INDEX

Absorbing boundary condition:
 - first-order, 19, 25, 55–57, 168, 170, 338, 365
 - for Floquet modes, 325, 333
 - for oblique incidence, 298, 306
 - implementation of, 58
 - reflection coefficients, 57–61
 - second-order, 56

Active input impedance, 301
Active reflection coefficient, 301, 361
Active resistance, 303
Adaptive integral method, 91, 402
Aggregation, fast multipole method, 402
Anisotropic-medium PML, 64, 111
Antenna feed modeling, 147–164
 - current probe, 148–152
 - voltage gap generator, 152–155
 - waveguide feed, 155–164

Antenna gain, 164, 259
Antenna–platform interaction:
 - coupled analysis, 389
 - decoupled analysis, 405
Antenna thickness factor, 155, 240
AntFarm, 409
Antipodal Vivaldi antenna, 254
Approximate boundary condition, 19
Archimedean spiral antenna, 207
Array factor, 325
Axisymmetric antenna, 264–283

BiCGSTAB, 342, 349–355
Bandpass filter, 195
Basis functions:
 - hierarchical, 50
 - higher-order, 50
 - interpolatory, 50
 - vector, 22
Biconjugate gradient method, 342
Boundary condition, 18, 44
Boundary integral equation, 269
 - for periodic structures, 296

Boundary-value problem, 18, 19
Broadband antennas, 247
CFIE, 82, 272, 400
 - in time domain, 90
CFS-PML, 74–76
CPML, 113
Cement element method, 352
Central differencing, 26, 87
Chimera grids, 126
Conditional stability, 26, 100
Combined field integral equation, see CFIE
Computational electromagnetics, 1
Conformal domain decomposition, 372
Constitutive relation, 32, 36, 41, 310
Convergence, numerical, 425–427
Corrugated horn, 276
Co-site interference, 388
Coupling:
 - backdoor, 188
 - system-level, 230–234
 - weak, 187
Current probe, 148
Curvilinear elements, 51
DFD, 364
Debye material, 33
Degenerate finite elements, 199
Dirichlet preconditioner, 343
Direct solver, 49
Disaggregation, fast multipole method, 402
Dispersion error, 50, 168, 176, 425
Distributed feed networks, 224–230
 - bidirection decompositions, 225
 - Vivaldi antenna array, 228
 - waveguide port boundary condition, 226
Domain-decomposition method, 336, 390, 427
 - in time domain, 365
 - nonconforming, 351
 - Schwarz nonoverlapping, 351

Finite Element Analysis of Antennas and Arrays, By Jian-Ming Jin and Douglas J. Riley
Copyright © 2009 John Wiley & Sons, Inc.
INDEX

Dual-field domain-decomposition, 363
stability analysis, 370
stability condition, 370
Dual–primal, 337, 341
Duffy’s transformation, 83
EFIE, 82, 168
for half space, 93
in time domain, 89
EMC and EMI, 143
Eccosorb, 231
Electric field integral equation, see EFIE
Electrical susceptibility, 32, 313
multipole expansion, 36
Electromagnetic bandgap, 378
Electromagnetic compatibility and interference, 143
Equivalent surface currents, 81
Explicit time stepping, 100
FDTD, 62, 76, 101, 174, 303, 372, 390
analysis of lossy slab, 30
analysis of periodic structures, 73–76
conformal, 100
difference equations, Cartesian, 103–104
dispersion relationship, 105
equivalence with FETD, 120
numerical properties, 102
stability criterion, 106
PML, stretched-coordinate, 107
PML, anisotropic-medium, 111
Yee cell, 102
FE-BI, 170, 390, 399
for half space, 93–96
in time domain, 86–92
standard formulation, 77–84
symmetric formulation, 84–86
FEMTD, see FETD
FETD, 30, 117, 372
equivalence with FDTD, 120
FETD–FDTD, 128–134, 372, 393
mesh construction, 131
parallelization of, 372
stable formulation, 128
FETI–DPEM1, 337
numerical scalability, 345
FETI–DPEM1, 345
numerical scalability, 350
FVTD, 126
FVTD–FDTD, 126
Facet basis functions, 118
Far-field computation, 113, 176
frequency-domain, 116
time-domain, 115, 176
Fast frequency sweep, 424–425
Fast multipole method, 86, 389, 402
Field exchanging scheme, 369
Finite-difference method, 26
Finite-difference time-domain method, 3, 30, 100, 303
Finite element–boundary integral, see FE-BI
Finite element formulation, 17–53
frequency-domain, 17
time-domain, 24
Finite element method, 4
Finite element tearing and interconnecting, 337
Finite element time-domain method, 14
Finite-volume time-domain method, 126
First-principle method, 389, 415, 418
Flared-notch antenna, 254
Floquet absorbing boundary condition, 325, 333
Floquet modes, 73, 295
Floquet theorem, 285
Fourier stability analysis, 105
Frequency-selective surface, 324, 330
GMRES, 50, 342, 349, 355
GO, 388
GPS antenna, 396
GTD, 388
Galperin’s formulation, 24, 33, 272
Gauss–Seidel method, 354
Gaussian elimination, 49
Gaussian quadrature, 83, 121
Gauss’s divergence theorem, 20, 29, 32, 37
Generalized minimal residual, 50, 342
Geometrical optics, 388
Geometrical theory of diffraction, 388, 409, 416
Green’s function, 79
Green’s theorem, 79
Grid dispersion error, 398, 425
HFSS, 319, 323, 356
Helmholtz equation, 79
Higher-order elements, 50
Hom antenna, 164, 247, 259, 276
Huygens’ surface, 114, 173
Hybrid explicit–implicit algorithm, 129, 371
IBC, 188
IDD, 372, 393
ILU, 375
Impedance anomaly, 319, 377
Impedance boundary conditions, 188–195
exact, 189
scalar, Leontovich, 189
Implicit time marching, 120
Incomplete LU preconditioner, 84, 375, 401
INDEX

Incremental length diffraction coefficients, 412
Input impedance, 162
Insertion loss, 323
Installed performance, 388
Integral equations:
 combined field, 272
 electric field, 168
 magnetic field, 170
Interpolation error, 50, 425
Inverted conical spiral antenna, 253
Isoparametric elements, 51
Iterative domain decomposition, 372, 393
Iterative solver, 49
Keller–Ufimtsev diffraction coefficients, 413
Kernighan–Lin partitioning algorithm, 396
Krylov subspace method, 50, 342, 349, 355
 LU decomposition, 49
Leapfrogging scheme, 103–104, 120, 364
Laplace transform, 161, 308
Load balancing, 427
Logarithmic spiral antenna, 251
Lorentz material, 35, 46, 48
Lumped-circuit elements, 217–224
 Gunn diodes, 222
 isolated components, 217
 with first-order Maxwell curl equations, 218
 with wave equation, 219
Lumped preconditioner, 342
Luneburg lens, 179, 273
MFIE, 82, 170
 for half space, 95
 in time domain, 89
MKL, 50
MUMPS, 50
Magnetic field integral equation, see MFIE
Magnetic susceptibility, 36, 313
 multipole expansion, 39
Mass lumping, 121
Mass matrix, finite element, 121
Materials, calibration of, 230
Maxwell’s equations:
 in anisotropic-medium PML, 64, 112
 in dispersive media, 30, 36, 40
 in frequency domain, 18
 in lossy medium, 28, 40
 in stretched coordinates, 62
 in time domain, 24, 40
Message-passing, 372
Method of moments, 3
Microstrip patch antenna, 149, 243, 258
 on a circular plate, 414
 on a platform, 397, 402
Microstrip patch antenna array, 164, 300
Modal orthogonal relation, 160
Moment-method solution, 259
 for horn antenna, 164
 for periodic array, 301
 for wire antenna, 155
Monopole antenna, 152, 163, 240
 on a plate, 391
 on an airplane, 395
Multilevel fast multipole algorithm, 402
Mutual coupling, 359
NTF, 113, 176
Narrowband antennas, 240
Near-to-far-field transformation, 113–117, 176–178
Neumann boundary condition, 78, 338
Newmark-beta method, 26, 35, 40, 71, 368
Overlapping grids, 126, 130, 371–376
 FETD–FDTD, 130
 FDTD domain decomposition, 393
 FETD domain decomposition, 372
PETSc, 50
PML, 61–76, 107–113
 ABC-backed, 72
 anisotropic-medium model, 64, 111
 complementary, 73
 complex-frequency shifted, 74–76
 cylindrical, 267
 finite difference implementation, 107
 finite element implementation, 67
 reflection coefficient, 65, 66, 72, 74, 76
 second-order, 76
PO, 388
Parallelization of:
 FETD–FDTD, 372, 381, 393
 FETI–DPEM, 390
Perfectly matched interface, 63
Perfectly matched layers, see PML
Periodic boundary conditions, 286, 305
Periodic boundary integral equation, 297, 307
Periodic Green’s function, 296
Periodic radiation condition, 297
Phased array, finite, 325
 mutual coupling, 359
 of bowtie-shaped radiators, 381
 of cavity-backed patch antennas, 326
 of microstrip patch antennas, 327, 358
 of vivaldi antennas, 356
 on a curved surface, 359
Phased array, infinite, 284
 of bowtie-shaped radiators, 321
 of microstrip patch antennas, 300
 of monopole antennas, 319
 of vivaldi antennas, 318
Physical optics, 388, 409
Preconditioner, 49
 ABC-based, 83, 84
 Dirichlet, 343
 ILU, 375
 Jumped, 342
 SGS, 355
 SSOR, 355
Pyramidal finite elements, construction of,
 132
Pyramidal horn antenna, 164
RCS, 61, 140, 176, 327, 330
RHCPI, 397
R-Card, 196
Radiation condition, 79
Radar cross section, 164, 258
 of a cavity array, 329
 of a conducting sphere, 61, 177
 of a finite frequency-selective surface, 331
 of a metallic double ogive, 141
 of a microstrip patch antenna, 260
 of a standard gain horn antenna, 261
Ray-diverging factor, 411
Ray-tube basis function, 412
Realized gain, 381
Recursive convolution, 33, 312
Recursive FFT, 46
Reflection coefficient:
 active, 301
 in a waveguide, 162
 of ABC, 57
 of PML, 63, 65
 of R-Card, 196
Ridged horn antenna, 247
Right-hand circularly polarization, 397
Robin transmission condition, 346, 351, 405
SCSL, 50
SGS, 355
SPARSKIT, 50
SSOR, 50, 355
Scattered-field formulation, 170
Scattering analysis:
 scattered-field formulation, 170
 total-field formulation, 167
 total-scattered field decomposition, 171
Schur complement, 343
Schwarz domain decomposition, 351
Shooting- and bouncing-ray, 409
Sinuous antenna, 249
Skew array, 298
Skin depth, 189
Sommerfeld radiation condition, 18
Spiral antenna, 251, 253
Stability analysis, 370
Stability condition, 370
Standard gain horn antenna, 259
Stiffness matrix, finite element, 121
Structured grid, 100
Subparametric elements, 51
SuperLU, 50
Superparametric elements, 51
TDFEM, see FETD
TSFD, 171
Telegrapher’s equations, 201
Thin materials, 188–201
 capacitive boundary condition, 193
 degenerate finite elements, 199
 dielectric sheet, 190–191
 impedance boundary conditions, 188
 inductive boundary condition, 193
 lossy coating, 192
 magnetic coating, lossless, 192
 resistive Sheet, 191
Thin slots, 208–217
 rectangular cavity, 216
 symmetric field coupling, 212–215
 transmission-line equations, 209
 wave equation, 212
Thin wires, 201–208
 Archimedean spiral antenna, 107
 finite element thin-wire equation, 204
 rectangular cavity, 207
 symmetric field coupling, 205–206
 transmission-line equations, 202
Time-marching equation, 27, 40
Time-marching extrapolation, 424
Total-field formulation, 167
 Total-scattered field decomposition, 171
 Transformed field variable, 304
 Trapezoidal integration, 123
 Trihedral, waveguide-fed, 416
UTD, 388
UMFPACK, 50
UPML, 111
Ultrabroadband phased array, 321, 381
Unconditional stability, 4, 27
INDEX

Uniform theory of diffraction, 388, 416
Unstructured grid, 100

VWSR, 377
Vector basis functions:
 curl-conforming, edge elements, 118
 divergence-conforming, facet elements, 118
 first-order, 22
Vector potentials:
 in time domain, 88

Vector wave equation:
 for scattered field, 170
 for transformed field variable, 305
 in free space, 79
 in frequency domain, 20, 78
 in time domain, 25, 364

Verification and Validation, 428
Vivaldi antenna, 91, 182, 254, 318, 356
Vivaldi array, 377
Vlasov antenna, 255
Voltage gap generator, 152
Voltage standing-wave ratio, 377

WPBC, 158
WSMP, 50

Wave equation, 25
 stabilization of, 134–137
Waveguide port boundary condition, 157, 160
 for homogeneous port, 157
 for inhomogeneous port, 160
 in time domain, 161
Weak-form representation:
 in frequency domain, 21, 78, 265, 269, 286
 in time domain 25, 37, 87, 365
 in perfectly matched layers, 69
 with waveguide port boundary condition, 158
Weak-form solution:
 in a dispersive medium, 41
 for periodic problems, 297, 305, 311
 for scattering analysis, 168, 171, 172
Wilcoxon expansion, 56
Wire antenna, 155

XPATCH, 410