CONTENTS

LIST OF ILLUSTRATIONS	xiii
LIST OF TABLES	xvii
PREFACE TO THE SECOND EDITION	xix
PREFACE TO THE FIRST EDITION	xxiii

PART I FOUNDATIONS OF SYSTEMS ENGINEERING

1 SYSTEMS ENGINEERING AND THE WORLD OF MODERN SYSTEMS

1.1 What Is Systems Engineering?
1.2 Origins of Systems Engineering
1.3 Examples of Systems Requiring Systems Engineering
1.4 Systems Engineering as a Profession
1.5 Systems Engineer Career Development Model
1.6 The Power of Systems Engineering
1.7 Summary
 Problems
 Further Reading

2 SYSTEMS ENGINEERING LANDSCAPE

2.1 Systems Engineering Viewpoint
2.2 Perspectives of Systems Engineering
2.3 Systems Domains
2.4 Systems Engineering Fields
2.5 Systems Engineering Approaches
2.6 Systems Engineering Activities and Products
2.7 Summary
 Problems
 Further Reading

vii
3 STRUCTURE OF COMPLEX SYSTEMS

3.1 System Building Blocks and Interfaces 41
3.2 Hierarchy of Complex Systems 42
3.3 System Building Blocks 45
3.4 The System Environment 51
3.5 Interfaces and Interactions 58
3.6 Complexity in Modern Systems 60
3.7 Summary 64

Problems 66
Further Reading 67

4 THE SYSTEM DEVELOPMENT PROCESS

4.1 Systems Engineering through the System Life Cycle 69
4.2 System Life Cycle 70
4.3 Evolutionary Characteristics of the Development Process 82
4.4 The Systems Engineering Method 87
4.5 Testing throughout System Development 103
4.6 Summary 106

Problems 108
Further Reading 109

5 SYSTEMS ENGINEERING MANAGEMENT

5.1 Managing System Development and Risks 111
5.2 WBS 113
5.3 SEMP 117
5.4 Risk Management 120
5.5 Organization of Systems Engineering 128
5.6 Summary 132

Problems 133
Further Reading 134

PART II CONCEPT DEVELOPMENT STAGE

6 NEEDS ANALYSIS

6.1 Originating a New System 139
6.2 Operations Analysis 146
6.3 Functional Analysis 151
6.4 Feasibility Definition 153
Contents

6.5 Needs Validation 155
6.6 System Operational Requirements 158
6.7 Summary 162
 - Problems 163
 - Further Reading 164

7 **Concept Exploration** 165
7.1 Developing the System Requirements 165
7.2 Operational Requirements Analysis 170
7.3 Performance Requirements Formulation 178
7.4 Implementation of Concept Exploration 185
7.5 Performance Requirements Validation 189
7.6 Summary 191
 - Problems 193
 - Further Reading 194

8 **Concept Definition** 197
8.1 Selecting the System Concept 197
8.2 Performance Requirements Analysis 201
8.3 Functional Analysis and Formulation 206
8.4 Functional Allocation 212
8.5 Concept Selection 214
8.6 Concept Validation 217
8.7 System Development Planning 219
8.8 Systems Architecting 222
8.9 System Modeling Languages: Unified Modeling Language (UML) and Systems Modeling Language (SysML) 228
8.10 Model-Based Systems Engineering (MBSE) 243
8.11 System Functional Specifications 246
8.12 Summary 247
 - Problems 250
 - Further Reading 252

9 **Decision Analysis and Support** 255
9.1 Decision Making 256
9.2 Modeling throughout System Development 262
9.3 Modeling for Decisions 263
9.4 Simulation 272
PART III ENGINEERING DEVELOPMENT STAGE 315

10 ADVANCED DEVELOPMENT 317
10.1 Reducing Program Risks 317
10.2 Requirements Analysis 322
10.3 Functional Analysis and Design 327
10.4 Prototype Development as a Risk Mitigation Technique 333
10.5 Development Testing 340
10.6 Risk Reduction 349
10.7 Summary 350
 Problems 352
 Further Reading 354

11 SOFTWARE SYSTEMS ENGINEERING 355
11.1 Coping with Complexity and Abstraction 356
11.2 Nature of Software Development 360
11.3 Software Development Life Cycle Models 365
11.4 Software Concept Development: Analysis and Design 373
11.5 Software Engineering Development: Coding and Unit Test 385
11.6 Software Integration and Test 393
11.7 Software Engineering Management 396
11.8 Summary 402
 Problems 405
 Further Reading 406

12 ENGINEERING DESIGN 409
12.1 Implementing the System Building Blocks 409
12.2 Requirements Analysis 414
12.3 Functional Analysis and Design 416
12.4 Component Design 419
12.5 Design Validation 432
CONTENTS

12.6 CM 436
12.7 Summary 439
Problems 441
Further Reading 442

13 INTEGRATION AND EVALUATION 443
13.1 Integrating, Testing, and Evaluating the Total System 443
13.2 Test Planning and Preparation 450
13.3 System Integration 455
13.4 Developmental System Testing 462
13.5 Operational Test and Evaluation 467
13.6 Summary 475
Problems 478
Further Reading 478

PART IV POSTDEVELOPMENT STAGE 481

14 PRODUCTION 483
14.1 Systems Engineering in the Factory 483
14.2 Engineering for Production 485
14.3 Transition from Development to Production 489
14.4 Production Operations 492
14.5 Acquiring a Production Knowledge Base 497
14.6 Summary 500
Problems 502
Further Reading 503

15 OPERATIONS AND SUPPORT 505
15.1 Installing, Maintaining, and Upgrading the System 505
15.2 Installation and Test 507
15.3 In-Service Support 512
15.4 Major System Upgrades: Modernization 516
15.5 Operational Factors in System Development 520
15.6 Summary 522
Problems 523
Further Reading 524

INDEX 525