273
standard free energy of reaction,
273–275, 277, 308
Fuels, 366–372
ccoal, 371, 372
componential analysis for common fuels,
367
fire point, 370
flash point, 370
fuel selection, 372, 373
petroleum, 369
Fugacity
in the standard state, 299, 300
fugacity coefficient in solution, 300
fugacity of a component in a mixture, 299
pure component fugacity coefficient, 300
Gas law, ideal, 31
Gas law, non-ideal, 42–50
Gas phase reactions, 299–302
g., 8
Gibbs phase rule, 116
Gravimetric analysis, 84
Hazard identification, 345, 346
Heat, 65, 66
Heat capacity, 23, 121
average heat capacity, 134
constant volume heat capacity, 351, 352
group contribution values: a, b, c data,
135
heat capacity as a function of temperature,
124, 125
heat capacity values, 121
mean heat capacity, 24
of gases, 122
molar heat capacities,
a, b, c data, 126
α, β, γ data, 127, 128
predictive methods for heat capacity, 134
Heat exchanger, 100, 329
Heat of reaction, 170, 191
Heat transfer, 65, 100
area available for heat transfer, 100
overall heat transfer coefficient,
100, 165
via conduction, 65
via convection, 65
via radiation, 65, 353
Heath, safety, and accident management,
348–350
Henry’s law, 203, 213–217
Henry’s law constants for gases in water
at approx. 25 deg C, 214
Humidity
 absolute humidity, 203, 206
dew point, 206, 207
dry bulb temperature, 203
humidity volume, 206
relative humidity, 203, 206
saturation curve, 203
wet bulb temperature, 203

Ideal gas, 31
Ideal gas law, 35, 36, 42
Ideal solutions, 210, 300, 301
Infinite dilution, 155
Internal energy, 66, 67, 352, 378
Irreversible processes, 97
Isobaric, 65
Isochoric, 65
Isothermal, 65

Kay’s Rule, 48, 49
Kelvin–Planck statement, 378
Key component, 59, 83
Kinetic energy, 65, 66, 69

Laminar flow, 25
Langmuir isotherm, 223
Latent effects, 137
Laws of thermodynamics
 the first law, 65, 66, 377
 the second law, 89, 377
 the third law, 109
 heat theorem, 109
Limiting reactant, 75, 76, 293
Liquid–solid equilibria, 228
Log mean temperature difference driving force, 100

Makeup, 59
Mass basis, 23
Mass fraction, 19
Material balance
 componential material balance, 59
 total material balance, 59
Melting, 137
Mixing
 adiabatic mixing, 156, 157
 macroscopic mixing, 25
 mixing rules, 47
 molecular mixing, 25
Molar basis, 23

Mole fraction, 19
Molecular weight, 15
Momentum, 8
 momentum balance, 57
 momentum, rate of, 8

Natural gas, 368, 369
Normal boiling point, 201
NRTL VLE diagrams, 253–262
Numerical methods, 356–358
 method of least squares, 341, 358, 359

Parts per million, 39
Periodic law, 28
pH, 26
Phase, 201
Phase changes, 137
Phase diagram, 201
 critical point, 202
 phase diagram for water, 202
 triple point, 202
Pitzer correlation, 144
Point function, 95, 118
poise, 21
Potential energy, 65–68, 70
Power series, 43
Present worth analysis, 324
Pressure, 14
 barometric pressure, 14
 critical pressure, 40
 gauge vs absolute, 14
 partial pressure, 38, 209
 reduced pressure, 40
 vapor pressure, 27, 28, 267
Process path, 54
Process variables, 11
Project optimization, 319
Properties
 chemical, 12
 extensive, 12
 intensive, 12
 physical, 11, 12
 property estimation, 28
Psychrometric chart, 203
 high temperatures - barometric pressure, 205
 low temperatures - barometric pressure, 204
Purge, 59
Quality energy, 91, 95, 98, 100–103, 107, 329, 378

Raoult’s law, 203, 209–213, 232
- Raoult’s law VLE diagrams, 243–249
- Raoult’s law vs Henry’s law, 218–220
- Raoult’s law vs Henry’s law, graphical representation, 219

Rate law,
- elementary rate law, 276

Recycle, 59

Reduced properties, 40

Regression analysis, 340, 341, 358

Relative volatility, 266–268

Reversible adiabatic process, 91

Reynolds number, 25

Riedel equation, 145, 146

Risk assessment, 345, 346

Scientific notation, 9

Significant figures, 8

Specific gravity, 20, 21, 369

Specific heat, 23

Specific volume, 20

Standard conditions, 36

Standard state, 170

State function, see point function

Steady-state process, 58

Steam engine, 378

Steam turbine, 383

Stefan–Boltzmann constant, 353

Stoichiometric air, 75

Stoichiometric coefficients, 293

Stoichiometric oxygen, 75, 77

Stoichiometric ratio, 75

Stoichiometry, 73

Sublimation, 28, 137

Surroundings, 54

System, 54

Temperature, 12
- absolute scales, 12
- critical temperature, 40
- reduced temperature, 40
- temperature difference driving force, 165, 330

Ternary system, 202

Theoretical air, 75

Theoretical oxygen, 75, 77

Thermal conductivity, 24

Thermal energy, 378

Thermodynamic efficiency, 97

Toxicity, 347

Transient, see unsteady-state

Transport equations, 55

Transport phenomena, 55
- macroscopic approach, 55
- molecular approach, 55

Trouton’s rule, 145, 146

Turbulent flow, 25

Units,
- English engineering, 3, 4
- SI, 3–5

Universal gas constant, 33, 34

Unsteady-state, 58

Vacuum, 14

Vapor pressure, 138–141

Vaporization, 137

Vapor–liquid equilibrium (VLE), 211

DePriester charts, 234–242
- bubble point, 211
- bubble point equation, 236
- bubble point pressure, 212, 231, 238
- bubble point temperature, 231, 238
- componential split equation, 239–242
- dew point, 211
- dew point equation, 237
- dew point pressure, 231, 238
- dew point temperature, 231, 238
- equilibrium diagrams, 232
- multiphase VLE, 233
- non-ideal solutions, 249
- NRTL model, 232, 250–253
- equation parameters, 252
- phase equilibrium constant (K_i), 234, 235
- P-x, y diagram, 231, 232
- methanol–water system at 40 deg C (NRTL), 261
- methanol–water system at 40 deg C (Raoult’s), 248
- P-x, y diagram via Raoult’s law, 243–249
- T-x, y diagram, 231–232
- ethanol–toluene system at 1 atm (NRTL), 257
Vapor-liquid equilibrium (Continued)
ethanol–toluene system at 1 atm (Wilson), 265
ethanol–water system at 1 atm (empirical), 234
methanol–water system at 1 atm (Raoult's), 245
T-x, y diagram via Raoult's law, 243–249
Wilson’s model, 233, 250, 262
equation parameters, 251
x, y diagrams, 249
ethanol–toluene system at 40 deg C (NRTL), 259
methanol–water system at 40 deg C (Raoult's), 249
x, y diagrams via relative volatility, 267, 268
Vapor–solid equilibria, 222

Viscosity, 21
absolute, 21
kinematic, 21, 23
of air at 1 atm, 22
of water, 22

Volume
partial volume, 39
specific molar volume, 42
volume fraction, 19

Watson’s equation, 147
Wilson VLE diagrams, 262–266

Work, 65, 66
actual work, 98
ideal work, 97, 98
lost work, 97
maximum shaftwork, 385, 386
minimum work, 97
reversible work, 385
shaftwork, 383–385