Index

acute energy deficiency (AED), 378–9
adipokines, 58
ageing
at-risk groups, nutritionally vulnerable
food beliefs and habits, 141–2
older populations, 141
risk, food patterns, 142
biological and chronological age
definition, 135–6
lifestyle factors, 136
bone loss
see osteoporosis
description, 134
effects, physiological function
body composition, 139–40
immune system and GIT, 140
psychological changes, 140
sensory and tooth loss, 140
theories, 139
food variety
dietary diversity, 137
mortality advantage, 137–8
frailty, 137
guidelines, healthy
chronological age, 151
physical activity, 151–2
protective foods and food variety, 152–3
health problems, nutrition-related
cancer and CVD, 147
cognitive function, 148
diabetes, 147–8
endocrine function, 148
immune function and obesity, 146
osteoporosis and fractures, 146–7
sarcopenia, 145–6
inadequate intake, nutrients
calcium, phytochemicals and water, 145
folate, 143
protein-energy dysnutrition, 142–3
vitamin B6 and B12, 143–4
vitamin D and zinc, 144
morbidity compression, 136
nutritional assessment
anthropometric indices, 151
arm span, 150
biochemistry, haematology and immunology, 151
calf circumference, 150–151
definition, anthropometry, 150
food and nutrient intake, 148–50
health problem, risk factors, 151
height and weight, 150
mid-arm circumference, 150
nutritionally vulnerable older adults, 141
physical activity, 138
physiological reserves
body functions, 136–7
metabolic and organ tissues, 136
prevention strategies, 137
sensory function, loss, 202
social activity
fitness, 139
longevity, 138–9
sociodemography, 135
amino acid metabolism
dietary disposal and organs see dietary amino acids disposal
dispensable amino acids synthesis
arginine, alanine and citrulline, 81
glutamine, glycine and proline, 81–2
interorgan, fed and fasted states
A-V differences, 88
glutamine, 89
muscle proteolysis, 88–9
peptides, 88
splanchnic tissues, overnight fast, 89
in vivo, protein turnover
flooding-dose technique, 84
15N end-product methods, 82–3
precursor, plasma/substrate-specific methods, 83–4
whole-body approaches, 82
non-proteinogenic functions
biochemical, 97
creatine synthesis, 99
glutathione, 99–100
methionine see methionine metabolism
and peptide transport
function, 91
genetic diseases, plasma see plasma amino acid transport
plasma concentration, 91–2
pools, 89–90
system A, 92
transporters see amino acid transporters; peptide transporters
and protein turnover
ammonia detoxification, 80
fat, 79–80
lipid and carbohydrate macromolecules, 79
regulation
branched-chain α-ketoacid dehydrogenase (BCKADH), 80–81
insulin and glucagon, 80
phenylalanine hydroxylase, 81
starvation, 73
amino acid transporters, 90–91
bile, liver
concentration and storage, 228
enterohepatic circulation, 226
recirculation, 228, 229
role and composition, 227
secretion
controlling factors, 229
ductular epithelial cells, 228
hepatocytes, 227–8
regulation, 228, 230
transport processes, 226
blood-brain barrier (BBB)
blood-cerebrospinal fluid (CSF) barrier, 159
description, 155–6
dyes, intravenous administration, 158
endothelial cells, 158–9
nutrients, 160
peripheral nerves, 159–60
physical nature, 158
transport carriers, brain, 159
blood pressure; see also cardiovascular system
alcohol, 265
combination diet, 266
dietary macronutrient composition, 265
minerals, diet
calcium, 265–6
potassium and sodium, 265
body mass index (BMI)
adults, 361
adolescents and children
overweight and obesity, 361
reference standards, 362
heredity, 365
mortality, 385
overweight and obesity, gender, 134
pregnant women, 383
risk assessment, 369
body-weight maintenance and issues
losing
fat levels, 402
female athletes, 403
nutrition counselling, 401
making, 403
muscle mass, gain, 403
bone
accumulation, mass, 282, 283
calcium
balance, 2–3
foetal and infant growth, 304
intake and bone loss, ageing, 304–5
peak bone mass, 304
postmenopausal period, 304
requirements, 304
cells
osteoclasts, 276
osteoprogenitor, osteoblasts and osteocytes, 275
fluoride, 307
gender and ethnic differences
African–Americans, 284
peak bone mass, 283–4
health, vitamin D, 144
hormonal control, growth
insulin-like growth factor-1 (IGF-1), 281
postnatal, 280
sex steroids and foetal, 281
thyroid hormone, 281–2
lifestyle factors and health
alcohol, 308
body weight, composition and obesity, 309–10
eating disorders, 308–9
malabsorption syndromes, 309
smoking, physical activity and exercise, 308
vegetarianism and lactose intolerance, 309
longitudinal changes, 280
loss, ageing see osteoporosis
magnesium, 305
mass assessment
BMD, 278–9
quantitative computed tomography (QCT), 279–80
radiographs, 278
techniques, 279
matrix
?-carboxylated and glycosylated proteins, 274–5
hydroxyapatite crystal and mineral component, 275
non-collagenous protein divisions, 274
protein types, 275
muscles, growth, 132
osteoporosis, 146–7
peak bone mass, 282–3
phosphorus, 305
phytoestrogens, 308
pregnancy and lactation
calcium and osteoporosis, 285
densitometry, 284–5
mineral content, 284
protein
deficiency, 306
high intake, 305–6
remodelling see bone remodelling
vitamin C and K, 306
vitamins, 125
zinc and copper, 307–8
bone mineral density (BMD)
areal, 279, 284
body weight and height, 309–10
calcium, 304–5
definition, 279
fluoride, 307
25-OH2D concentration, 303
phosphorus intake, 305
smoking, 308
bone remodelling
balance, formation and resorption, 276
biochemical markers, turnover, 278
description and cycle, 276
formation markers and turnover, 277
resorption markers
hydroxyproline excretion, 277
N-and C-terminal telopeptides, 278
pyridinoline and deoxypyridinoline, 278
resorption process, 276–7
brain, nutrition
amino acids and protein
BBB transport constants, 165
carriers, 164–5
choline, 173–4
fatty acids, 171–3
glutamate, 169–70
net influx and efflux, 166
neurotransmission, 164
brain, nutrition (cont’d)
 reusing, 170–171
 transporters, 165–6
 tryptophan see tryptophan, brain
 BBB see blood-brain barrier
energy substrates
 astrocytes, 162–3
 ethanol, 164
 glutamate synapses, 161–2
 GLUT3, glucose transporter, 160
 high-fat diets, 161
 ketone bodies, 160–161
 lactate, 163–4
 model, glutamate-induced glycolysis, 163
 released chemicals, 162
 glucose supply, 182
mammalian nervous system
 divisions, 156
 glial cells and neurons, 156, 157
 structure, human, 158
minerals
 calcium, astrocytes and oligodendrocytes, 181
 copper, 181–2
 iron, 179–80
 transferrin, 180
vitamins see vitamins, brain
breast feeding
 immune function and infection, 336
 infant life, 6–24 months, 126
 milk composition, 335–6
 and weaning, 123
breast milk, energy and macronutrient
 benefits, 112
 fat, 114
 intakes, recommended
 calcium, 116
 energy, 114–15
 folate, 115
 iodine, 117
 vitamin A and D, 115–16
 nutrients concentration, 113
 protein, 113–14
 vitamins and minerals, 114
brush-border hydrolases
 alkaline phosphatase, 235
 lactase and sucrase isomaltase (SI), 234
peptidases
 dipeptidyl peptidase IV (DPP-IV), 234–5
 enterokinase, 234
 transporters, 235
carbohydrates, exercise performance
 capacity/endurance, 392
 everyday eating, recovery
 athlete’s body weight, 397
 fuel needs, 397
 inadequate intake, 396
 muscle glycogen concentration, 396
 fatigue, 391
 fuelling up, 392–3
intake
 moderate and high-intensity sports, 394
 schedule, 395
 single and multiple forms, 394–5
post-exercise refuelling
LDL metabolism
fatty acids, 248
pathway, statins and sterols, 249
lipoproteins, 247–8
pathogenesis, 256–7
risk factors, 257
vascular endothelium, 253
VLDL metabolism, endogenous pathway, 252
carotenoids
brain ageing, 148
description, 323
dietary intakes and tissue accumulation, 349
immune function, 323–4
pigments, 348
properties and structure, 349
vitamin A, 348–9
CED see chronic energy deficiency
cellular level energy metabolism
anaerobic, 44
ATP synthesis yield
coupling sites and regulation, 41
inner mitochondrial membrane, 41
uncoupling protein (UCP), 42
circuits, ATP distribution, 42
control and regulation, 37
deficit adaptation, 44
equilibrium, 36–7
flux regulation, oxidative phosphorylation
pathway, 40
redox potential, 40–41
and mitochondrial aerobic
chemical energy, 37–8
energy balance, 36–7
living organisms, 36
macronutrient to redox potential, 38–9
redox potential to ATP synthesis, 39–40
substrate balance, 37
oxidative phosphorylation, 40
signalling and mitochondrial
cell death/apoptosis and ROS, 43
cellular calcium homeostasis, 42
steady state, 37
thermodynamics, 36
chemesthesis
anatomy and physiology
chemical irritant sensitivity, 191
trigeminal nerve, 191, 192
definition and function, 191
quality, 192
thresholds
capsaicin and psychophysical principles, 192
desensitisation, 192–3
cholesterol ester transfer protein (CETP)
cholesterol transport, 250, 259
Taq IB polymorphism, 27
chronic energy deficiency (CED)
adaptation, 380
autonomic nervous function, 385
basal metabolic rate (BMR)
analysis of covariance (ANCOVA) method, 381–2
estimation, 379
metabolic efficiency, 381
BMI, 379–80
body composition, change
anthropometric characteristics, 380–381
basal metabolic rate (BMR), 381
fat-free mass (FFM), 381
classification, 379
defined, 378
energy expenditure and pregnancy, 383
identification, 380
immune function
anorexia nervosa, 385
types, 384–5
mid upper arm circumference (MUAC) tool, 380
muscle function, 384
physical activity, 379–80, 382
protein metabolism and energy expenditure, 383
re-feeding syndrome, 385
regulatory processes
sympathetic nervous system (SNS), 383–4
thyroid hormone, 384
resting metabolic rate (RMR), 381
thermogenesis
heat conserving mechanism, 383
non-shivering thermogenesis (NST), 383
thermic effect of food (TEF), 382–3
coagulation/clotting pathway, cardiovascular system
extrinsic, 253
fibrinolytic, 255
intrinsic
proteins, 253–4
stearate (C18), 254
platelets
adhesion and stimulation, 254
thromboxane A₂, 255
creatine, nutritional ergogenics
phosphocreatine (PCr)
body weight, 414–15
concentration, ingestion and stores, 414
loading, 415
supplements, 413–14
CVD see cardiovascular disease
dental caries
cochrane-type systematic review, 291
dietary factors, 123–4
interactions, 289, 290
pH change and sugar, 290
remineralisation, 289–90
developmental factors, obesity
energy expenditure
physical inactivity, 367–8
sedentary behaviour and sleep patterns, 368
energy intake
behaviour, 367
environment, 366
gene
body fatness heritability, 365
energy intake and expenditure, 365
gene-environment interaction, 366
mutations, 365
racial differences, 365–6
medical conditions, 364
dietary amino acids disposal
intestine, 93
kidney, 95
liver
catabolism, 93
dietary amino acids disposal (cont’d)
intercellular hepatic glutamine cycle, 94
oxidation and N-acetylglutamate, 94
urea cycle, 93–4
skeletal muscle
catabolism, 94–5
glutamine and alanine, 95
dietary components
CCK release and gallbladder contraction
carbohydrates, 230
fat and protein, 231
hormonal control, 124
plasma lipids
alcohol, 264
cholesterol levels see plasma cholesterol levels, dietary components
HDL cholesterol, 263–4
triacylglycerol levels, 263
dietary fat, immune function
eicosanoids
arachidonic acid, 330
fish oil, 331
prostaglandins, 330–331
synthesis, 330
fatty acids
deficiency, 329–30
linoleic and α-linolenic acids, 328–9
n-6 and n-3 polyunsaturated, 329
saturated and monounsaturated, 328
fish oil
leukocyte movement, 332
PGE₂ production, 331–2
linoleic and α-linolenic acid, 331
Th1 and Th2 skewed immunological diseases
arachidonic and linoleic acids, 333
chronic inflammatory conditions, 332
eicosanoids synthesis, 332–3
diurnal cycle, 353–4
dose-response assessment, overnutrition
data selection, 372
no observed adverse effect level (NOAEL), identification, 372–3
uncertainty, 373
embryogenesis, 103
endocrine pancreas
dysfunction, 225–6
and exocrine interactions
acini and islet-acinar axis, 223–4
ducts and tissues, 224
energy expenditure, exercise
definition and assessment methods, 388–9
substrate use
adenosine triphosphate (ATP), 389
aerobic fitness level, 391
availability, human body, 390
carbohydrate and fat, 389–90
fat oxidation, 390–391
intensity and duration, 391
pyruvate, 389
energy metabolism
biochemical reactions, 35
body
aerobic and anaerobic, 45
brain, neurone astrocyte cooperation, 45–7
resting energy expenditure (REE), 44–5
cellular level
anaerobic, 44
ATP distribution, 42
equilibrium, steady state, metabolic control and regulation, 36–7
flux regulation, oxidative phosphorylation, 40–41
and mitochondrial aerobic, 37–40
oxidative phosphorylation, 40
signalling and mitochondria, 42–3
synthesis yield, ATP, 41–2
thermodynamics, 36
pregnancy, 105
scarcity diseases, 36
exercise performance
athletes, nutrition, 416
carbohydrates see carbohydrates, exercise performance
dehydration, effect
drinking strategies, 409
heat illness and hyponatraemia, 408
mild and acute, 407
skin blood vessels dilatation, 408
dietary supplements and drug tests, 415–16
electrolyte imbalance see hyponatraemia
energy expenditure see energy expenditure, exercise
fat metabolism
fasting and high-fat diets, 399
intake during exercise, 398–9
oxidation, 398
skeletal muscle, 397–8
fluid intake, 408–9
losses and replacement, fluid, 406–7
nutritional ergogenics see nutritional ergogenics
physique, 401
protein
breakdown, 400
intake timing, 401
requirements, increased, 400–401
sports drinks
carbohydrate, 409–10
ingestion and net fluid balance, 411
ingredients, 410
rehydration, 410–411
vitamins and minerals
antioxidant and supplementation, 404
calcium, 405–6
daily requirement, 403
iron, 404–5
weight
losing, 401–3
making, 403
muscle mass, gain, 403, 404
exocrine pancreas
acini and ducts, 215
adaptation, diet
CCK release and hormonal mediators, 219
humans, 218
secretin and insulin, 220
substrates amount, 218
diseases, endocrine dysfunction
hormonal abnormality, 225–6
pancreatogenic diabetes mellitus, 225
dysfunction, diabetes mellitus, 225
endocrine, interactions
acini and islet-acinar axis, 223–4
ducts and tissues, 224
islet hormones, 224–5
gene expression, long-term dietary changes
CCK, 220–221
cyclic adenosine monophosphate (cAMP) messenger system, 220, 222
hormonal mediators, 221
model, 223
mRNA levels, 220
islet hormones, effect of secretion, 224–5
trophic, 224
islets of Langerhans, 215
membrane fatty acid modification
acinar cells, 222
in vivo investigations, 221–2
nutrition, insufficiency
disorders, 222–3
steatorrhea and creatorrhea, 222
secretion
cephalic phase, 217–18
gastric and intestinal phase, 218
neural and hormonal reflexes, 217
fat metabolism, exercise
fasting and high-fat diet, 399
intake
long-chain triglycerides, 398
medium-chain triglycerides, 398–9
oxidation, 398
skeletal muscle, 397
flavonoids
anthocyanins
anthoxanthins, 340
bioavailability and chemical structure, 346
identification and consumption, 346
pigments, 345
flavanones and chalcones, 344
flavonols, flavone and flavan-3-ols
absorption and metabolism, 343
average dietary intake and bioavailabilities, 340, 342
chemical structure, 341
compounds, 340–342
concentration and formation, 342–3
glycosides and aglycone forms, 340, 342
health effects and tea, 343
structural difference, 340
isoflavones see phytoestrogens
sub-classification, 340
flooding-dose technique, 84
food intake, control
eating behaviour
diurnal cycle, 353–4
energy intake, 354
meal cycle, 354–5
environmental determinants, 358–9
factors, 353
internal
body weights and set-point, 356
hunger theories, 355–6
liostatic and aminostatic theory, 356
satiety signals, 356
thermostatic and glucostatic theory, 356
pleasure response, 356–7
psychology, eating
children early life, 357
conditioned taste aversion, 357–8
dietary restraint and disinhibition, 357
fuel intake and utilisation
human body
energy and oxidation, 49
gasoline, 49–50
stores and daily
brain, 50–51
fat and carbohydrate, 51
glycogen and proteins, 51
strategy and substrate balance, 50
gastrointestinal tract (GIT)
adaptation, biliary response
dietary components, 230–231
physiological significance, 230
atrophic gastritis, older adults, 140
bile secretion and enterohepatic circulation see liver
digestion and absorption
carbohydrates, lipids and proteins, 211
electrolytes, 212–13
enterocytes, transport mechanisms, 212
water, 211–12
digestive end products, 245–6
exocrine pancreas see exocrine pancreas functions, 206–7
growth, development and differentiation
brush-border hydrolases, 234–5
crypt-villus axis, 231
cytoprotection, 235–6
digestive and absorptive functions, human, 232–3
epithelial, 233–4
gene expression, 236–40
hormonal and dietary regulation, 233
regulatory peptides, 235
transcriptome, 231–2
large bowel see large bowel motility
chemical structure, 207–8
cholecytokinin (CCK) and colon, 210
chyme emptying, 209–10
gastric emptying, 209
hormonal and neural mechanisms, 209
mixing and mechanical fragmentation, 209
neural control and small intestine, 210
swallowing, 208
secretions, 210–11
structure, 205–6
water balance
colon, absorptive capacity, 213
diarrhoea, 213–14
inputs and outputs, 213
vomiting, 214
gene expression, molecular aspects; see also molecular aspects, nutrition; nutrient regulation, gene expression
control and transcription
 cis-acting elements, 17–18
master regulatory proteins, 18
 trans-acting factors, 18
features, 14, 15
mRNA, 14
post-transcriptional processing, RNA, 16–17
post-translational modification, 19
gene expression, molecular aspects (cont’d)
ribonucleic acid (RNA)
vs. DNA, 14
types, 14–15
TATA and CAAT boxes, 14, 15
transcription
factors (TFs) and stages, 15
initiation complex, 16
polymerase enzymes, 15
template/antisense strand, 15–16
translation, RNA
description, phases and process, 18
mRNA and rRNA, 18
polypeptide chain and protein synthesis, 19
process description, 18
rRNA, 18–19
genetic variability, nutrients
CETP Taq IB polymorphism, 27
gene expression/protein synthesis, 29–30
genotyping, 29
GWAS, 26–7
IRS-1, Gly972Arg polymorphism, 28
MMAB, GWAS abnormalities, 29
 single nucleotide polymorphisms (SNPs), 28–9
MTHFR, 677C–T polymorphism, 28
nutrigenetics and polymorphism, 26
single genetic variants, 26
genome wide association studies (GWAS), 28–9
glutamate, brain, 169–70
glutathione
cytotoxic T cells, 334
description, 333
function and peroxidase, 100
meat, 146
synthesis restriction, 99–100
growth, human
affecting, non-nutritional factors see non-nutritional factors, growth
childhood and adolescence
assessment, 133–4
body fat changes, 132
boy and girl, growth chart, 133
composition changes, body, 132
fat-free mass and body water content, 132
fat patterning, 132
velocities, 131
and death, cellular aspects, 120–121
definition, 119
nutrition
factors see nutritional factors, growth
and life cycle see nutrition
overnutrition effects see overnutrition
stages, 119–20
undernutrition effects
catch-up growth, 128
females, 127
height, maximal vs. optimal, 129
outcomes, 126–7
short stature and plant food environments, 128–9
stunting, 127–8
health problems, ageing
cancer, 147
CVD, 147
diabetes, 147–8
functions
cognitive and endocrine, 148
immune, 146
obesity, 146
osteoporosis and fractures
hip fractures, 146–7
type II, 147
tarcopenia, 145–6
high-density lipoprotein (HDL)
CETP, 27
CVD risk, 258
diet, 263–4
metabolism, 249–50
hormones, macronutrients metabolism
catecholamines, 55–6
cortisol, 56
glucagon
 liver, 53–4
 secretion, 53–5
growth and insulin-like growth factors, 56
incretin, 55
insulin
effects, 53, 54
production, 53
leptin, adipose tissue
 ob/ob mice, 58
reproduction, 58
signals, brain, 57
pancreatic, 53
peptides, adipose tissue, 58
thyroid, 56–7
Human Genome Project (HGP)
and environment, 14
folate requirements, 13–14
vs. fruit fly, 13
genome mining, 13
hyponatraemia, 408
immune and inflammatory systems
acquired immunity
clonal expansion, 314
immunological memory, 314
lymphocytes, 313
specificity, 313
amino acids
arginine, 334
glutamine, 334
role of, 335
sulphur, 333–4
B-and T-lymphocytes
antigen specificity, 314
delayed-type hypersensitivity (DTH), 315
extracellular pathogens, 315
immunoglobulins, 315
macrophages, 315–16
breast feeding see breast feeding
chronic inflammatory and atopic diseases, 313
communication, cytokines
helper T-lymphocytes, 316
mediators, 316
Th17, 317
Th, and Th, cells, 316–17
dietary fat see dietary fat, immune function
factors, 318
gut-associated, 316
health and disease
allergens, 318
foreign antigens, 317
self and non-self, 317–18
hormones, 336
infection impact, nutrient status, 318–19
inflammation, 317
innate immunity, 313
malnutrition, 321–2
micronutrients see micronutrients, immune function
nutrients
adequate and balanced supply, 320–21
assessments, 321
cellular proliferation, 320
electron carriers, 319
intake, relationship, 336, 337
oxidative burst, 320
proteins production, 319–20
optimal immune function, 338
prebiotics and probiotics, 335
undernutrition, 312
insulin-dependent diabetes mellitus (IDDM), 117
insulin receptor substrate-1 (IRS-1), 27–8
insulin sensitivity
diet composition
fat intake and weight reduction, 268
high saturated/monounsaturated, 268–9
fasting and postprandial blood glucose levels, 269
glucose concentrations, 256
insulin receptor substrate-1 (IRS-1), 27
intestinal tract gene expression, nutrients
advantages and insulin synthesis, 236
amino acids, 237
dietary fat, 239
exogenous nucleosides, 239
glucose, 236–7
in vivo studies, 239–40
lactoferrin and leucine, 237
mucosal immune system, 240
nucleotides, dietary, 238
transcription factors, 237
vitamins D and A, 240
ischaemia–reperfusion injury, 47
lactation
colostrum, 111
energy and nutrient inadequacies, 117
intakes, recommended
calcium, 116
energy, 114–15
folate and vitamin A, 115
iodine, 117
vitamin D, 115–16
maternal nutrition and performance
breast milk, energy and macronutrient, 113–14
milk volume, 112–13
micronutrient intake, recommended, 116
milk production regulation, 111
protective aspects, human milk
bioactive factors, 111–12
breast feeding benefits, 112
skeletal changes, 284–5
large bowel
colonic bacteria and obesity, 245
energy salvage, 241–2
function, 241
lipid metabolism, 243
phytochemicals, metabolism and absorption, 244
prebiotics and probiotics, 245
structure, 241
vitamins and essential amino acids, synthesis, 243–4
water and electrolytes, absorption, 243
linoleic acid
brain, 171–2
esential fatty acids, 328
immune function, 331
precursor pool, 4
pregnant women, 109
liver
amino acid catabolism, 73
bile see bile, liver
conjugation and methylation, 343
dietary amino acids, 93–4
functions
bile, 226–7
metabolism, 227
sphincter of Oddi, 227
storage and excretion, 227
glucagon, 53–4
glucose, 51
glycogen synthesis, 67
lipid oxidation, 47
lobules, 226
macronutrient metabolism, 59–60
metabolism regulation, glucose, 59
plasma proteins, 88
protein and muscles, 85
protein metabolism, 78–9
vitamin A, 109
VLDL-TAG, 65
low birthweight babies, 386
low-density lipoprotein (LDL)
cholesterol synthesising enzymes, 24
CVD, 258
dietary components, 261
metabolism, 248–9
particle, 65
pathway, 249
macronutrients metabolism
adipose tissue, 60
brain
fatty acids, 58
hypothalamus, 59
water-soluble fuels, 58–9
fuel intake and utilisation, human body
energy and oxidation, 49
gasoline, 49–50
stores and daily, 50–51
hormones
catecholamines, 55–6
glucagon, 53–5
growth and insulin-like growth factors, 56
incretin, 55
insulin, 53
leptin and peptides, adipose tissue, 57–8
macronutrients metabolism (cont’d)
pancreatic, 53
thyroid, 56–7
kidney, 60
liver
fatty acid oxidation and glucose regulation, 59
regulation, fatty acid oxidation, 60
urea production, 59
postprandial substrate disposal see postprandial substrate disposal
regulatory mechanisms
longer term, 52–3
short-term, 51–2
skeletal muscle
aerobic, ATP, 62
fatty acids and glycogen, 61
gut oxidative fuels, 61
starvation
carbohydrate, 69–70
longer term, 70–71
postabsorptive state, 69
short-term, 70
total/partial, 69
substrate fluxes, overnight fasting state
amino acid, 65–6
carbohydrate, 63–4
fat, 64–5
glucose and regulation, 63
nutritional state, 62–3
meal cycle, 354–5
Meals-on-Wheels programme, 141
methionine metabolism, 98–9
methyl-malonic aciduria chIB type (MMAB), 28–9
micronutrients, immune function
asthma and allergy
antioxidants, 327–8
oxidant stress, 327
vitamin C, 328
carotenoids
children, 323
intervention trials, 324
copper, 326
folic acid and B vitamins, 324
HIV infection, 327
iron, 326
selenium
lower concentrations, 326–7
neutrophil function, 326
oxidant/antioxidant process, 327
supplementation, 327
vitamin A
replenishment, 323
respiratory infections, 323
retinol, 322
vitamin C, 324
vitamin D
gene expression regulation, 325
receptors, 324
vitamin E, 325
zinc
deficiency, 325–6
potential modulation, 325
respiratory infections and diarrhoea, 326
missense mutation, 12
molecular aspects, nutrition
animal models
advantage, 19–20
apoE gene expression, 20–21
Cre–Lox recombination system, 20
transgenic, 20
chromosome
complement, 10
disorders, 10–11
haploid, polyploidy and aneuploidy, 11
nucleosome and structure, 10
translocation and deletion, 11
cloning
applications and plasmid, 22
fragment isolation, DNA, 21–2
DNA
damage, 12
nucleotide, 8, 10
redundancy, 10
structure and composition, 8, 9
gene expression
definition and DNA sequence, 14
nutrient regulation see nutrient regulation, gene expression
post-transcriptional processing, 16–17
post-translational modification, 19
promoter region, 14
RNA, 14–15
transcription, 15–18
translation, RNA, 18–19
genetic code, 8, 10
genome, 8
genotype and alleles
epigenetics, 11–12
genetic linkage and polymorphisms, 11
heritability
description, 12
genetic disorders, 12–13
non-Mendelian patterns, 13
polygenic diseases, 13
HGP see Human Genome Project
metabolomics, nutrigenomics, 26
molecular nutrition see nutrigenomics
multiple-gene mRNA expression, quantification
DNA microarrays/chips, 24
low-density lipoprotein (LDL) receptor, 24
mutation, genetic, 12
and non-nutrient food components, 33–4
phenotype and allelic expression, 12
protein synthesis, quantification
cleavage, 25
enzyme-linked immunosorbent assays (ELISAs), 25
mRNA, 24
Western blotting, 24–5
single-gene mRNA expression, quantification
amplification, Taq DNA polymerase, 23
cDNA, 22–3
intercalating agents, 23
PCR, 22
(Q-)PCR techniques, 24
reverse transcriptase step, 23
stable isotopes
characteristics, 25
glucose production, 25
tissue cultures, 21
variability, genetic see genetic variability, nutrients
molecular nutrition see nutrigenomics
nutritional ergogenics
buffers
bicarbonate loading, 412
hydrogen ions, 411
intracellular, 412
caffeine, exercise performance, 412
carnitine and chromium, 413
coenzyme Q10 (CoQ10), 413
creatine, 413–15
fish oil, 415

nutritional factors, growth
food intake and, 124
iodide
mental dysfunction, 124–5
in utero, 124
iron, 125
malnutrition and hormonal status, 124
phytochemicals, 125
zinc and vitamin A, 125

obesity
colonic bacteria, 245
defined, 360
developmental factors
energy intake and expenditure, affecting, 366–8
genetic, 365–6
medical conditions, 364
energy balance
diet-induced thermogenesis (DIT), 364
expenditure and intake, 363
positive and negative energy imbalance, 362–3
substrate oxidation, 364
identification
bioelectrical impedance (BIA), 362
BMI see body mass index
laboratory methods, 360–361
skinfold thickness, 362
physiological effects, excess fat, 368–9
prevalence, 360
psychological effects, 369

olfactory system
anatomy and physiology
cilia, 189
receptors, 188–9
signals, 189
odour-stimulating compounds, 188
quality, smell
odorants, 190
physical property, 189
structure, 189–90
smell coding, 189
thresholds
anosmia, 190–191
compounds and concentration, 190

osteoporosis; see also health problems, ageing
age-related
features, 302
fracture occurrence, 302
oestrogens, 303
calcium and phytonutrients, 145
femoral neck fractures, 301
global variations, 301–2
pathogenesis, 301

oligophrenia
anatomy and physiology
anxiety, 389
learning, 389
plasticity, 389

olfactory system
anatomy and physiology
cilia, 189
receptors, 188–9
signals, 189
odour-stimulating compounds, 188
quality, smell
odorants, 190
physical property, 189
structure, 189–90
smell coding, 189
thresholds
anosmia, 190–191
compounds and concentration, 190

osteoporosis; see also health problems, ageing
age-related
features, 302
fracture occurrence, 302
oestrogens, 303
calcium and phytonutrients, 145
femoral neck fractures, 301
global variations, 301–2
pathogenesis, 301
osteoporosis (cont’d)
postmenopausal, 302
vitamin D deficiency, 303
overnight fasting, substrate fluxes
amino acid metabolism
alanine, 65–6
glutamine, 65
carbohydrate metabolism
glucose, 63–4
peripheral tissues and liver, 64
fat metabolism
NEFAs, 64
TAG, 64–5
VLDL-TAG, 65
macronutrient regulation, 62–3
overnutrition
age of onset and obesity, growth, 129–30
obesity
consequences, 369–9
developmental factors, 364–8
energy balance, 362–4
identification and definition, 360–362
overweight and obesity, 129
vitamin and mineral overconsumption
adverse effects, 370–371
UL, derivation and use, 371–6
palatability
description, 198–9
determination and sensory specific satiety, 199
food, 358
individual differences, 200
memory, 200
sensory perception and hedonic response, 199
pancreas; see also endocrine pancreas; exocrine pancreas
anatomy and histology
location, 214
structural components, 214–15
aqueous component, juice
bicarbonate and chloride concentration, 215
composition and secretion, 216
enzyme component, juice
digested substrates, 216
inactive to active, conversion, 216
non-protolytic, 216–17
zymogens, 215
hormones, 53
pancreatogenic diabetes mellitus, 225
peptide transporters, 90–91
peroxisome proliferator activated receptors (PPARs)
dietary fat components, 239
PPARα, 239–40
responsive genes and metabolic effect, 31
peroxisome proliferator activator receptor-gamma (PPARγ) gene, 17
physiological function, ageing
animal and human, 139
body composition, 139–40
GIT and immune system, 140
psychological changes, 140
theories, 139
tooth and sensory loss, 140
phytochemicals
carotenoids, 348–9
description and classification, 339
function, 145
grucosinolates
anti-carcinogenic effects, 351–2
brassicas and flavours, 351
goitrogenicity, 351
products and chemical structure, 351
toxic and antinutritional effects, 351
historical perspective
antinutrients, 340
cancer, 339
metabolism and absorption, 244
phenolic
flavonoids see flavonoids
lignans, 348
stilbenes, 347–8
tannins, 346–7
phytosterols, 349–51
sulphides, 351
toxicity, 352
tumour formation, 125
phytoestrogens
affecting factors and beneficial effects, 345
aglycones and glycosides, 345
breast cancer, 147
chemical structure and consumption levels, 345
food source, 145
hormone replacement therapy (HRT), 345
metabolism and absorption, 345
oestrogenic activity, 344–5
phytonutrients see phytochemicals
phytosterols, 349–50
plasma amino acid transport genetic disease, 92
plasma cholesterol levels, dietary components
carbohydrates and fibres, 262
dietary and proteins, 262
LDL, 260–261
saturated fatty acids
hypercholesterolaemic and hypocholesterolaemic, 261
stearic, 261
trans-fatty acids, 262
unsaturated fatty acids
long-chain n-3 PUFA, 261
MUFA and n-6 PUFA, 261
statin drugs, 262
plasma triacylglycerol levels, dietary components, 263
postprandial substrate disposal
amino acid
glutamine, 68
protein synthesis, muscles, 68–9
cardiovascular changes, 69
endogenous metabolism, 67
glucose, 67
lilids
dietary TAG, 67–8
fatty acids, adipose tissue, 68
NEFA, 61, 67
PPAR response element (PPRE), 31
pregnancy
calcium intake, 152
dietary recommendations
factorial approach and energy, 107
fat-soluble vitamins, 109
fatty acids, 108–9
mineral, 109–10
protein, 108
water-soluble vitamins, 109
energy and nutrient needs
food consumption and choice, 106
metabolism, 105
micronutrient metabolism, 106
physical activity, 107
protein metabolism, 105–6
supplements use, 106–7
fat, 102
growth stage
blood circulation, 103
fat-soluble vitamins, 103–4
nutritional deficiencies, 104
water-soluble vitamins, 103
implantation stage, 103
mineral changes, 284
nutritional needs
basal metabolic rate (BMR), 105
factorial approach, 104
weight gain, 104–5
obese women, 102–3
organogenesis stage see embryogenesis
osteoporosis complication, 285
physiological effect, metabolism
energy, 105
micronutrient, 106
protein, 105–6
skeletal changes, 284–5
under and overnutrition effect, 103
vitamins and minerals nutrient reference values, 108
programmed ageing, 139
protein and amino acid metabolism; see also amino acid metabolism; protein metabolism
catabolic illnesses
anorexia, 95
glutamine, muscle, 96
surgical and nutrition, 96–7
turnover, 96
positive acute-phase proteins, 73
protein metabolism
and amino acid turnover
ammonia detoxification, 80
component, 73
fat, 79–80
functions, 74
lipid and carbohydrate macromolecules, 79
degradation
hydrolysis, 78
mammalian cells, 77
non-lysosomal mechanisms, 77–8
energy expenditure relationship, 383
post-translational events, 77
pregnancy
nitrogen balance and retention, 105
urea, 105–6
synthesis, 74–7
turnover; see also protein turnover
functional subunits, 79
in vivo rates, 84–6
liver, half-lives, 78–9
protein turnover
breakdown
amino acids, 87–8
FoxO3 regulation, 87
physiological mechanisms, 87
trauma and muscle, 87
organs and tissues, in vivo rates, 85–6
synthesis
amino acids, 86
mTORC1 activation, 86–7
whole body, in vivo rates
net deposition, 84
synthesis and breakdown, 84–5
rickets
calcium deficiency
lower limb deformities, 298, 299
pathogenesis, 300
and vitamin D, 298–9
causes
classification, 292
mineralisation, 291–2
description, 291
hypocalcaemia, 298
nutritional
age, 293
fortification, 292–3
infant mortality, 293–4
long-term sequelae, 293–4
prevention and predisposing factors, 293
vitamin D, 292
osteoporosis, 291
prematurity
low-birthweight, 299
phosphorus intake, 300
vitamin D deficiency see vitamin D-deficiency rickets
sensory systems and food palatability; see also palatability adaptation
cross and visual, 197
definition, 196
mixtures, perception, 197
chemesthesis see chemesthesis
cross-modal sensory interactions
capsaicin, 198
chemesthesis, odour and taste, 198
colour and temperature, 198
sensory differences, 197
taste and smell, 198
visual and olfactory sense, 197–8
functional changes, lifespan
cephalic phase response, 202
chemical sense function, loss, 202
infants and fat-taste sensitivity, 201
initial preferences, 200
nutritional disorders, 201–2
older persons, 202
visual system, 203
vitamin A deficiency and diabetes, 203
hedonics, 203–4
individual preferences, 185
nutritional status, individual, 203
older-age consumers, 204
olfactory see olfactory system
price and availability, 21
safe and nutritious diet, 184
saliva, 194
smell mixtures, 191
sensory systems and food palatability (cont’d)
- somesthesia, 184
- taste see taste system
- texture see texture perception, mouth
- vision see visual system
short-term regulatory mechanism, macronutrients, 51–2
skeletal system
- architecture and physiology
 - anatomical areas and divisions, 273
 - functions, 272–3
- bone see bone
- nutritional rickets see rickets
- teeth see teeth
starvation; see also macronutrients metabolism
- carbohydrate, 69–70
- glucose supply, 160, 164
- longer term
 - cellular mechanism and NEFA, 70
 - fat store, 71
- postabsorptive state, 69
- prolonged, 161
- short-term, 70
- total/partial, 69
sterol regulatory response element binding proteins (SREBPs), 31, 239–40

tannins, 346–7
taste system
- anatomy and physiology, 185
- coding
 - across-fibre pattern and specificity, 186
 - across-fibre pattern and specificity coding, 186
 - neurons, 185–6
- mixtures, 188
- quality
 - predominant, 186
 - sweet and sour, 186
 - umami, 186
- thresholds
 - absolute, 187
 - 6-n-propylthiouracil (PROP), 188
- psychometric function, 187
teeth
- anatomy
 - cross-section, 286
 - dentitions, 285
 - formation timings, 286
 - dentin and cementum, 287
- development
 - ectoderm and mesoderm, 287
 - eruption, 288
- enamel formation, 287
nutrition
- caries, 288
- dental caries see dental caries
- fluoride and dental fluorosis, 288–9
- limb deformities, 289
- postnatal and prenatal, 288
 texture perception, mouth
- anatomy and physiology, somesthesia
- multi-receptor integration, 193
- receptors, 193
- quality
 - categories, 193–4
 - mastication process, 193
 - thresholds, 194
 - tolerable upper intake level (UL)
 - characterisation, hazard
 - described, 372
 - dose-response assessment, 372–3
 - derivation
 - β-carotene supplementation and smoking, 376
 - extrapolations and lifestage groups, 374
 - science-based risk-assessment approach, 375
 - selenium, 374
 - sub-population, 374
 - vitamin A toxicity, 376
 - vitamin C and D, 375
 - described, 371
 - dietary reference standards
 - groups, 376
 - individuals, 375–6
 - risk, evaluation and management, 375
 - hazard identification, 371–2
 - risk assessment development steps, 372
 - principles, 371
 - vitamins, minerals and food chemicals, 372
translational phase, protein synthesis
- elongation and termination, 76
- initiation, 75–6
- regulation
 - control mechanism, 76
 - mRNA, 76–7
 - ribosome recycling, 76
tryptophan, brain
- dietary protein, 168
- glutamate, 168–9
- neurotransmitter precursors, 169
- postmeal changes, 167
- protein meal, 167
- serotonin, 166, 167
- serum concentrations, 166–7
undernutrition
- CED
 - adaptation, 380
 - vs. AED, 378–9
 - body composition, change, 380–381
 - description and classification, 378–80
 - energy metabolism, 381–3
 - functional consequences, 384–5
 - regulatory processes, 383–4
 - definition, 378
 - effects see growth, human
 - glucose input, 5
 - immune function, 312
 - micronutrients deficiencies, 378
 - occurrence, 124
very low-density lipoproteins (VLDL)
- chylomicron metabolism, 250–251
- LDL, 27
- overnight fast, 64–5
- TAG, 64–5, 67, 68
visual system
- anatomy and physiology, 195
- food and drink, toxic materials, 203
quality
colour perception, 195
dimensions, 195
halo effect, 196
object, appearance, 196
vitamin D-deficiency rickets
biochemical changes
bone turnover markers, 297
divisions, 296
25-OHD concentrations, 295
1,25-(OH)₂D metabolite, 296
and radiological, 296
bone, changes
histological, 297
radiological, 297–8
brass milk, 294
calcium absorption, 295
clinical features, 298
prevalence and sunlight, 294
recommended dietary intakes, 296
vitamin D, production, 295
vitamins and minerals overconsumption
bioavailability effect
defined, 370
modulating factors and tolerable UL, 371
variations, human, 370–371
homeostasis failure
individual sensitivity variation, 370–371
threshold dose, 370
tolerable UL
derivation, 374–5
dietary reference standards, 375–6
hazard identification and characterisation, 371–3
risk assessment, 371
vitamins, brain
fat-soluble
11-cis-retinaldehyde, 178–9
retinal pigmented epithelium (RPE) cells, 177–8
vitamin A/retinol, 177
vitamin E, 179
neurons and glia, 174
water-soluble
ascorbic acid/vitamin C, 175
bioavailability effect
defined, 370
modulating factors and tolerable UL, 371
variations, human, 370–371
homeostasis failure
individual sensitivity variation, 370–371
threshold dose, 370
tolerable UL
derivation, 374–5
dietary reference standards, 375–6
hazard identification and characterisation, 371–3
risk assessment, 371
vitamins, brain
fat-soluble
11-cis-retinaldehyde, 178–9
retinal pigmented epithelium (RPE) cells, 177–8
vitamin A/retinol, 177
vitamin E, 179
neurons and glia, 174
water-soluble
ascorbic acid/vitamin C, 175
biotin, 177
cobalamin/vitamin B₁₂, 177
depression, 175
folic acid, 174
nitrogen tube defects (NTDs), 174–5
niacin/vitamin B₃, 176
pyridoxine/vitamin B₆, 176–7
riboflavin and pantothenic acid, 176
thiamin/vitamin B₁, 175–6
vomiting, 214
waist-to-hip circumference ratio (WHR), 132
whole-body energy metabolism
aerobic and anaerobic, 45
brain, neuocyte astrocyte cooperation
aerobic-anaerobic, 46–7
aerobic-anaerobic, 46–7
astrocyte-neurone lactate shuttle, 46
anaerobic, 46–7
hypoxia, 45
ischaemia–reperfusion injury, lactate, 47
lactate/pyruvate interconversion, 47
resting energy expenditure (REE), 44–5
waist-to-hip circumference ratio (WHR), 132
whole-body energy metabolism
aerobic and anaerobic, 45
brain, neuocyte astrocyte cooperation
aerobic-anaerobic, 46–7
aerobic-anaerobic, 46–7
astrocyte-neurone lactate shuttle, 46
anaerobic, 46–7
hypoxia, 45
ischaemia–reperfusion injury, lactate, 47
lactate/pyruvate interconversion, 47
resting energy expenditure (REE), 44–5
wild-type allele, 11