ABS. See Acrylonitrile-butadiene-styrene copolymer
Acetone, 199, 216
Acetonitrile, 216
ac layer, 196–198, 200
Acrylonitrile-butadiene-styrene (ABS) copolymer, 10, 366
Activation energy of styrene and catalyst, 54
Active sites, 27, 48–54
formation of, 54
hydrogenated titanium complexes as, 47
number of, 52–53
structure of, 34, 53–54
valence of, 48–51
Additives, 194
Adhesive substrate, 353
Adipoyl chloride, 339
ADKSTAB NA-11, 372
Aerogels, 216–217, 220
AFPB catalyst, 76
Air conditioner drip pan, 336
Akyl-9-BBN, 413
Alkoxide ligand, 25
Alkoxyl radical, 406
Alkylaluminum, 39
Alkylaluminum compounds, 17
Alkyl ammonium, 421, 424
Alkylation reagent, 51
Alkyl chain aggregation, effect on organoclay, 423–424
Alkyl ligands, 132
Alkyl phosphonium, 424, 425
Alkyl-substituted styrene monomers, 11
All-trans planar zigzag (TTTT) conformation, 151
Allyl complexes, 127
α form, 158
crystallization rate, 178
crystallization temperature and, 175–176
crystal structure, 164–168
equilibrium melting temperature, 180–182
by melt crystallization, 159–160
melting behavior, 178–180
memory effects and, 182–183
mesomorphic phase and, 173–175
planar orientations, 200
pressure and, 177
spherulites, 170
strain-induced crystallization and, 162
α′ form, 158, 163, 165, 166
α″ form, 163, 165–168, 171–172, 174
α-olefin polymerization, 148, 152
α-olefins, xxi, 17
Aluminum 4-tert-butylbenzoate (PTBBA-A1), 372, 375–376
Amide ligand, 66
Amido-cyclopentadienyl (CpA)-based rare-earth metal compounds, 129–130
Amino-SPS homopolymers, 397
Ammonium borate, as cocatalyst, 37, 38
Ammonium borate compounds, 37–38
Amorphous phase
naphthalene in, 207–209
solute diffusivity in, 209
Amorphous phase density, 326
Amorphous polystyrene (APS), 417, 422–423
Anionic donor ligand, 76–79
Annealing temperature, 182–183
Annealing times, 185
Anthracene, 198
Appliance applications for SPS, 13, 331–336
Application patents for SPS/Nylon blends, 353–355
Applications
automotive and electronic connectors, 329–330
electronic components, 330–331
industrial and appliance components, 331–336
performance capabilities of SPS, 322–329
of SPS, 321–336
of SPS/Nylon blends, 349–355
APS. See Amorphous polystyrene; Atactic polystyrene
APS/polystyrene blends, 366–369
Arc welding machines, 331
Arene ring, 68–69
Arrhenius equation, 270
Aryl groups, 68
Aryloxide analogue, 76
Aryloxides, 113–114
Aryloxo analogues, 75
(Aryloxo)(cyclopentadienyl)titanium complexes, 71
Aryloxo-dimethyl analogue-MAO, 76
Aryloxo ligands, 86
Asahi Chemical Co., Ltd., 383
Assay device, 353
Atactic polystyrene (APS), 3, 316
birefringence, 281
brittleness, 278
chemical structure, 290, 291
commercial success, 3
ethylene/styrene copolymers and, 61
failure and deformation and, 185
mechanical behavior, 293–294
refractive index, 281
rheological properties, 269, 271, 272
ATRP, 87
Automotive applications for SPS, 13, 324, 332, 333, 349–350, 351, 353
Automotive body panel, 353
Automotive connectors, under-the-hood, of SPS/Nylon blends, 349–351
Automotive fluid resistance, 349
Automotive head lamp lens assemblies, 324
Automotive power distribution center, 333
Azo compounds, 102
Batch polymerization, 7–8
9-BBN chain transfer agent, 410, 412
Benzene, 163, 222
Benzene-\(d_6\), 207, 208
Benzindene, 23
Benzofused rings, 94
Benzyl, 92
Benzyl methacrylate, 164, 202
Bernoullian model, 74
\(\beta\) form, 158
crystallization of, 159–160
crystallization rate, 177–178
crystallization temperature and, 175–176
crystal structure, 165, 168–170
equilibrium melting temperature, 180–182
melting behavior, 178–180
memory effects and, 182–183
planar orientations, 200
pressure and, 177
spherulites, 170, 172
\(\beta'\) form, 158, 163, 168–169, 171–172, 174, 178
\(\beta''\) form, 168
\(\beta\)-hydride elimination, 26–27, 45, 46, 57
Biaxially oriented SPS (BoSPS), 283–287
Biaxial stretching, 281
Bicyclo[2,2,1]-hepta-2,5-diene, 197
Bilayer arrangement, in nanocomposites, 423–424
Bimetallic catalytic system, 68
Birefringence, 163, 170, 186, 281–283
Biscyclopentadienyl complexes, 18
Bite angle, 23, 24, 83–87
Blending SPS pellets, 262–263
Block copolymers, 383–388
B3LYP density functional methods, 54
BMA. See n-Butyl methacrylate

Bond length and angles
among TbfTiCl$_3$, CpTiCl$_3$, and IndTiCl$_3$, 101
among TbfTiCl$_2$(4'-BuC$_6$H$_4$O),
TbfTiCl$_2$(2,6-Me$_2$C$_6$H$_4$O),
TbfTiCl$_2$(2,4,6-Me$_3$C$_6$H$_2$O),
TbfTiCl$_2$(2,6-'Pr$_2$C$_6$H$_3$O),
TbfTiCl$_2$(2,6-Ph$_2$C$_6$H$_3$O), 109
between TbfTiCl$_3$(THF) and
CpTiCl$_3$(THF), 100
of titanium complexes, 118–119

Borane chain transfer agents, 409–414
SPS block copolymers, 412–414
SPS containing terminal functional
group, 409–412
Borane comonomers, 398–408
copolymerization of styrene and
B-styrene, 398–402
side-chain functionalized SPS
polymers, 402–406
SPS graft copolymers, 406–408
Borane-containing monomers, 398
Borane derivatives, 18
Borane groups, in copolymers, 402–404,
406
Boranes, as cocatalysts, 36
Borane-terminated syndiotactic
polystyrene (SPS-t-B), 409–410, 412
Borate, 61, 130
ammonium, 37, 38
as cocatalyst, 36
effects of fluorine on catalytic
activity, 37
Borinate radical, 406–407
Boron compounds, 32, 36–38
BoSPP. See Biaxially oriented SPS
Bragg spacing, 373–374
Brittleness, 278, 281, 417
Bromination, 397
Bromoform, 163
B-styrene (4-[B-(n-butylene)-9-BBN]
styrene), copolymerization of,
398–402
Bulk density, of SPS vs. other plastics,
327, 328
Bulky ligands, 21–23
Business machine applications for SPS,
332
Butadiene, 199
tert-Butoxide ligand, 25
4'-BuC$_6$H$_4$, 114
t-Butyllithium, 96
n-Butyllithium, 96
t-Butyllithium, 49
n-Butyl methacrylate (BMA), 412
di-tert-Butyl nitroxide, 102
di-tert-Butyloxide, 102–104
di-tert-Butyl-substituted pyrrolyl,
132

C$_1$ symmetry, of η$_5$-Tbf titanium
complexes, 117
C$_2$ symmetry, 83–87
Caprolactam, 339
Carbenium borate, 38
Car body trimming part, 353
(C$_5$Et$_3$)TiCl$_3$, x-ray crystal structure of,
22
[(CH$_2$CH$_2$)P(C$_5$H$_4$)(2,4,6-Me$_3$C$_6$H$_2$)]
Zr(CH$_2$Ph)$_2$, 85
[(C$_6$H$_5$)$_2$CO](i-C$_4$H$_9$)$_2$Al, 39
C$_5$H$_5$MgCl, 126
C$_5$H$_5$SiH$_3$, catalytic activity and, 47–48
[(C$_5$Me$_5$SiMe$_3$)Sc(CH$_2$SiMe$_3$)+[B(C$_6$F$_5$)$_4$]$^-$,
85–86
CS$_2$, 196
Carbon dioxide, 199
removal of, 221
Carbon fiber reinforcement, 278
3-Carene(3,7,7-trimethylbicyclo[4.1.0]
hept-3-ene), 198
Carpet fibers, 317, 332, 350–353
Carvone, 199
Carvone removal, 223
Cast film extrusion, 314–315
Catalysts. See also Cocatalysts;
Tetrabenzo[a,c,g,i]fluorenyl-based
titanium catalysts; Transition metal
catalysts; Transition metal complex
catalysts
constrained geometry, 129–130
effect of concentration on catalytic
activity, 55
half-sandwich, 130–134
heterogeneous, 27–29
heterogenized transition metal, 140–153
Catalysts (cont’d)
 hydrogenation of, 47–48
 metallocene, xxi, 9, 61, 83–87, 126–129
 nonmetallocene, 134–135
 in production process, 256, 257
 rare-earth metal complexes, 18, 125–136
 supported, 27–29
 theoretical analysis of, 54
Catalyst site activation/deactivation, 145
Catalyst systems, 9
Catalytic activity
 Ti-NMR chemical shifts and, 20–21
 of titanium compounds, 19–26
Cationic scandium complexes, 85–86
Cationic Ti(IV) species, 86
Cell phone antennas, 328, 335
CFC. See Cross-fractionation chromatography
CGC systems. See Constrained geometry catalyst systems
Chain propagation, 54
Chain transfer, 54
 to monomer, 145, 148
Chain transfer agents, 398
Characterization studies, of co-crystals, 202–209
Chemical resistance
 of glass fiber-reinforced SPS/PA blends, 350
 of SPS, 287–289, 325
Chemical shifts of copolymers, 45
Chiro-optical memories, 224
CITi(OAr)₃, 113
CITi(OAr)_3Xₙ, 112–113
CITi(OiPr)₃, 107
Cl₂Ti(OPri)₂, 112
Chloride ligand, 25
Chloroform, 163, 222
Chloroform sorption experiments, 218
Chlorotitanium aryloxides, 112
Chlorotitanium triphenoxides, 113–114
Circuit board-attached connectors, 330
Cis opening polymerization, 42–43
Clathrate crystalline phases, 163
Clathrates, 163–164, 195–196, 210
 δ, 196–197, 206–207
 ε, 196–199
 in SPS gels, 202
Clay, in nanocomposites, 418–420
Cloisite 10A, 426–427
Cocatalysts, 32–40
 boron compounds, 32, 36–38
 MAO, 32–36
 other chemicals, 39–40
Co-crystals, 194–212
 characterization studies, 202–209
 clathrates, 195–196
 crystalline structures, 196–199
 δ clathrates, 196–197
 ε clathrates, 196–199
 intercalates, 195–196, 199
 processing and materials, 199–202
 properties and applications, 209–212
Coil bobbins, 333
Cold crystallization, 159
Cold runners, 302, 303
Comonomers, reactivity rate of, 401
Comparative tracking resistance (CTI), 328
Compatibilizer effects, 382–392
 evaluation of domain size and interfacial thickness, 388–392
 evaluation of interaction parameters, 383–388
Compatibilizers for impact-modified SPS, 371–392
 compatibilizer effects, 382–392
 morphological analyses of HISPS, 372–376
 morphology of SPS/PPO binary blends, 376–382
Composition patents, for SPS/Nylon blends, 339, 340
Compounding, 294–298
 equipment, 295–296
 ingredients, 295
 process conditions, 296–298
Compounding extruder barrel screw, 297
Conformational equilibria of guest molecules, 204
Constrained geometry catalyst (CGC) systems, 65–66, 68, 129–130
Constrained geometry type half-titanocenes, 65–70
Continuous fluidized bed reactor process, 257–259
Continuous self-cleaning reactor process, 257–259
Continuous stirred tank reactor process, 257–258
Cooling cycle, 304
Cooling rate, 159–160, 175–176, 185–186
Cooling stage, of injection molding cycle, 309
Copolymerization ethylene/styrene, 60–86 using Cp′Ti(L)X₂-cocatalyst systems, 71–75
Copolymers acrylonitrile-butadiene-styrene, 10, 366
block, 383–388
chemical shifts of, 45
ethylene/styrene, 61
SPS block, 412–414
SPS graft, 406–408
Corannulenes, 92
Corannulenyl-based ligands, 25
Corona treatment, 325
Co-rotating intermeshing twin-screw extruder, 296
Coupling constants, of copolymers, 45
Cp. See under Cyclopentadienyl CPET. See Crystalline poly(ethylene terephthalate)
Crack formation test, on HIPS/SPS blend, 367–368
Creep resistance of SPS, 324
of SPS/Nylon blends, 346
Cross-fractionation chromatography (CFC), 63–64, 71
Crystalline forms, SPS, 151
Crystalline melting point (Tm) of SPS, 322
Crystalline phase density of SPS, 326
Crystalline phase orientation, 219
Crystalline poly(ethylene terephthalate) (CPET), 316
Crystallinity degree of, 243, 274–276
injection molding cooling cycle and, 304, 305 mechanical properties and, 184–185 melt processing and, 291–292
Crystallization cold, 159 from glassy state, 160–163 isothermal, 159–161, 176, 247 melt, 159, 160, 176 of SPS, 4, 9 thermal, 162 thermodynamics of, 175–178, 238–250
Crystallization behavior of SPS nanocomposites, 426
Crystallization kinetics, 175–178 of SPS/PPO blends, 378–380 thermodynamics and, 177–178
Crystallization mechanism, 185
Crystallization rate of α form, 178 of β form, 177–178 of IPS, 238, 274 of PPS, 5 of SPS, 238, 274, 290, 292 manipulating, 11–12
Crystallo-solvates, 163
CTI. See Comparative tracking resistance Cyclohexyl analogue, 66 Cyclohexyl-methacrylate, 202 Cycloolefin polymers, xxı Cyclopentadienid anion, 92 Cyclopentadienyl (Cp)-amido yttrium hydride complexes, 129–130 Cyclopentadienyl (Cp′)-aryloxo analogues, 74 Cyclopentadienyl (Cp) fragment, effects on catalytic activity, 66 Cyclopentadienyl (Cp) ligands, 25, 36, 92–94 catalytic activities of titanium compounds with, 20–21, 23 effect of bite angle on catalyst performance, 23, 24 side ring effects of, 23–24
Cyclopentadienyl (Cp) rings, 33 Cp*Sm(ER)(THF)ₙ, 85 CpTi(CH(C₅H₅)CH₃)+, 54 CpTi(CH₃)(CH(C₅H₅)CH₃), 54 CpTi(CH₃)(CH(C₅H₅)CH₃)+, 54
Cp\(^*\)Ti(CH\(2\)Ph)\(_3\)-AFPB catalyst, 76
Cp\(^*\)Ti(CH\(2\)Ph)\(_3\)-B(C\(_6\)F\(_5\))\(_2\), 65
CpTiCl\(_3\), 6, 19–21, 25–27, 29, 33, 101
CpTiCl\(_3\)/MAO, 43, 51
Cp\(^*\)TiCl\(_2\)(N\(\text{CtBu}_2\)), 75
Cp\(^*\)TiCl\(_2\)(OAr)-MAO catalyst systems, 71–73
Cp\(^*\)TiCl\(_2\)(O-2,6-iPr\(_2\)C\(_6\)H\(_3\))-MAO catalysts, 76–79
Cp\(^*\)TiF\(_3\), 60
Cp\(^*\)TiF\(_3\)/MAO system, 64–65
Cp\(^*\)Ti(L)X\(_2\), 71–79
Cp\(^*\)Ti(L)X\(_2\)-cocatalyst systems, 79
Cp\(^*\)TiMe\(_3\), 36, 71, 76
Cp\(^*\)Ti(OCH\(_3\))\(_3\), liquid slurry polymerization with heterogenized, 143–144
Cp\(^*\)Ti(OCH\(_3\))\(_3\)/MAO catalyst, yield profile, 141–142
Cp\(^*\)Ti(OMe)\(_3\), 37, 49, 60, 64
effect of TMA on, 35
electron spin resonance spectrum, 48
XANES and EXAFS of, 53–54
Cp\(^*\)Ti(OMe)\(_3\) and TIBA, XANES and EXAFS of, 53–54
Cp\(^*\)Ti(OMe)\(_3\)/MAO catalyst, 46
Cp\(^*\)Ti(OMe)\(_3\) with MAO and TIBA molecular weight of polymers produced by, 57
XANES and EXAFS of, 53–54
Cp\(^*\)Ti(OR)\(_3\), 25–26
CpTiX\(_3\)/MAO catalyst system, 50, 65
Cyclopentadienyltitanium compounds, 17, 32
Cyclopentadieny1zirconium complexes, 18
Degree of crystallinity, 243, 274–276
\(\delta\) clathrates, 206–207, 224
\(\delta\) form, 151, 158, 163, 175, 195, 200, 217
crystalline structure of, 213–215
\(^2\)H-NMR of, 207
polar guests and, 211–212
\(\delta\) form aerogels, 217
Dendrimers, 194
Density
bulk, 327, 328
of SPS, 292–293, 326, 327
Depolarized light scattering (DPLS) measurements, on glassing SPS, 160–161
Deutrated SPS (d-SPS), 361–365
Dialkyl imidazolium surfactants, 424
Diazo compounds, 102
Dibenzyl complex, 132
Dibutyl magnesium, 128
ortho-Dichlorobenzene, 196
Dichloro compound, 132
Dichlorotitanium complex, 80–82, 87
1,2-Dichloroethane (DCE), 163, 196, 197, 199
\(\delta\) aerogels and, 217
\(\delta\) clathrate with, 213, 215
desorption of, 203–204
\(\varepsilon\) clathrate with, 213, 215
molecular separations and, 219–220
1,2-Dichloropropane (DCP), 204
Dielectric constant
of BoSPS, 286, 287
of SPS, 278
of SPS vs. other plastics, 329
Dielectric properties
of plastics, 286
of SPS, 286
Dienes, 128, 130
Diethylbenzene, 163
Differential scanning calorimetry (DSC), 61, 63, 71
of polymer nanocomposites, 421
of SPS, 175
Diffusivity, guest, 219
Dimensional stability
of BoSPS, 284, 286
of PET, 284
of SPS/Nylon blends, 346–347
DAM. See Dry-as-molded tensile stress-strain curves
DCE. See 1,2-Dichloroethane
DCP. See 1,2-Dichloropropane
Deactivating, 260–262
Deashing purification step, 6
trans-Decalin, 163
Deflection temperature under load (DTUL), 275–279
Deformation of SPS, 185, 278
1,2-Dimethoxyethane (DME), 96, 133
bis(o-N,N-Dimethylaminobenzyl), 132
o-N,N-Dimethylaminobenzyl ligand, 132
4-(Dimethyl-amino)-cinnamaldehyde, 212, 215
Dimethylanilinium borate, 37
Dimethylanilinium tetrakis(pentafluorophenyl)borate, 36, 37
1,4-Dimethyl-naphthalene (DMN), 197
Dioctyl phthalate (DOP), 383
1,4-Diphenyl-butane, 198
titanium complex, 80–82, 87
DME. See 1,2-Dimethoxyethane
DMN. See 1,4-Dimethyl-naphthalene
Domain size, evaluation of, 388–392
DOP. See Dioctyl phthalate
Double bond of styrene, insertion of polymer chain into, 42–45
Dow Chemical Company, The (TDCC), development of SPS and, 4–13
DPLS. See Depolarized light scattering measurements
Draft angles, in plastic product design, 300
Drawing behavior, temperature and, 184
Dry-as-molded (DAM) tensile stress-strain curves, 340–342
Drying, 307
DSC. See Differential scanning calorimetry
DSD techniques, 176
d-spacings, of SPS nanocomposites, 426
DTA. See Scanning calorimetry
DTUL. See Deflection temperature under load
Ductility
of high-impact SPS, 381, 382
SPS/elastomer blends and, 371
DVD players, SPS and, 329
Ejection stage, of injection molding cycle, 310
Elastomers, 371
flow behaviors of, 391–392
Electrical applications for SPS, 13, 328, 331, 332, 336
Electrical insulation, 328
Electrical properties of SPS, 286–287, 328, 329
Electric circuit meter base, 331, 336
Electric hybrid vehicles, SPS and, 330
Electron density profile, of crystalline and amorphous layers, 242
Electronic applications for SPS, 13, 330–332
Electronic components, SPS and, 330–331
Electron spin resonance (ESR) spectrum of Cp*TiCl3/MAO/TIBA, 48–49
of mixtures of MAO, TIBA, Cp*Ti(OR)3, 26
Enthalpy of mixing, 360
Environmental stress crack resistance (ESCR), of SPS/Nylon blends, 349
EPDM, 391–392
EPR, 391–392
ε clathrates, 224
ε form, 158, 164, 195, 196
crystalline structure of, 213, 215
polar guests and, 211–212
thermal behavior of, 217
ε form film, pollutant absorption and, 220–221
Equations
Arrhenius, 270
Guinier, 389
instantaneous number-average degree of polymerization, 147
liquid phase volume, 150
mass balance, 145–146
molecular weight moment, 146
number-average molecular weight, 146–147
for polymerization reaction, 55–57
weight-average molecular weight, 146–147
weight chain length distribution function, 148
Wu’s, 391
Equilibrium melting point of SPS, 238, 240–244, 273
Equilibrium melting temperature, 180–182
Equipment, compounding, 295–296
ESCR. See Environmental stress crack resistance
ESI. See Ethylene-styrene interpolymers.

ESR spectrum. See Electron spin resonance spectrum.

\(\eta^5\)-C\(_5\)Me\(_5\) ligand, 130

(\(\eta^5\)-C\(_5\)Me\(_5\))Nd(BH\(_4\))\(_2\)(THF)\(_2\), 133

\(\eta^5\)-C\(_5\)Me\(_5\)SiMe\(_3\) ligand, 130

\(\eta^6\)-coordinated carbanions, 96

\(\eta^5\)-coordinated pyrrolyl complex, 132–133

\([\eta^5\text{-BuC}_5\text{H}_4]_2\text{LnMe}]_2\), 125

Ethylbenzene, 45–47

Ethylene, 199

copolymerization with, 128, 130

polymerization of, xxi

SPS and removal of, 221

Ethylene-\(\alpha \)–olefin copolymerization, 74

Ethylene/styrene copolymerization using transition metal complex-cocatalyst systems, 64–86

Ethylene/styrene copolymers, 61–64

Ethylene-styrene interpolymers (ESI), 60

Ethylmethylbenzene, 52–53

rac-[Et(indenyl)]\(_2\)ZrCl\(_2\)-MAO catalyst system, 83

EXAFS, 53–54

Exfoliated structure, 419, 420–421, 426

Extruder, 296

Extruder drives, 313

Extrusion, 311–312

cast film, 314–315

extruder design, 312–313

material drying, 314

processing parameters, 313

Extrusion melt compounding, 10–11

Fabrication of polymer nanocomposites, 419–420

Face-to-face \(\pi \)-\(\pi \) stacking, 116

Face-to-face \(\pi \)-stacking interactions, 104–106

Failure of SPS, 185, 278

Feeder operation, 296–297

Feeders, 295–296

Ferrocenyl ligands, 92

Fiber grade products, 11

Fiber spinning, 316–318, 352

Fibrillar morphology, 152–153

Fibrous reinforcement of SPS, 294–295

Fill stage, of injection molding cycle, 308

Film extrusion, 311–314

Film processing, 199, 314–316

Film products, 11

Films, 224

polarized spectra of uniaxially stretched, 204–206

uniplanar orientations of co-crystalline phases, 199–200

unipolarized spectra of, with different uniplanar orientation, 206–207

First-order moments, 146

Flame-retardant additives, to SPS, 322–323

Flexural modulus of SPS, 276–277, 280

do of SPS nanocomposites, 425, 427

Flexural strength of SPS, 275–280

Flory-Huggins lattice theory, 360, 362, 363

Flow behaviors of elastomers, 391–392

do of SPS, 269–272

Fluidized powder bed polymerization reaction system, 8

Fluorene, 93

Fluorenyl, 92–94

Fluorescence depolarization measurements, of co-crystals, 203, 207–209

Fluorescent guests, 210–211

Fluorine, of borate, 37

Fourier transform infrared (FTIR), 184

characterization of co-crystals, 202–207

characterization of gels, 201–202

on glassy SPS, 160–161

Fracture energy of SPS, 278

Frameworks, 195

Free energy mixing, 383

Free volume of mixing, 360

FTIR. See Fourier transform infrared

Functionalization of polyolefins, 398

do of SPS via borane chain transfer agents, 409–414

do of SPS via borane comonomers, 398–408
INDEX

Gd(O_2CR)_3/Al(iBu)_3, 125
\(\gamma\rightarrow\beta\) phase transition, 164
\(\gamma\) form, 158, 162–164, 175, 200, 213
-guest-induced recrystallization and, 201
-thermal behavior of, 217
Garbage compacters, 325
Gas-assisted injection molding, 310
Gas sorption, 221
Gates, 303
Gels, 201–202
-aer-, 216–217, 220
General-purpose polystyrene (GPPS),
-321–322
-mechanical properties of, 278
Glass fiber-reinforced neat SPS, 295
Glass fiber-reinforced PA66, 288
Glass fiber-reinforced PBT, 288
Glass fiber-reinforced plastics, 288
Glass fiber-reinforced SPS (GFSPS),
-278–281, 286, 288–289, 294–295
Glass fiber-reinforced SPS/Nylon,
-340–349
Glass fiber-reinforced SPS/polyamide
blends, 295
Glass fiber reinforcement, 9
Glass-filled SPS, properties of, 322, 323
Glasstomers, 66
Glass transition temperature (T_g), 185
-of isotactic polystyrene, 3
-mechanical behavior and, 293–294
-molecular weight and, 273–274
-pressure and, 177
-of SPS, 3, 9, 322
-styrene content and, 61–62, 64
Glassy state, crystallization from,
-160–163
Global Positioning System devices, SPS
-and, 329
GPPS. See General-purpose polystyrene
Grafting technique, 194
Group 4 transition metal complexes, 18
Guadinate ligands, 135
Guest diffusivity, 219
Guest-guest proximity, 224
Guest-induced recrystallizations, 201
Guest molecules, 194
Guests
-conformational equilibria of, 204
-fluorescent, 210–211
-photoreactive, 211
-polar, 211–212
-Guest solubility, 209
-Guest sorption, 217–219
-Guinier equation, 389
Hafnium compounds, 18
Hafnocene, 85
Half-sandwich catalysts, 130–134
Half-sandwich cyclopentadienyltitanium
trichlorides, 105
Half-sandwich metalloocene-mediated
styrene copolymerization, 398
Half-sandwich titanium(IV) complexes,
-92
Half-titanocenes, 60–61, 64–65, 86
-linked, 65–70, 86
-modified, 71–79, 86
Half-zirconocene, 85
Heating, extrusion, 311–312
Heating, ventilation, and air conditioning
(HVAC) applications, 331, 332
Helical conformation, 158
-n-Heptane, 142
Heterogeneous catalysts, 27–29
Heterogeneous SPS polymerization,
-kinetic profiles of, 141–143
Heterogenized transition metal catalysts,
-140–153
-kinetics of syndiospecific
-polymerization with, 141–149
-morphology of syndiotactic
-polystyrene, 149–153
Hexamethylene diamine, 339
High-impact polystyrene (HIPS), 10,
-316, 366–369
High-impact polystyrene (HIPS)/SPS
-blend, 367
High-impact SPS (HISPS), 371
-compatibilizer effects, 382–392
-influence of blending PPO with
different molecular weights on
-morphology of, 380–382
-morphological analyses of, 372–376
HIPS. See High-impact polystyrene
HISPS. See High-impact SPS
Hoffman-Lauritzen theory, 247
Hoffman-Weeks extrapolation, 181
Homoleptic ytterbium(II) complexes, 134
Hot runners, 302–303
HVAC applications, 331, 332
\(Hv\) pattern, 244–246, 282, 283
Hyatt, J.W., 298
Hydride complexes, 135
Hydridotris(pyrazolyl)borate ligand, 20
Hydroanimation, 92
Hydrocarbon resistance, 290
Hydroformylation, 92
Hydrogen addition into PMS, 52–53
catalytic activity and, 47, 48
\(\beta\)-Hydrogen elimination, 145
Hydrogenous atactic polystyrene (h-APS), 361–365
\(\text{rac-}[\text{H}_2\text{C}(3-\text{R}-1\text{-indenyl})_2]\text{ZrCl}_2\text{-MAO}\) catalyst, 85
\(\text{rac-}[\text{H}_2\text{C}(3\text{-tert-Bu}-1\text{-indenyl})_2]\text{ZrCl}_2\), 85
Hydrolytic stability, of SPS, 326
Hydroxy-containing SPS copolymers, 399, 405–406
Hydroxylated SPS, 397
Hydroxy-terminated polymer (SPS-t-OH), 410, 413

ICD. See Induced circular dichroism
Idemitsu Kosan Central Research Laboratory, 4
Idemitsu Kosan Co., Ltd. (IKC), 322
development of SPS and, 4–13
Ignition-resistant additives, 10
Ignition-resistant glass fiber-reinforced SPS, 295
IKC. See Idemitsu Kosan Co., Ltd.
Iminoimidazolidide ligand, 75
Impact-modified neat SPS, 295
Impact-modified SPS, 343
compatibilizers for, 371–392
Impact modifiers, 10
Impact resistance, 10
glass fiber reinforcement and, 280
Indene, 7, 93
Indenyl, 92, 93
Indenyl ligand, 66
\(\text{IndTiCl}_3\), 23, 60, 64, 100, 101
Indenyl-titanium complexes, 21
Induced circular dichroism (ICD), 222–224
Industrial components, SPS and, 331–336
Ingredients for compounding SPS formulations, 295
Injection machine, 306–307
Injection machine barrel design, 306
Injection machine check valve, 307
Injection machine screw design, 306–307
Injection mold delivery systems, 302–303
Injection mold design, 301
Injection molded samples, morphology of, 183–184
Injection molding, 5, 298–311
cooling cycle and crystallinity, 304, 305
gas-assisted, 310
injection mold design, 301
injection molding cycle, 308–310
injection mold melt delivery system, 302–303
micro-cellular, 310–311
process set-up, 306–307
product design, 299–300
shrinkage during cooling phase, 304–306
special injection molding cycles, 310–311
thin wall product designs, 301
use of regrind, 311
venting, 304
Injection mold steels, 301
Intake manifold, 353, 354
Intercalated structure, 419–421, 426
Intercalates, 163, 195–199, 210, 224
Interfacial thickness, evaluation of, 388–392
Iodine, 196
IPS. See Isotactic polystyrene
Isolated ethylene units (SSESS), 82
Isooctane, 6
Isoprene, copolymerization with, 132
Isopropoxide ligand, 25
Isotactic polystyrene (IPS), 3–4, 17, 27, 82, 238
chemical structure, 290, 291
crystallization rate, 274
practical use of, 321
renewed interest in, 4
rheological properties of, 269, 271, 272
spherulitic growth rate, 249–250
thermodynamic parameters, 273
Isothermal crystallization, 159–161, 176, 247
Isothermal radial growth rate, 170
Izod impact strength
of high-impact SPS, 391–392
of SPS, 280
of SPS nanocomposites, 425
of SPS/PPO blend, 376–377
Japan Atomic Energy Research Institute, 361
Japanese Polymer Society, 4
Ketimide analogue-MAO catalyst, 76
Kinetic models
single-site, 145–148, 153
two-site, 148–149, 153
Kinetics
of crystallization, 175–178, 378–380
of SPS, 238–250
of SPS/PPO blends, 378–380
of styrene polymerization, 54–57
of syndiospecific polymerization,
141–149
kinetic profiles, 141–143
liquid slurry polymerization,
143–144
modeling polymerization kinetics,
145–147
molecular weight distribution of
SPS with heterogeneous catalysts,
147–149
Lamellae thickness, thermodynamic
stability and, 177
Lamellar morphology
thermal behavior and, 178
of zigzag forms, 170–173
Lamellar orientation, nucleator effect
on, 375–376
Lamellar structure, 240–243
Lanthanide-based sandwich complexes,
126
Lanthanides, 125
ansa-Lanthanidocene system, 127
Lanthanoids, 102
Lanthanum complex, 130
LCP. See Liquid crystal polymers
Lewis acid sites, 29
Ligands
bulky, 21–23
π-bonded, 20–25
σ-bonded, 25–26
Tbf, 94–95
Limonene, 199
Linear dichroism of guest peaks,
204–206
Linked (constrained geometry type)
half-titanceneces, 61, 65–70, 86
Liquid crystal polymers (LCP), 5, 327, 329
mechanical properties of, 323
Liquid-liquid demixing, 162
Liquid phase volume, 150–151
Liquid slurry polymerization with
heterogenized Cp*Ti(OCH₃)₃
catalyst, 143–144
Liquid-solid crystallization, 162
Lithium phenoxides, 107
Loss tangent of BoSPS, 286, 287
Lutetium, 135
MA. See under Maleic anhydride
Macromolecule receptors, 222–223
Magnesium compounds, 27
Maleic anhydride (MA), 406
Maleic anhydride (MA)-functionalized olefin, 339
Maleic anhydride (MA)-grafted styrene-
ethylene-butylene-styrene block
copolymer (SEBS-MA), 422, 423
Maleic anhydride (MA)-g-SEBS,
371–372
adding to high-impact SPS, 382–390
Maleic anydride (MA)-grafted SPS, 406, 407
MAO. See Methylaluminoxane
Market development of SPS, 11
Markets, for SPS, 13
Markov model, 74
Mass balance equations, 145–146
Mass balance model, 150
Mechanical properties, 184–185
 of HIPS/SPS blend, 368
 of neat polymers, 278
 of SPS, 272–281, 323
 of SPS nanocomposites, 425–427
 of SPS/Nylon blends, 340–343
Medical devices, SPS and, 331
MEK. See Methyl ethyl ketone
Melt crystallization, 159, 160, 176
Melting behavior, 178–183
 equilibrium melting temperature of \(\alpha \) and \(\beta \) crystals, 180–182
 memory effects, 182–183
Melting point
 of isotactic polystyrene, 3
 of SPS, 4, 243–244, 292
Melting temperature (Tm)
 molecular weight and, 273–274
SPS, xxii
Melt intercalation, 427
 organoclay and, 421–422
Melt mixing, 294–295
Melt processing of SPS, 290–318
 compounding, 294–298
 fiber spinning, 316–318
 film processing and fabrication, 314–316
 injection molding, 298–311
 overview, 290–294
 sheet and film extrusion, 311–314
Melt recrystallization, 179
Melt rheology for SPS, 293, 294
Melt temperatures for injection molding, 307
Melt viscosity, 270–272, 327
Memory effects, 176, 182–183
Me(Al(AlMe)O)\textsubscript{15}Al-Me\textsubscript{2}, 33
[Me\textsubscript{2}C(benzindenyl)]\textsubscript{2}ZrCl\textsubscript{2}, 83
[Me\textsubscript{2}C(3-cyclopenta[c]phenanthryl)]\textsubscript{2}ZrCl\textsubscript{2}, 83
[Me\textsubscript{2}Si(C\textsubscript{5}Me\textsubscript{4})(NtBu)]TiCl\textsubscript{2}, 82
rac-[Me\textsubscript{2}C(indenyl)]\textsubscript{2}ZrCl\textsubscript{2}-MAO catalyst system, 83, 86
Mesomorphic phases, morphology of, 173–175
Metal-alkyl compounds, 51
Metallocene catalysts, xxi, 9, 61, 83–87, 126–129
 post, 61
ansa-Metallocenes, 85, 126–129
Metal-methyl bond, insertion of styrene into, 45
Metals, 18–19
Methine region of copolymers, 43–45
Methoxide ligand, 25
trans-4-Methoxy-\(\beta \)-nitrostyrene, 212
Metboxy groups, in titanium compounds, 21–22
Methylaluminoxane (MAO), xxi, 4, 6, 9, 17–18, 119, 140
Cp+TiCl\textsubscript{3} and, 51, 52
Cp+Ti(OMe)\textsubscript{3} and TIBA and, 53–54, 57
effect on catalytic activity, 48–50
ESR spectrum, 26
1H-NMR spectrum, 34
with other chemicals as cocatalysts, 39
overview, 32–36
polymerization of styrene using metal compounds with, 19
polymerization of styrene using supported catalysts with, 27, 28
polymerization of styrene using Ti compounds with, 27
polymerization of styrene with titanium complexes, 19
production of poly(ethylene-co-styrene)s and, 61
structures (proposed), 33
Methylaluminum alkyls, xxi
2-Methyl-benz[\(e \)]indene, 93
2-Methylbenzindenyltitanium, 23
Methylene bis(cyclopentadienyl) titaniumdimethyl, reaction with boron compounds, 36
Methylene chloride, 222
Methylene region of copolymers, 43–45
Methyl ethyl ketone (MEK), 366
Methyl groups
at Cp ligand, 20
as substituents in
tetrahydroindenyltitanium compounds, 23
Methyl isobutyl aluminoxane (MMAO) production of poly(ethylene-co-styrene), 61
Methyl methacrylate (MMA) monomers, 407–408, 412
p-Methylphenoxide ligand, 25
p-Methylstyrrene (PMS), 11, 52
Micro-cellular foam molding, 310–311
Microhardness, 176
Microstructure of polymer nanocomposites, 418–419
Microwave oven components, 328
Microwave oven spindle support, 334
Mineral-filled SPS, 295
Miscibility, tacticity effect on, 363–365
MMA. See Methyl methacrylate monomers
MMAO. See Methyl isobutyl aluminoxane
Modified half-titanocenes, 71–79, 86
role of anionic donor ligand and mechanistic considerations, 76–79
using Cp′Ti(L)X₂-cocatalyst systems, 71–75
Moisture absorption, of SPS/Nylon blends, 342–345
Moisture growth, of SPS/Nylon blends, 343–345
Mold temperature, 307
crystallinity and, 305
SPS and, 274–275
Molecular orientation, effect on crystallization, 162–163
Molecular sensors, 221–222
Molecular separations, 219–221
Molecular structure
MAO, 33
17H-tetrabenzo[a,c,g,i]fluorene, 95
bis(17-tetrabenzo[a,c,g,i]fluorene), 106
TbfTiCl₃, 101
TbfTiCl₂(2,6-Pr₂C₆H₃O), 112
TbfTiCl₂(2,4,6-Me₃C₆H₂O), 111
TbfTiCl₂(2,6-Me₂C₆H₃O), 110
TbfTiCl₂(O’Bu), 104
TbfTiCl₂(2,6-Ph₂C₆H₃O), 113
TbfTiCl₂(4’-BuC₆H₄O), 109
TbfTiCl₂(THF), 99
TbfTi(OAr)₃, 115
Molecular weight crystallization rate and, 292
domain size and, 391
estimating, 57
glass transition temperature and, 273–274
of MAO, effect on catalytic activity, 35
melting temperature and, 273–274
number-average and weight-average equations, 146–147
of PPO to blend with SPS, 380–382
of SPS, 6
rheological properties and, 271–272
tacticity effect and, 364–365
Molecular weight control, 26–27
half-sandwich catalysts and, 130
Molecular weight distribution with heterogeneous catalysts, 147–149
Molecular weight moment equations, 146
Monoalkyl imidazolium surfactants, 424
Monocyclopentadienyl titanium derivatives, 92–93
Monolayer arrangement, in nanocomposites, 423–424
Monomer, chain transfer to, 145, 148
Monomer concentration effect on catalytic activity, 55
polymerization rate and, 142–143, 144
Monomer purification, 255–256
Monomer sequences, in poly(ethylene-co-styrene), 64
Montmorillonite, 418–419
Morphological analyses of high-impact SPS, 372–376
Morphology of SPS, 149–153
development in presence of solvents, 163–164
effects of reaction conditions on, 151–153
of high-impact SPS, 380–382
of injection molded samples, 183–184
of mesomorphic phases, 173–175
Morphology of SPS, (cont’d)
physical transitions of reaction mixture, 149–151
relation to processing and properties, 184–186
of SPS/PPO binary blends, 376–382
of zigzag forms, 164–173

Nanocomposites, 417–428
polymerization of, 420–421
fabrication of, 419–420
microstructure, 418–419
SPS, 417–418
preparation of, 421–424
properties, 425–427

Nanoparticles, 418

Nanoporous crystalline phases, 212–224
applications, 219–224
characterization studies, 217–219
δ phase, 213–215
e phase, 215
ethylene removal and, 221
preparation of, 215–216
processing and materials, 215–217

Nanoporous crystalline structures, 195

Nanorods, 418

Naphthalene, 163
in amorphous phases, 207–209

Natta, Giulio, xxi

Neat polymers, mechanical properties of, 278

Neodymium-based borohydride, 133

Neodymium-based catalyst, 128

Neodymium-based sandwich complexes, 126

Neodymium complexes, 135

4-Nitro-aniline, 199

p-Nitro-aniline, 212

NMR chemical shifts, titanium complexes and, 20–21

\(^{13}\)C-NMR spectrum
of low-molecular-weight SPS, 46
of poly(ethylene-co-styrene)s, 61–63

\(^{1}H\)-NMR spectrum
of MAO, 34
of Tbf titanium triaryloxide, 117

\(^{2}H\)-NMR, characterization of co-crystals, 202–203, 207
Noncyclopentadienyl titanium complexes, 79–83
Noncyclopentadienyl zirconium complexes, 18
Nonmetallocene catalysts, 134–135
Non-plated electronic components, SPS and, 330–331
Non-racemic molecules, sensors of, 222–224
Norbornadiene, 197, 211
meso-[Norbornane-7,7-bis(indenyl)]
titanium chloride, 85
Nucleating agents, 5, 10, 292
Nucleators, effect on lamellar orientation in high-impact SPS, 375–376

Number of active sites, 52–53

Nylon. See also SPS/Nylon blends
Nylon 6, 5, 332
blended with SPS, 339, 350–353
Nylon 6,6, 5, 13
in SPS/Nylon blends, 324, 339
Nylon 6/clay nanocomposite, 419

1,2,3,4,5,6,7,8-Octahydrofluorene, 93
1,2,3,4,5,6,7,8-Octahydrofluorenyl ligands, 25
1,2,3,4,5,6,7,8-Octahydrofluorenyltitanium compounds, 25

ODT. See Order-disorder transition
Oil pan, 353
Olefinic impact modifiers, 339
Olefin polymerization, 9

α, 148, 152

OPS. See Poly(styrene-co-vinyloxazolin)

Optical anisotropy, 186
Optical fiber technology, 222
Optical properties, 222, 224
Optical transduction techniques, 222
Order-disorder transition (ODT), 372, 383–384

Organic zeolites, 221

Organoaluminum compounds, polymerization of styrene using CpTiCl\(_3\), 33

Organoaluminum compounds, polymerization of styrene using CpTiCl\(_3\), 33

Organoborane chain transfer agent, 409
Organoclay, 418–420
 effect of alkyl chain aggregation on, 423–424
 melt intercalation and, 421–422
 thermal stability of, 421–422, 424
 XRD patterns of, 423
Organometallic catalysts, xxi
Orientation
 crystalline phase, 219
 mechanical properties and, 184–185
 nucleator effect on lamellar, 375–376
 of SPS, 281–286
 uniplanar, 206–207, 212
Oxidative stabilizers, 10
Oxygen removal, 7
PA6, 278, 285
PA66, 278, 329
Pack and hold stage, of injection molding cycle, 308–309
PAI. See Polyamide imide
 P2_1/a symmetry, of co-crystals, 196, 197
PBMA, 413
PBT. See Polybutylene terephthalate
PCT, glass fiber, 327
PE. See Polyethylene
PE-b-PMMA, 398
PE-g-PMMA, 398
Pelletizer operation, 262, 298
Pelletizers, 296
PEN, properties of, 285
Pentafluorophenyl borate, 18
Pentamethylcyclopentadienyl complexes, 20
Pentamethylcyclopentadienyl ligand, 36
Pentamethylcyclopentadienyltitanium, 23
Perfluorophenyl borate derivatives, 36
Performance capabilities of SPS, 322–329
PES. See Polyether sulfone
PET. See Polyethylene terephthalate
Phenols, 107, 113
Phenoxy ligand, 25
Phenyl, 92
Phenyl acetylene, 7
Phenyl C_1 region of copolymers, 43, 44
1-Phenylethyl end groups, 46
Phenyl groups, 45, 68
[Ph_2C(fluorenyl)(Cp)][ZrCl_2], 83–85
[PhN(H)Me_2][B(C_6F_5)_4], 76
Phenylsilane (C_6H_5SiH_3), catalytic activity and, 47–48
Photoisomerization of norbornadiene, 211
Photoreactive guests, 211
Physical properties of polymer nanocomposites, 420
PI, properties of, 285
π-bonded ligand, variation of, 20–25
π-π stacking, face-to-face, 116
π-stacking interactions, 104–106
Plasma cutters, 331
Plastic product design, 299–300
 avoiding sharp corners, 299–300
 nominal wall thickness, 299
 use of draft angles, 300
 use of radii, 300
Plated electronic components, SPS and, 330–331
PMMA. See Poly (methyl methacrylate)
PMS. See p-Methylstyrene
Polar guests, 211–212
Polarized spectra of uniaxially stretched films, 204–206
Polyamide imide (PAI), 323
Polyamides
 with SPS, 317
 in SPS/Nylon blends (see SPS/Nylon blends)
Polyamide 6/SPS fiber, 317, 318
Polybutylene terephthalate (PBT), 5, 327, 329, 341–343
 mechanical properties of, 278, 323
Polyether sulfone (PES), 323
Polyethylene, polymerization of, 17
Poly(ethylene-co-styrene)s, 61–64
 microstructure of, 72–74
Polyethylenoxide, 194
Polyethylene (PE), xxi, 61
Polyethylene terephthalate (PET), 5, 323, 329
 dimensional stability of, 284
 properties of, 285
Polymeric framework (polymeric nanoporous phase), 195, 212
Polymerization, 256–259. See also Styrene polymerization
batch, 7–8
continuous fluidized bed reactor
process, 257–259
continuous self-cleaning reactor
process, 257–259
continuous stirred tank reactor
process, 257–258
olefin, 9
polyethylene, 17
propylene, 17
slurry, 6
vinyl monomer, 17–18
Polymerization kinetic model,
145–147
Polymerization rate, monomer
concentration and, 142–144
Polymer nanocomposites, 418–421
crystallization from glassy state,
160–163
crystallization from melt state,
159–160
morphology development in presence
of solvents, 163–164
Poly(methyl methacrylate) (PMMA),
413
Polymorphic behavior of SPS, 157–164
crystallization from glassy state,
160–163
crystallization from melt state,
159–160
morphology development in presence
of solvents, 163–164
Poly(muconic acid), 194
Polyolefin materials, 87
Polyolefin/polyolefin, 360
Polyolefins, functionalization of, 398
Polyoxacyclobutane, 194
Poly(phenylene ether) (PPE), 316
Polyphenyleneoxide (PPO), 371, 382
Polyphenylene sulfide (PPS), 278, 285,
323, 329
Polyphthalamide (PPA), 323, 324
Polypropylene (PP), xxi, 8
Polystyrene, 17. See also Atactic
polystyrene; Isotactic polystyrene
blends with SPS, 360–369
catalyst, 136
Poly(styrene-block-ethylene-butylene-
block-styrene) (SEBS), 371–372,
391–392
Poly(styrene-co-4-[B-(n-butylene)-9-
BBN]styrene), 398
Poly(styrene-co-vinyl oxazolin) (OPS),
422
Polystyrene/deuterated polystyrene
mixtures, 360
Polytetrafluoroethylene (PTFE), 285, 329
Polyvinyl chloride (PVC), precipitation
mass polymerization system for,
8–9
Porod’s law, 241
Post metallocenes, 61
Potassium tert-butoxide, 104
PPA. See Polyphthalamide
PP-b-PMMA, 398
PPE. See Poly(phenylene ether)
PP-g-PMMA, 398
PPO. See Polyphenyleneoxide
PPS. See Polyphenylene sulfide
Precipitation mass polymerization
system for polyvinyl chloride, 8–9
Preparation of SPS nanocomposites,
421–424
Pressure, effect on crystallization
behavior, 176–177
Printer fuser shield, 334
Production processes, 255–264
blending, 262–263
catalysts, 256, 257
deactivating, 260–262
monomer purification, 255–256
pelletizing, 262
polymerization, 256–259
shipping, 263–264
styrene stripping, 260
Propagation, 145
Properties. See also Dielectric
properties; Mechanical properties;
Rheological properties; Thermal
properties
of APS/polystyrene blends, 366–369
of SPS
- biaxially oriented, 283–286
- chemical resistance, 287–289
- electrical, 286–287
- mechanical, 274–281
- relation to morphology structure and processing, 184–186
- rheological, 269–272
- thermal, 272–274
- uniaxially oriented, 281–283
- of SPS nanocomposites, 425–427
- of SPS/Nylon blends, 339–349
- of SPS/polystyrene blends, 366–369

- \(\iota \)-Propyl, 92
- n-Propylbenzene, 45
- Propylene, polymerization of, 17
- PS/PSVME mixtures, 360
- PS/SPS blends, 10, 12–13
- PTBBA-A1. See Aluminum
 - 4-tert-butylbenzoate
- PTFE. See Polytetrafluoroethylene
- Pump and water handling applications for SPS, 331, 332
- Purging of extruder, 298
- PVC. See Polyvinyl chloride
- PVC/PMMA mixtures, 360
- Pyrazolylborate complexes of titanium, 20

- QCM. See Quartz crystal microbalance
 - sensors
- Quadracyclane, 211
- Quartz crystal microbalance (QCM)
 - sensors, 222
- Questra, 12, 13
- Quinones, 102

- Racemic pentad (rrrr) configuration, 43
- Radicals, reaction of THF with, 102–105
- Radii, in plastic product design, 300
- RAFT, 87
- Rare-earth coordination catalysts, 18
- Rare-earth metal complexes as catalysts, 18, 125–136
 - constrained geometry catalysts, 129–130
 - half-sandwich catalysts, 130–134
 - metallocene catalysts, 126–129
 - nonmetallocene catalysts, 134–135
- Rate decay phenomenon, 142
- \((R^1)CO)_2Al-(R^2)_3-n \), 39
- Recrystallizations, guest-induced, 201
- Reduction agents, catalytic activity and, 51
- Reflector plate, 353
- Refractive index of SPS, 281
- Re grind, 311
- Rheological properties
 - of polymer nanocomposites, 421
 - of SPS, 269–272
 - of SPS nanocomposites, 426–428
- Rheology of SPS/Nylon blends, 343
- Ring size, effect on catalytic activity, 25
- Ring slippage, Cp ligands and, 93
- ROP, 87
- Rouse segment size, 186
- RPA theory, 386–387
- Runners
 - cold, 302, 303
 - hot, 302–303

- SALS. See Small-angle light scattering
- Samarium, 102, 132
- Samarium(II)-based catalyst system, 134–135
- Sm(OAr)_2(THF)_3, 134
- SANS. See Small-angle neutron scattering
- Saturated SEBS block copolymers, 10
- SAXS. See Small-angle X-ray scattering
- s-block metalloids, 102
- Scandium catalyst, 125
- Scandium complexes, cationic, 85–86
- Scandium half-sandwich complexes, 130, 132, 133
- Scanning calorimetry (DTA), 176
- Scanning electron microscopy (SEM), SPS particles and nanofibrils, 151, 152
- Screw design
 - for extrusion, 297, 312
 - injection machine, 306–307
- Screw recovery stage, of injection molding cycle, 309–310
- SD. See Spinodal decomposition
- SDR. See Spin draw ratio
SEBS. See Poly(styrene-block-ethylene-butylene-block-styrene)

SEBS-MA. See Maleic anhydride-grafted styrene-ethylene-butylene-styrene block copolymer

Second-order moments, 146

Sensors
 molecular, 221–222
 of non-racemic molecules, 222–224

Sharp corners, in plastic product design, 299–300

Shear rate
 for glass fiber-reinforced SPS/Nylon, 343
 for SPS, 293, 294

Sheet extrusion, 311–314

Shipping, 263–264

Shrinkage, during cooling phase, 304–306

Side-chain functionalized SPS polymers, 402–406

Side ring effects of cyclopentadienyl ligands, 23–24

σ-bonded ligands, 25–26

Silane coupling agent, 9

Silanediols, 148

Silane-terminated SPS (SPS-t-O-Si(CH₃)₃), 410–411

Silanols, 148

Silica, 221

Silica gel catalyst support particles, 151, 152

Silica-MAO complex, 148

SiMe₃ group, 66

SiO₂-supported Ti(OC₄H₉), 27

Silicas nanotube reactor (SNTR) system, 153

Silylated cyclopentadienyl derivatives, 105

SINC. See Solvent-induced crystallization

Single-site kinetic model, 145–148, 153

Slurry polymerization, 6

SMA. See Styrene-maleic anhydride random copolymer

Small-angle light scattering of cold-crystallized SPS, 161

domain size and, 390–391

H_v pattern, 282, 283

spherulite structure study, 244–245

Small-angle neutron scattering (SANS) of SPS/polystyrene blends, 360–361, 362, 364

Small-angle X-ray scattering (SAXS) characterization of lamellar structure, 240–243

lamellar morphology, 170–172

polyphenyleneoxide and ductility study, 371

profile of high-impact SPS, 373–375

profiles for compatibilizer effects, 383–388

structural analyses of SPS/PPO blends, 377–378, 380–382

SNTR system. See Silicas nanotube reactor system

Sodium hydroxide, 260

Solute diffusivity, in amorphous phase, 209

Solution crystallization procedures, 199

Solvent-induced crystallization (SINC), 163

Solvents, morphology development in presence of, 163–164

Specific gravity of SPS, 278

Spherulites, 238, 239

growth rates of, 239–240, 244–249

morphology of zigzag forms, 170–173

Spin draw ratio (SDR), 316–317

Spinodal decomposition (SD), 162

Sprue design, 302

SPS (syndiotactic polystyrene), xxi

aplications (see Applications of SPS) blends with polyamide (see SPS/Nylon blends)

blends with polystyrenes, 360–369

brittleness, 278, 281, 417

chemical resistance, 287–289

chemical structure, 290, 291

co-crystals and, 194

crystalline forms, 151

disadvantages, 278, 397

discovery, 3–4

early development (1985-1989), 5

electrical properties, 286–287

equilibrium melting point, 240–244
functionalization
via borane chain transfer agents, 409–414
via borane comonomers, 398–408
initial commercial launch (1996-2001), 12–13
injection molded samples, 183–184
intense development (1989-1996), 6–12
kinetics of syndiospecific polymerization, 141–149
market development, 11
markets, 13
mechanical behavior, 293–294
mechanical properties, 274–281, 323
melting behavior, 178–183
melt processing (see Melt processing of SPS)
modification of, 397
molecular weight control of, 26–27
morphology (see Morphology of SPS)
nanocomposites, 417–418, 421–428
orientation, 281–286
performance capabilities, 322–329
polymerization process, 7–9
polymorphic behavior, 157–164
production processes, 255–264
properties (see under Properties)
rheological properties, 269–272
spherulitic growth rate, vs. IPS, 249–250
thermal properties, 272–274
thermodynamic parameters, 273
thermodynamics and kinetics of crystallization, 175–178
uniaxially oriented, 281–283
viscosity, 293, 294, 327
SPS/benzene gels, 202
SPS block copolymers, 412–414
SPS-b-PBMA, 411
SPS-b-PBMA diblock copolymers, 413–414
SPS-b-PMMA, 411
SPS-b-PMMA diblock copolymers, 413–414
SPS/chloroform δ clathrate phase, 203–204
SPS compounds, 295
SPS gels, 164
SPS-g-PMMA graft copolymers, 407–408
SPS graft copolymers, 406–408
SPS nanofibrils, 152
SPS/nitrobenzene co-crystalline phase, 204
SPS/Nylon 6, 339, 350–353
SPS/Nylon 6,6, 324, 339
SPS/Nylon alloy series, 13
SPS/Nylon blends, 327
applications, 349–355
composition, 338–339
composition patents, 339, 340
environmental stress crack resistance, 349
formulations, 339
polyamides used in, 339
properties, 339–349
in technical journals, 339, 341
USCAR performance, 347–349
SPS/PA66, 330
SPS particles, 151–152
SPS/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends, 162–163
morphism of, 376–382
SPS/polystyrene blends, 360–369
properties of, 366–369
SANS measurements, 360–362
tacticity effect on miscibility, 363–365
theoretical background, 361–362
SSESS. See Isolated ethylene units
SS. See Styrene repeat units
Stability, kinetics data and, 177–178
Stereoblock polystyrene, 136
Stereochemical control mechanisms, 42–58
active site species, 48–54
effects of hydrogenation on catalyst, 47–48
insertion of growing polymer chain into double bond of styrene, 42–45
kinetic analysis of styrene polymerization, 54–57
stereochemistry of styrene insertion, 45–47
theoretical analysis of the catalyst, 54
Stereochemistry, of styrene insertion, 45–47
Stereoerrors, 134
Sterilization applications, 331
Stress-optical coeffi cient, 186
Structural parameters
of SPS/EPR and SPS/EPR/MA-g-SEBS, 391
of SPS/PPO blends, 377–378, 380–381
Structure of active sites, 53–54
Styrene
copolymerization of, with B-styrene, 398–402
ethylene/styrene copolymerization using transition metal complex-cocatalyst systems, 64–86
ethylene/styrene copolymers, 61–64
insertion of growing polymer chain into double bond of, 42–45
stereochemistry of styrene insertion, 45–47
α, β, β-d3-Styrene, 42–43
cis-β-d1-Styrene, 42–43
trans-β-d1-Styrene, 43
Styrene-maleic anhydride random copolymer (SMA), 422–423
Styrene monomer purification, 7
Styrene polymerization, 119–120
equations for, 55–57
kinetic analysis of, 54–57
mechanism for, by ansa-lanthanoidocene catalysts, 127
syndiospecific, 17
using metal compounds with MAO, 19
Styrene repeat units (SSS), 82
Styrene stripping, 260
Substituted pyrrolyl ligands, 132
Sulfonation of SPS, 397
Supercritical carbon dioxide, 216
Supercritical fluid chromatography, of SPS, 46–47
Supported catalysts, 27–29
Syndiotactivity of polystyrenes, 119–120
Syndiotactic oligostyrenes, preparation of, 128
Syndiotactic polymethylmethacrylate, 194–195
Syndiotactic poly-p-chloro-styrene, 194
Syndiotactic poly-p-methyl-styrene, 194
Syndiotactic polystyrene. See SPS
Syndiotacticity, 43
Tacticity effect, 360, 363–365
TCE-induced recrystallization, 201
TDCC. See Dow Chemical Company
Technical journals, SPS/Nylon blend compositions described in, 339, 341
TEM. See Transmission electron microscopy
Temperature. See also Glass transition temperature
annealing, 182–183
crystallization and, 159–160, 175–176
deflection, under load, 275–277
drawing behavior and, 184
equilibrium melting, 180–182
melting, xxii, 273–274, 307
mold (see Mold temperature)
molecular weight of SPS and, 26
polymerization, 8
zero growth rate, 182
Temperature class for USCARPF1-Standard, 347
Temperature resistance, of SPS, 323
Temperature settings, extruder, 297
TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), 102
Tensile modulus
of SPS nanocomposites, 427
of uniaxially stretched SPS film, 284
Tensile strength
of glass fiber-reinforced SPS/Nylon, 341, 342
of SPS, 325, 326
of SPS nanocomposites, 425, 427
of uniaxially stretched SPS film, 284
17H-Tetrabenzo[a,c,g,i]fluorene, 94, 95
bis(17-Tetrabenzo[a,c,g,i]fluorene), 105–106
8bH-Tetrabenzo[a,c,g,i]fluorene (TbfH), 94
Tetrabenzo[a,c,g,i]fluorenyl-based titanium catalysts, 92–120
dynamic and polymerization behavior of tetrabenzofluorenyl titanium complexes, 117–120
overview, 92–94
Tbf ligand, 94–95
Tbf lithium, 96–98
Tbf titanium(IV) derivatives, 105–116
titanium(III) derivatives, 98–105
TbfCl₂Ti(OPr')₂, 112
TbfLi(DME)₃, 96–98
TbfLi(THF)₄, 98, 105
Tbf lithium (THF)
 molecular structure of, 97
 synthesis and characterization of, 96–98
Tbf (tetrabenzo[a,c,g,i]fluorid) ligand,
 synthesis and characterization of, 96–98
TbfTiCl₃, 100–101
TbfTiCl₂(2,6-iPr₂C₆H₃O), 109, 111, 112
TbfTiCl₂(2,4,6-Me₃C₆H₂O), 109–111
TbfTiCl₂(2,6-Me₂C₆H₃O), 109, 110
TbfTiCl₂OAr, 107–108
TbfTiCl₂(OTBu), 104
TbfTiCl₂(2,6-Ph₂C₆H₃O), 108–109, 111, 113
TbfTiCl₂(4-tBuC₆H₄O), 109
TbfTiCl₂(THF), 98–105
TbfTi(OAr)₃, 113, 114
η⁵-Tbf titanium complexes, 117–120
Tbf titanium(III) chloride complexes,
 synthesis of, 98–101
Tbf titanium(III) derivatives, 98–105
 reaction of Tbf titanium(III) chloride
 with radicals, 102–105
 synthesis of Tbf titanium(III) chloride
 complexes, 98–101
Tbf titanium(IV) derivatives, 105–116
 synthesis of Tbf titanium
 monophenoxide complexes, 107–116
Tbf titanium monophenoxide complexes,
 synthesis of, 107–116
Tbf titanium phenoxides, 112–113
Tbf titanium triaryloxides, 113–116,
 117–120
Tetrabenzofluorenyl titanium complexes,
 dynamic and polymerization
 behavior of, 117–120
Tetrabenzylltitanium/MAO catalyst, 43
Tetrachloroethylene, 222
Tetrachloroethylene/MAO catalyst, 222
Tetralin, 163
Tetramethylcyclopentadienyl ligands, 21
TGA. See Thermogravimetric analysis
Thermal properties
 of ethylene/styrene copolymers, 61–64
 of hydroxylated SPS copolymers,
 405–406
 of SPS, 272–274
Thermal stability
 of organoclay, 421–422, 424
 of SPS, 417
 of SPS/Nylon blends, 348
Thermal stabilizers, 10
Thermal transition
 of δ form, 175
 of nanoporous crystalline phases, 217
Thermodynamics of crystallization,
 175–178
Thermoforming, 315–316
Thermogravimetric analysis (TGA)
 of organoclays, 424
 of polymer nanocomposites, 421
Thin wall product designs, 301
TIBA. See Triisobutylaluminum
Titanium alkoxides, 6
Titanium alkyls, 6
Titanium aryloxides, 113
Titanium-based catalyst, 4
Titanium bis(phenolate) complexes,
 79–80
Titanium catalysts with different alkoxy
 groups, 25–26
Titanium complexes, 18–26
 catalyst performance of, 20
 non-Cp, 79–83
 σ-bonded ligands, 25–26
 variation of π-bonded ligand, 20–25
Titanium compounds
 catalytic activities of, with
cyclopentadienyl ligands, 20–21
 polymerization of styrene with MAO
 and, 27
Titanium halide compounds, 19
Titanium (III), catalytic activity of,
 48–50
Titanium (IV), catalytic activity of,
 49–50
Titanium(IV) complexes, half-sandwich,
 92
Titanium tetrachloride, 17
Titanium 2,2'-thiobis(phenolate)
 complex, 79
Ti2B1, 68, 70
Ti(benzyl)4/MAO system, 46
Ti(CH2C6H5)4/MAO system, 50
TiCl3, 27
TiCl4, 27, 113
TiCl3(THF)3, 98
TiCl4(THF)2, 105
[Ti(η5-C5R5)R]+, 125
[Ti(η5-C5R5)R3], 125
Ti(III), 54
Ti(IV), 54
Ti(OC4H9)4, 27
Ti(OEt)4, 113
TiX4/MAO system, 50
Titanocene, 34
ansa-Titanocene complexes, 23
Titanocene/MAO catalysts, for copolymerization of styrene and B-styrene, 398, 400
TMA. See Trimethylaluminum
TMB. See Trimethyl-benzene; 1,3,5-Tri-methyl-benzene
Toluene, 163, 164, 196, 222
Torsion angles, titanium complexes, 119
Total solid content (TSC), 149
Tracking resistance, of SPS vs. other plastics, 329
Transformer tap changer lock nut, 335
Transition metal catalysts, 17–29
metals, 18–19
molecular weight control, 26–27
overview, 17–18
supported and heterogeneous catalysts, 27–29
titanium complexes, 19–26
Transition metal complex catalysts
ctionic scandum complex, 85–86
ethylene/styrene copolymers, 61–64
hafnocene, 85
half-titanocenes, 60–61, 64–65, 86
half-zirconocene, 85
linked half-titanocenes, 61, 65–70, 86
metallocenes, 83–87
modified half-titanocenes, 71–79, 86
non-Cp titanium complexes, 79–83
polymeric Sm(II) complexes, 85
Transition metal complex-cocatalyst systems, 64–86
Transmission electron microscopy (TEM)

of cold-crystallized SPS, 161
of polymer nanocomposites, 421
of SPS spherulites, 170–172
Trans-planar conformation, 158
Trans-trans conformation, 43
Trichloride analogue, 76
Trichloroethylene, 222
Triisobutylaluminum (TIBA), 25, 47, 119. See also Cp*Ti(OMe)3 with MAO and TIBA
as cocatalyst, 37–39
effect on catalytic activity, 49, 51
ESR spectrum, 26
XANES and EXAFS of, 53–54
Trimethylaluminum (TMA), 34–35, 39
Trimethyl-benzene (TMB), 197, 210
1,3,5-Tri-methyl-benzene (TMB), 210
Triocylaluminum, 39
Triple point Q, 177
Tris(pentafluorophenyl)borane, 36, 37
Tris(pentafluorophenyl)boron, 32
Trivalent titanium series, as active series, 48–50

TTGG conformation, 151
TTTT conformation, 151
21-helix (TTGG) conformation, 151
Two-site kinetic model, 148, 153

Under-the-hood automotive connectors, 349–351
Uniaxially oriented SPS, 281–284
Uniaxial stretching, 281
Uniplanar orientation of co-crystals, 212
films and, 199–200
unpolarized spectra of SPS films presenting, 206–207
Unipolarized spectra of SPS films, 206–207
U.S. Council for Automotive Research (USCAR), 330, 383
performance of SPS/Nylon blends, 347–349
UV treatment, 325
Vacuum, on compounding extruder, 297
Valence of active sites, 48–51
Vanadium complexes, 45
VCl₄/Al(C₂H₅)₂Cl catalyst system, 45
Vapor-phase fluidized beds for polypropylene, 8
Venting, injection molding, 304
Vibrational peak shifts, in co-crystals, 203–204
Vicinals, 148
Vinyl monomers, polymerization of, 17–18
Viscoelasticity, 186
Viscosity
 for glass fiber-reinforced SPS/Nylon, 343
 molecular weight and, 271–272
SAXS intensity profiles of high-impact SPS and, 380–382
 of SPS, 293, 294, 326–327
Viscosity ratio, effect of particle size of SPS in carpet fiber, 350, 351, 353
Volatile organic compounds (VOCs), 219–222
Wall thickness, in plastic product design, 299
Warpage, SPS and, 326, 327
Water absorption, of SPS, 326
Water conductor assembly, 353
Water removal, from SPS, 7
Water supply components, SPS and, 13, 331, 332
WAXD. See Wide-angle X-ray diffraction
WAXS, 184
Weight chain length distribution function, 148, 149
Wide-angle X-ray diffraction (WAXD), 162, 171, 176
Wire harness connectors, 330
Wu’s equation, 391
XANES, 53–54
Xarec, 12–13
X-ray diffraction (XRD)
 characterization of co-crystals, 202
 of organoclay, 423
 of polymer nanocomposites, 420–421
Yield, SPS polymer, 142
Ytterbium, 102
Ytterbium(II) half-sandwich complexes, 133–135
Yttrium, 132
Yttrium complex, 129–130
Zeolites, 221
Zero growth rate temperature, 182
Zero-order moments, 146
Zero shear viscosity, 271, 272
Ziegler, Karl, xxi
Ziegler-Natta catalysts, 17–18
Zigzag form morphology, 164–173
 α form, 164–168
 β form, 168–170
 lamellar and spherulitic, 170–173