Index

a
active infrared sensors 448, 456
Adaboost regressor 285
advanced metering infrastructure (AMI) 529, 559
alert services 17
Alliance for Internet of Things Innovation (AIOTI) 230–231
American Institute of Certified Public Accounts (AICPA) 533
anonymous data submission
anonymity measurement 564–565
charging requests submission 561–563
ESU’s charging requests 564
schedules distribution 563–564
application protocol control information (APCI) 31
application protocol data unit (APDU) 31
application service data unit (ASDU) 29
Architecture Reference Model (ARM) 230
ARM Mbed 271
Around View Monitor (AVM) 452–453
Association IDentifier (AID) 77
artificial intelligence (AI) techniques 162
atmosphere health monitoring 249, 252
attack domains, cybersecurity
attack mechanisms 581–582
communications 580
hardware 580
physical security 581
social engineering 580
software 580
supply chain 581
automated meter reading (AMR) 219
autonomous parking systems 445
autonomous vehicles (AVs) 560

b
Battery storage (BS) 300–301
big data 162
burst data flow 46–47

C
cameras 452
Canadian Institute of Chartered Accountants (CICA) 533
Cat-NB1 devices 85–86
cellular and 3GPP technologies
access procedure 87, 90
access reservation protocol limitations 87
cellular LTE systems 86–87
connection establishment 90–91
IoT applications 83–86
cellular networks 148
channel bonding
cognitive radio networks 255–257
cognitive radio sensor networks 257–258
CRSN-based smart cities
IoT-based cognitive solutions 259
M2M communications 258
multiple concurrent deployments 259
smart environment control 259
smart home applications 259
issues and challenges, implementation in smart cities
channel bonding *(contd.)*
- data storage and aggregation 260
- energy conservation 260
- geographic awareness and adaptation 260
- interference and spectrum issues 260–261
- privacy of citizens 260
- traditional networks 253–254
cloud computing 579–580
Cognitive and cloud Optimized Network Evolution (CONE) 151
communication architecture and infrastructure
- advanced metering infrastructure (AMI) 219
AMI organization
- internet-based architectures 224–225
- IP-based architecture limitations 225
- limitations 223–224
- micro-generation systems 221
- routing protocols 221
automated meter reading (AMR) 219
DSO-based communications 220
Internet of Things (IoT) 219–220
next-generation smart grid architecture
- energy management 227–228
- multi-level aggregation 228–229
- open network 228
- research efforts 229–231
- security concerns 229
- technical issues for next-generation 227
routing information
- AODV 237–238
- metrics and constraints 234
- performance evaluation 240–241
- proactive protocol 232
- reactive routing protocol 236–237
- routing protocols 231–232
- RPL 233–236
communication model 200–201
communication protocols
- DNP3 31–32
- IEC 60870 29–31
- IEC 61850 32–35
- Modbus transmission protocol 27–29
- SCADA protocols 35–36
- compressed air storage technology (CAS) 301
- continuous-time Markov model 462
- cooling, heating, and power (CCHP) systems 381
- Cooperative Ultra Narrow Band (C-UNB) 79
- critical load average interrupt duration index (CLAIIDI) 391
- critical load expected energy deficiency (CLEED) 391
- critical load maximum energy deficiency (CLMED) 391–392
- critical load maximum interrupt duration index (CLMIDI) 391
- critical load supply cost (CLSC) 397
- critical load supply marginal cost (CLSMC) 397
- cryptographic computation 545–546
- cumulocity 271
- cybersecurity
 - economic growth 577
 - information and communication technology (ICT) 577
 - managerial and organizational challenges 578
 - physical infrastructure 577
 - technological challenges 578
 - usability 578
 - Web 2.0 technology 577
- cyclic data flow
 - IEC 61850 communication 42
 - time interval of transmission 42
 - wide-area control and monitoring 43
data processing
and cloud support
- analysis and learning 474
- availability computation 472–473
- reputation system 473–474
- reservation model 474
- scoring system 474
- information processing and storage 343
noise reduction, data smoothing, and calibration 341–342
packet formation process
 local information data 343
sensor identifier 342
sensor monitoring data 343
time 343
data storage and aggregation 260
decision tree regressor 285
demand-side management (DSM) 309–310
deployed sensors 248
destination oriented DAG (DODAG) 232
DeviceHive 273
differential and algebraic equations (DAEs) 597
Digi 273
Digital Service Cloud 274
disaster response networks (DRNs) 152
discontinuous reception (DRX) process 83
dispersed multi-microgrids system (MMGS) 374–375
distributed/edge computing 161
distributed energy resource (DER) 69, 109, 176
distributed generation (DG)
 dispatch challenges 304–305
 functions and distribution 303–304
 sources and generators 303
Distributed Network Protocol (DNP3) 31–32
distribution system operator (DSO) 69
DNP3 protocol 35
dynamic validation techniques 195–197
electricity customers 529
electric vehicle (EVs) 72, 217
 advance communication 499
 avoiding spinning reserves 490
 charging/discharging process
 access channel model 433–438
 electric vehicle supply equipment (EVSE) 429
 inductive chargers 429–430
 power line communication 430–431
 simulations results 438–440
 smart grid applications 431–432
 VANET and LTE 432–433
 CO₂ minimization 491
 communication protocols 486
 control application 499–500
 economic and business model 488–489
 electrical effect, of charging technologies
 bidirectionality implementation 420–421
 harmonics control in 418–419
 power factor control 419–420
electrical integration 414
 electromagnetic emissions and interferences 414
 energy management 488, 499
 existing power capacity 486
 green applications support 489
 G2V capability 491, 558
 load management 491
 motivation of 490
 power factor and total harmonics distortion 414
 recharging approaches
 contributions and limitations 492
 distribution of 493
 standardization, for communication technologies 499–500
 scheduling and planning strategies 421–423
 scheduling approaches 486–487
 frequency regulation 497
 maximizing aggregator profit 496
 reduction of power losses 493–494
 renewable energy sources 497–498
 resource allocation 498
 total cost of energy 495–496
 voltage regulation 497
 security and privacy 490
 smart transportation 488
 traffic congestion avoidance 489
 vehicle-to-anything 499
 V2G (vehicle-to-grid) scenarios 413, 491
 wireless charging methods
 operation modes 416–418
 technological support 415–416
electric vehicle (EVs) (contd.)
 wireless communication
 needs/communication 489
 wireless power charger 499
electric vehicle infrastructure (EVI)
 ancillary services 511
 communication technologies 511
 EVSE network 511, 513–514
 ISO/RTO market systems 511
 response model 514
 SAE 1772 connector 511
 system model 512
 end-to-end security 94–99
 application level security 96
 network access security 95–96
 transport level security 96
 energy conservation 260
 energy efficiency 158
 energy management system (EMS) 225, 355
 energy management unit (EMU) 357
 energy service interfaces (ESIs) 109
 energy service providers (ESPs) 529
 energy storage (ES)
 BS systems 300–301
 challenges 301–302
 compressed air storage technology (CAS) 301
 flywheel technology (FW) 301
 pumped hydropower (PHP) 301
 supercapacitors (SC) 301
 energy systems 17
 enhanced mobile broadband
 (eMBB) 93
 ethernet cables 21
 expected transmission count (ETX) 231

f
 fault detection, isolation, and restoration
 (FDCIR) 38–39
 Fiber-bragg Sensors (FBG) 454
 communication model 200–201
 dynamic validation techniques 195–197
 Markov model 199
 service-rate model 199–200
 field area networks (FAN) 175
 5G and cellular networks
massive MTC 70
mission-critical MTC 70
real-time monitoring 69
secure mission-critical MTC 71
smart grid and features
 bidirectional information flows 72
 cellular and 3GPP technologies 82–94
 electric vehicles (EVs) 72
 end-to-end security 94–99
 information and communication technology (ICT) network 73
 peak load conditions 71
 Smart Grid Research and Development Program 73
 traffic models and requirements 74–76
 two-way communications 71
 unlicensed spectrum and non-3GPP technologies 76–82

FiWare 274
flexibility operator (FO) 224
flywheel technology (FW) 301
frequency division duplexing (FDD) mode 83

g
 Gaussian unitary ensemble (GUE) 598
 Generally Accepted Privacy Principles (GAPPs) 533
 Generic Object Oriented Substation Event (GOOSE) 33
 Generic Substation Event (GSE) 33
 Global Data Processing and Forecasting System (GDPFS) 159
 global observing system (GOS) 159
 global positioning system (GPS) 328, 591
 global sensor networks (GSN) 274
 Global Telecommunication System (GTS) 159
 5G networks and D2D communication
 big data 162
 cellular networks 148
 disaster response networks (DRNs) 152
 distributed/edge computing 161
 Information-Centric Networks (ICN) 153
Internet of Vehicles (IoV) 148
IoT 148
machine-type devices (MTDs) 151
medium access control (MAC) protocol 152
METIS 151
multi-hop communication 151
multiple radio access technologies (Multi-RAT) 160
peer-to-peer (P2P) link 148
pretty good privacy (PGP) 152
ProSe functions 148
public safety applications 152
SDN/NFV-based architecture 151
security and privacy 163
smart cities scenarios
disaster response and emergency services 159
energy efficiency 157
public health 154–155
public safety and security 159–160
smart grid 157–158
transportation and environment 155–156
water management 158–159
social ties and social trust 152
User-Centric Networks 153
user equipments (UEs) 148
virtualization 160–161
gradient boosting regressor 285
green HetNet (GHetNet) framework
classify phase 201
decide phase 201
multi-interface transmitters 201
offload phase 201, 202
Q-theory 202
spectral expansion approach 203
steady-state probabilities of Markov chain 203–205
trigger phase 201

power converter 340–341
sensor 339
heterogeneous networks’ (HetNets) infrastructures
analytical techniques 193
dynamic validation techniques 195–197
experimental studies 193–194
simulation techniques 193
static validation techniques 194–195
system models
communication model 200–201
Markov model 199
service-rate model 199–200
user equipment (UE) 192
home automation 252
homomorphic encryption technique 545
hysteresis objective function (MRHOF) 234

i
ICCP 21
IEC 60870-104 21
IEC 60870-5-101 communication 30
IEC 60870 communication stack 30
IEC 61850 data flow 60
IEC 61850 standards
message communication stack 34
physical and logical device models 33
structure of 33
transfer time classes 34–35
indoor air quality (IAQ) 327
inductive loop detectors 449, 456
Industrial Internet Consortium (IIC) 230
information and communication technology (ICT) 73
cellular network 150
communication infrastructure 147
environmental monitoring and water management 147
FutureICT 150
LTE-A 147
tactile Internet and remote surgery 150
information centric network (ICN) 150
infrared sensors 447, 456
in outdoor-monitoring applications 329–330

h
half-duplex frequency division duplexing (HD-FDD) mode 83
hardware infrastructure
microcontroller and radiomodule 339–340
intelligent electronic devices (IED) 510
intelligent parking management
application infrastructure
artificial system 463
continuous-time Markov model 462
parking occupancy data 462
spot vacancy prediction model 461
Civic-Smart 444
communication infrastructure
data volume and transmission power 458
gateway nodes 458
internetworking sensor nodes 459
peer-to-peer (P2P) networking
arrangement 459
RFID-based parking sensors 459, 460
servers and user interfaces 457
VANET systems 459
congestion 443
infringement detection 445
parking locations 443
parking solutions
application infrastructure 447
communication infrastructure 446
sensing infrastructure 446
storage infrastructure 446
user interfacing 447
variables and factors 445
participatory sensing paradigm
data processing and cloud support
472–474
enforcement and compliance 472
external integration 472
features and benefits 477–478
implementation and performance
evaluation 474–477
IoT devices 467
leaderboard 470–471
parking spot 468–469
rewards store 471
server 468
smart reporting system 470
user components 467
user interface 469–470
real-time parking availability information 444
sensing infrastructure
active infrared sensors 448, 456
AVM 452–453
cameras 452
FBG sensors 454
inductive loop detectors 449, 456
infrared sensors 447, 456
intrusive sensors 457
magnetometers 450, 451, 456
magneto-resistive sensors 450, 456
microwave/millimeter wave radar
detectors 450, 456
near-field communication (NFC) tags 455
novel parking slot detection and
tracking system 453
optical sensors 449, 456
participatory sensing 457
passive infrared sensors 448, 456
piezoelectric sensors 449–450, 456
pneumatic road sensors 450, 456
QR codes 455
RFID 453–454
stationary sensors 447, 456
ultrasonic sensors 448, 449, 456
ultra-wideband (UWB) technology 454
weight-in-motion (WIM) sensors 452, 456
sensing technologies 444
Siemens Mobility 444
storage infrastructure 460–461
user interfacing
displaying spot availability 464
reservation-based system 464
system-assisted approach 465
system-assisted parking approach 463
traditional blind search 463
VANET-based communication and
processing 465, 466
intelligent transportation system (ITS) 156
International Commission on Non-Ionizing
Radiation Protection guidelines 414
International Electrotechnical Commission (IEC) 533
International Organization for Standardization (ISO) 533
Internet of Things (IoT) 219–220, 247, 579
cloud computing environments 270
definition 9–10
energy-harvesting methods 10–12
platform for smart cities
ARM Mbed 271
comparative studies of platform 272–273
cumulocity 271
DeviceHive 273
Digi 273
Digital Service Cloud 274
FiWare 274
Global Sensor Networks (GSN) 274
IoTgo 274–275
Kaa 275
Nimbits 275
RealTime.io 275
SensorCloud 275–276
SiteWhere 276
TempoIQ 276
Thinger.io 276
Thingsquare 276
ThingWorx 277
VITAL 277
Xively 277
prediction modules, VITAL IoT Platform 278–281
traffic sensors in Istanbul
data preprocessing 284
experimental prediction results 285–288
feature vectors 284–285
prediction techniques 282–284
VITAL prediction module 278–281
Internet of Things-Architecture (IoT-A) 230
Internet of Vehicles (IoV) 148
intrusive sensors 457
IoTgo 274–275
ISO/IEC 29100:2011 Privacy Framework 533

k
Kaa 275
Kernel ridge regressor 285
K-nearest neighbors regressor 285

l
Laguerre unitary ensemble (LUE) 598
Lightweight On-demand Ad Hoc Distance-vector Routing Protocol Next Generation (LOADng) 238
long-term evolution-device-to-device (D2D) communications
GOOSE mapping 50
IEC 61850 Protocols 48–49
MMS mapping 49–50
numerical evaluation 55–60
problem formulation
data rate 54
delay and queue stability 53
objective function 52
RB assignment 53
set of constraints 52–53
transmit power 54
QoS Class Identifier (QCI) standardized characteristics 47–48
quality of service (QoS) 47
resource allocation 50–51
scheduler design 54–55
time domain 48
LoRa key management server 81–82
loss of noncritical load probability (LNLP) 392
6LoWPAN Ad Hoc On-Demand Distance Vector Routing (LOAD) 238
low power and lossy networks (LLNs) 231
LTE Cat-0 terminal category 84–85

m
Machine learning (ML) 162
machine-to-machine communications
communication media and protocols
hybrid passive optical networks (HPONs) 124–125
interoperability 121–122
interoperability and compatibility 123
medium access control (MAC) 124
machine-to-machine communications (contd.)

NANs 124
passive optical network (PON) 125
power line connections (PLC) 125–126
privacy and security 122
protocol stack 122–123
Quality of Service (QoS) 121
scalability 122
WAN 124
energy production, distribution, and consumption 132–134
energy services and management 134–135
home energy management systems (HEMSs) 129
in-building energy consumption infrastructures (I-BECIs) 129
in-building energy generation infrastructures (I-BEGIs) 129
neighborhood domain 129
power distribution infrastructure 130, 131
reference architecture 120–121
user domain (UD) 128
wireless sensor and actuator networks (WSANs) 128
wireless technologies 127
machine-type devices (MTDs) 151
MAC protocol 247
magnetometers 450, 451, 456
magneto-resistant sensors 450, 456
Markov model 199
massive machine-type communication (MTC) 70
media access control (MAC) 77, 152
microgrid annual generated power (MAGP) 399
microgrid annual output power (MAOP) 399
microgrid average interruption duration index (MAIDI) 393
microgrid average interruption frequency index (MAIFI) 393
microgrid average service availability index (MASAI) 393
microgrid carbon emission per unit energy (MCEUE) 399
microgrid central controller (MGCC) 357
microgrid customers experiencing multiple interruptions (MCEMI) 393
micro-grid energy dependency index (MEDI) 388
micro-grid energy input ratio (MEIR) 388
microgrid energy local consumption ratio (MELCR) 389
microgrid energy local consumption time ratio (MELCTR) 389
microgrid energy output ratio (MEOR) 388–389
microgrid energy purchase probability (MEPP) 388
microgrid energy sold probability (MESP) 388–389
microgrid energy storage and distributed generation capacity rate (MESDGC)
microgrid environment benefit (MEB) 398
microgrid intermittent energy adoptability (MIEA) 398
microgrid islanded energy deficiency interruption (MIEDI) 393
microgrid islanded energy deficiency probability (MIEDP) 394
microgrid output power/generated power ratio (MOPR) 399
microgrids (MGs) 186, 371
cooperative energy management system model
case study input parameters 362
cost results 363
energy exchange 361–362
energy exchange plan 364, 367
energy management unit (EMU) 357
energy prices, Spanish energy retailer 363
energy storage system 360–361
high-energy consumption 365
internal energy price 358
inverter 361
microgrid central controller (MGCC) 357
optimal microgrid sizing 358
PV panels 357, 359–360
total time intervals 359
cost minimization and peak demand reduction 356
energy storage losses 357
Lyapunov-based optimization algorithm 355
microwave/millimeter wave radar detectors 450, 456
mission-critical machine-type communication (MTC) 70
mixed integer linear programming (MILP) model 510, 518
MMGS annual exchange energy (MAEE) 399
MMGS capacity credibility (MSCC) 387
MMGS critical load demand (MSCLD) 387
MMGS critical load ratio (MSCLR) 387
MMGS environment benefit (MSEB) 397
MMGS exchange energy and total load energy ratio (MEER) 399
MMGS exchange energy and total output ratio (METOR) 400
MMGS noncritical load demand (MSNLD) 387
MMGS reliability benefit (MSRB) 397
MMGS total average load (MSTAL) 387
MMGS total energy generation (MSTEG) 387
MMGS total generation capacity (MSTGC) 386
mobile social network (MSN) 560
Modbus protocol 35
Modbus transmission protocol
 broadcast/no-response-type messages 28
 client/server communication 27
 controllers and human machine interfaces 29
 frame synchronization 28
multi-hop communication 151
multi-microgrids system (MMGS)
capacity planning method
 algorithms 384
 models 381–384
optimal capacity planning
distributed energy utilization 377–380
economy and environmental protection 381
multi-energy comprehensive utilization 380
reliability 380–381
optimal planning
dispersed MMGS 374–375
minimal cut-set-based iterative approach 372
nested MMGS 373
parallel MMGS 373
reliability and resilience 372
series MMGS 373
performance assessment
annual performance assessment 402–403
case studies 403–406
cooperative power dispatching algorithm 385
economics index 395–398
energy dispatch strategy 400
energy exchange characteristics 385
energy interaction index 388
energy saving and emission reduction index 398–399
energy utilization efficiency index 398
entirety reliability index 394–395
hierarchical coordination strategy 385
islanded MMGS 401–402
load reliability index 390–392
microgrid reliability index 392–394
power flows and energy local storages 386
renewable energy utilization index 399–400
source-charge capacity index 386–387
total energy interaction index 389–390
structure planning
algorithm 376–377
model description 375–376
Index

multiple radio access technologies (Multi-RAT) 160
multi-resonant 415, 416

n
narrow-band Internet of Things (NB-IoT) 85–86
National Institute of Standards and Technology (NIST) 107, 136–138
near-field communication (NFC) tags 455
nested multi-microgrids system (MMGS) 373
network access security 95–96
network function virtualization (NFV) 184–185
network virtualization (NV) 183–184
next-generation smart grid architecture energy management 227–228
multi-level aggregation 228–229
open network 228
research efforts 229–231
security concerns 229
technical issues for next-generation 227
Nimbits 275
noncritical load average interrupt duration index (NLAIDI) 392
noncritical load expected energy deficiency (NLEED) 392
noncritical load supply cost (NLSC) 397
noncritical load supply marginal cost (NLSCMC) 397
novel parking slot detection and tracking system 453

O
Oauth2 protocol 98
oneM2M 230
opportunistic spectrum access (OSA) 7
optical fiber networks 175
optical sensors 449, 456
optic fiber 21

P
parallel multi-microgrids system (MMGS) 373
“Park Me” 464
participatory sensing paradigm 457
components
IoT devices 467
parking spot 468–469
server 468
user 467
data processing and cloud support analysis and learning 474
availability computation 472–473
reputation system 473–474
reservation system 474
scoring system 474
features and benefits 477–478
implementation and performance evaluation
experiment setup 475
features and benefits 477–478
prototype application 474–475
simulation results 475–477
parking management application enforcement and compliance 472
external integration 472
leaderboard 470–471
rewards store 471
smart reporting system 470
user interface 469–470
passive infrared sensors 448, 456
peer-to-peer (P2P) link 148
perturbation technique 546–547
phaser measurement units (PMU) networks, cyberattacks in experimental results 521–525
phaser data concentrator (PDC) 515
propagation in 515, 516
response model 518–521
threat level estimation 515–518
photovoltaic (PV) effect 11
physical downlink control channel (PDCCH) 90
physical downlink shared channel (PDSCH) 90
physical uplink shared channel (PUSCH) 90
piezoelectric sensors 449–450, 456
pneumatic road sensors 450, 456
power distribution grid
IEC 61850 traffic model 42–45
models 40–41
power distribution system communication protocols 27–36
requirements for 39–40
voltage/var control (VVC) 37–38
power factor corrector (PFC) 419
power grid configuration 60
distributed energy resources (DER) 176
efficiencies and productivity 175
field area networks (FAN) 175
information exchange and functionalities 174
optical fiber networks 175
phasor measurement units (PMUs) 176
renewable distributed energy resources (DER) 175
residential or commercial users 174
technology challenges 175–176
time-critical data 175
traditional power grid 174
power line communication (PLC) 222
power system communications 21
pretty good privacy (PGP) 152
privacy customer electricity data 531–532
energy usage information 532
fine-grained electricity consumption 530
Generally Accepted Privacy Principles (GAPPs) 533
ISO/IEC 29100:2011 Privacy Framework 533
malicious entities 531
PET 542–547
privacy-by-design (PbD) approach 532, 534
privacy engineering framework and guidelines 538–540
privacy impact assessment (PIA) 541–542
privacy protection 532
protection goals
dissociability 536–537
intervenability 536
manageability 537
predictability 537
transparency 536
unlinkability 536
UTI triad and DPM triad 537
system privacy risk model 540–541
V2G networks 531
privacy-by-design (PbD) approach 532, 534
privacy enhancing technologies (PET)
AMI networks 543
anonymization 544
cryptographic computation 545–546
perturbation 546–547
trusted computation 545
verifiable computation 547
privacy impact assessment (PIA) 541–542
privacy-preserving charging coordination scheme advanced metering infrastructure (AMI) 559
autonomous vehicles (AVs) 560
grid-to-vehicle (G2V) 558
LTE networks 560
mobile social network (MSN) 560
network and threat models 560–561
performance evaluation
experimental study 568–572
privacy/security analysis 567–568
proposed scheme 561–567
VANETs 560
vehicle-to-grid (V2G) 558–559
vehicle-to-vehicle (V2V) 559
proposed scheme anonymous data submission
anonymity measurement 564–565
charging requests submission 561–563
ESU’s charging requests 564
schedules distribution 563–564
charging coordination 565–567
ProSe functions 148
proximity services (ProSe) 149
pseudonymization protocol 544
public health
in Europe, Asia, and America 154
health information 154
remote surgery 155
Index

public health \(\text{(contd.)} \)
- 24/7 social care at home 155
- wearables and video calling to doctors 155
- pumped hydropower (PHP) 301

\(q \)
- QR codes 455
- Q-theory 202
- quality of service (QoS) 151, 193

\(r \)
- random access response (RAR) 91
- Random forest regressor 285
- random matrix theory (RMT) 591
 - asymptotic spectrum laws 598–600
 - convergence rate 601–603
 - differential and algebraic equations (DAEs) 597
- free probability 603–608
- Gaussian unitary ensemble (GUE) 598
- Laguerre unitary ensemble (LUE) 598
- large random matrix polynomials 598
- Tracy Widom distribution 596
- transforms 600–601
- real-time data aggregation 335
- RealTime.io 275
- reliability 158
- remote management 336
- renewable energy dispatch rate (REDR) 399
- renewable energy penetration (REP) 380, 398
- renewable energy resources
 - demand response 308–309
 - demand-side management (DSM) 309–310
 - distributed generation (DG)
 - dispatch challenges 304–305
 - functions and distribution 303–304
 - sources and generators 303
- energy storage (ES)
 - BS systems 300–301
 - challenges 301–302
 - compressed air storage technology (CAS) 301
 - flywheel technology (FW) 301
 - pumped hydropower (PHP) 301
 - supercapacitors (SC) 301
- environmental pollution 294
- monitoring 310–311
- resource modelling and scheduling
 - information management 306
 - novel energy scheduling 306–307
 - power flow control algorithms 305–306
- resource forecasting (RF) 307–308
- semi-autonomous distributed control 307
- security challenges in high penetration 314–315
- smart grid concept
 - bidirectional flow of communication information 295
 - energy-efficient and smart appliances 299
 - environmental pollution control 299
 - resource characteristics and distributed generation 298–299
 - system components 296–298
 - unidirectional power flow 295
 - system-related challenges 311–312
 - transmission techniques 311
 - V2G challenges 312–314
- resource forecasting (RF) 307–308
- Restricted Access Windows (RAW) 78
- roadway powered electric vehicles (RPEV) 417
- robustness 337
- routing protocol for LLNs (RPL)
 - path computation
 - minimum rank hysteresis objective function 235
 - objective function zero 234–235
 - routing table maintenance 233–234
 - topology management 232–233

\(s \)
- SCADA protocols 35–36
- scalability 218, 335–336
- secure mission-critical machine-type communication (MTC) 71
- sensing layer 104–105
- SensorCloud 275–276
sensor node market 328
series multi-microgrids system (MMGS) 373
service-rate model 199–200
“SF Park” 464
Shamir’s secret-sharing algorithm 546
simulation techniques 193
single-resonant 415
SiteWhere 276
situation awareness
anomaly detection 620
eigenvalues 615
future grids 612
high-dimensional spectrum test 619
IEEE 118-node system 616
methodology 613, 614
moving slide window (MSW) 619
multiple input multiple output (MIMO) model 615
power demand of nodes 616
power grid security 613
random matrix model (RMM) 615
series of events 616
statistical indicator 615
transition stages 617
$V – P$ curve 619, 621
smart appliances 224
smart buildings 157
smart buildings, environmental monitoring application scenario and design goal 332–333
dynamic changes 337
experimental setup 343, 345–347
global positioning system (GPS) 328
inch scale sensors 328
indoor air quality (IAQ) 327
mesh routing 337
monitoring area 330–332
power management 336–337
real-time data aggregation 335
remote management 336
results analysis 347–350
robustness 337
scalability 335–336
sensor node market 328
sensor type 333, 335
size and cost 337
usability, autonomy, and reliability 336
wireless communication and sensor technologies 328
wireless network coexistence 337
wireless sensor networks (WSNs) 328
carbon dioxide monitoring 329
control room 339
data processing 341–343
hardware infrastructure 339–341
indoor monitoring system 343
relay nodes 338–339
volatile organic compounds (VOCs) 330
wireless monitoring nodes 338
smart cab services 249
smart cities
architecture 4
attack domains
attack mechanisms 581–582
communications 580
hardware 580
physical security 581
social engineering 580
software 580
supply chain 581
citizen participation 103
cognitive radio 5
cognitive radio sensor networks 5–6
competitiveness 103
cybersecurity
big data analytics 585–586
economic growth 577
information and communication technology (ICT) 577
managerial and organizational challenges 578
NIST cybersecurity framework 583–585
physical infrastructure 577
technological challenges 578
usability 578
Web 2.0 technology 577
data layer 105
EH-CR
application areas 17–18
network architecture 16–18
node architecture 15–16
smart cities (contd.)

- operation overview 14–15
- electric vehicle scheduling and charging (see electric vehicle (EVs))
- enablers
 - cloud computing 579–580
 - Internet of things (IoT) 579
 - smartphones 579
- energy harvesting and energy-harvesting sensor networks
 - bandwidth 8
 - computational capability 8
 - coverage area 8
 - intermittency 9
 - IoT 9–14
 - quality of service (QoS) 6, 8
 - reliability and delay 8
 - scalability 8
 - self-sustaining communications 7–8
 - service differentiation 9
 - spectrum-aware communications 7
- EV infrastructure (see electric vehicle infrastructure (EVI))
- 5G networks and D2D communication
 - disaster response and emergency services 159
 - energy efficiency 157
 - public health 154–155
 - public safety and security 159–160
 - smart grid 157–158
 - transportation and environment 155–156
 - water management 158–159
- 5G wireless networks 3
- information and communication technologies 3
 - in intelligent parking management (see intelligent parking management)
- interconnecting layer 105
- natural resources 104
- quality of life 104
- sensing layer 104–105
- services layer 105
- and smart grid
 - architecture model 114–115
 - distributed energy resource (DER) 109
 - distribution domain 112
 - energy consumers in 117–119
 - energy distribution and supply 106
 - energy service providers 119–120
 - energy sources in 115–117
 - machine-to-machine interactions 120–132
 - SGIRM 113–115
 - traditional energy grid 106
 - transmission domain 111
 - utility meters and energy service interfaces (ESIs) 109
 - social and human capital 103
 - standardization approach 112–113
 - transport and ICT 103
 - wireless sensor networks (WSNs) 4
 - WSN in (see wireless sensor networks (WSN))
- Smart Energy Aware Systems (SEAS) 230
- smart environment control 259
- smart grid (SG) 21
 - bidirectional information flows 72
 - cellular and 3GPP technologies
 - access procedure 87, 90
 - access reservation protocol limitations 87
 - cellular LTE systems 86–87
 - connection establishment 90–91
 - IoT applications 83–86
 - limitation 82–83
 - communication features 24
 - communication networks 26–27
 - communication technologies
 - coaxial cable 25
 - digital subscriber line (DSL) 25
 - EV–smart grid applications 431–432
 - IEEE 802.15.4 standard 25
 - IEEE 802.16 standard 25
 - LoRa and SigFox 25
 - power line communication 430–431
 - power line communication (PLC) 24
 - satellite communication 25
 - conventional power system 23
 - data-driven methods, for state evaluation
 - chain-reaction fault 611
 - IEEE 118-bus system, learning parameters 612
LR test and CLR test 609
trace-based distance measure 610
early event detection, free probability
grid data 625
hypothesis testing and anomaly
detection 624–625
model designs 624
problem modeling 621–624
simulation results 625–626
electric vehicles (EVs) 72
e-mobility for
energy consumption, grid load impact
211–213
FBS performance, impact of velocity
209–210
Femtocell base station parameters
206
performance metrics and parameters
207–208
results and discussion 208
simulation setups and baselines 208
typical LTE-values 206
use-case scenario 206
end-to-end security
application level security 96
network access security 95–96
transport level security 96
energy production 22
generation/transmission infrastructures 22
in GHetNet (see green HetNet (GHetNet)
framework)
hypothesis tests 609
IED 24
information and communication
technology (ICT) network 73
large-scale interconnected grids
control center 592
data monitoring and preprocessing
594
data storage and processing 594
standard black-box model 592
neighborhood area networks (NAN)
173
network latency and reliability 24
peak load conditions 71
power grid
distributed energy resources (DER)
176
efficiencies and productivity 175
field area networks (FAN) 175
information exchange and
functionalities 174
optical fiber networks 175
phasor measurement units (PMUs)
176
renewable distributed energy resources
(DER) 175
residential or commercial users 174
technology challenges 175–176
time-critical data 175
traditional power grid 174
volume data 175
privacy
customer electricity data 531–532
energy usage information 532
fine-grained electricity consumption
530
Generally Accepted Privacy Principles
(GAPPs) 533
ISO/IEC 29100:2011 Privacy
Framework 533
malicious entities 531
privacy-by-design (PbD) approach
532, 534
privacy engineering framework and
guidelines 538–540
privacy enhancing technologies
542–547
privacy impact assessment (PIA)
541–542
privacy protection 532
protection goals 535–537
system privacy risk model 540–541
V2G networks 531
remote check/test 23
renewable energy resources
bidirectional flow of communication
information 295
energy-efficient and smart appliances
299
environmental pollution control 299
resource characteristics and
distributed generation 298–299
smart grid (SG) (contd.)
 system components 296–298
 unidirectional power flow 295
security requirements
 authentication 556
 authorization 556
 availability 555–556
 charging coordination 556–558
 integrity 556
 non-repudiability 556
self-healing 23
self-monitoring 23
situation awareness 612–621
small-scale isolated grids 592
Smart Grid Research and Development Program 73
software defined networking (SDN)
 adaptation of 179
 bandwidth-on-demand feature 179
 benefits 178
 flexibility in network routing 182–183
 frameworks 178
 hardware 181
 interoperability and programmatic interfaces 181
 load balancing and quality of service 181–182
 management simplicity 180–181
 network awareness 181
 networking infrastructure 180
 NFV 185–187
 open networking forum (ONF) 177
 resiliency and protection 180
 security 182
 vendor-agnostic approach 179
 virtualization 177
time-critical communication 24
traffic models and requirements
 derived smart meter traffic model 75
 synchro-phasor measurements 74
 time synchronization 74
 WAMS synchro-phasor measurements 75
two-way communications 71
unlicensed spectrum and non-3GPP technologies
IEEE 802.11ah 76–79
LoRa® chirp spread spectrum approach 80–82
Sigfox’s ultra-narrow band (UNB) approach 79
wireless access and point-to-point services 173
wireless sensor networks (WSN) 252
Smart Grid Interoperability Panel (SGIP) 107
Smart Grid Interoperability Reference Model (SGIRM) 113–115
Smart Grid Research and Development Program 73
smart health care 258
smart homes 157
smartphones 579
software defined networking (SDN)
 adaptation of 179
 bandwidth-on-demand feature 179
 benefits 178
 flexibility in network routing 182–183
 frameworks 178
 hardware 181
 interoperability and programmatic interfaces 181
 load balancing and quality of service 181–182
 management simplicity 180–181
 network awareness 181
 networking infrastructure 180
NFV
 challenges and issues 187
 MicroGrids 186
 middleware-based solutions 186
 OpenFlow protocol and ns-3 network simulator 186
 virtual networks 186
 Virtual Power Plants (VPP) 186
open networking forum (ONF) 177
resiliency and protection 180
security 182
vendor-agnostic approach 179
virtualization 177
software-defined networking (SDN) 151
spectrum decision 5
spectrum handoff 5
Index

spectrum sensing 5
static validation techniques 194–195
stationary sensors 447, 456
stochastic data flow 45–46
supercapacitors (SC) 301
supervisory control and data acquisition (SCADA) measurements 591
Support vector regressor 285
system privacy risk model 540–541
system reliability offset index (SROI) 380

T
TempoIQ 276
thermoelectric generation (TEG) 11
Thinger.io 276
Thingsquare 276
ThingWorx 277
3rd Generation Partnership Project (3GPP) 148, 149
time-critical data 175
Tracy Widom distribution 596
traffic monitoring 248
transport level security 96
transport service data unit (TSDU) 31–32
transport systems 17
trusted computation approaches 545
two-way communications 71

U
ultra-reliable low-latency communications (URLLC) 99
ultrasonic sensors 448, 449, 456
ultra-wideband (UWB) technology 454
underground transportation 249
User-Centric Networks 153
user equipments (UEs) 148, 192

V
vehicle-to-everything (V2X) communication 156
vehicle-to-grid (V2G) 529, 558–559
vehicle-to-vehicle (V2V) 559
vehicular ad hoc networks (VANETs) 510
virtualization 160–161
network function virtualization (NFV) 184–185
network virtualization (NV) 183–184
Virtual Power Plants (VPP) 186
virtual private networks (VPN) 95

W
water management 269
agriculture and landscaping, irrigation in 158–159
water demand 159
water distribution network 159
water resources and weather forecasting 158
weather forecasting 252
weight-in-motion (WIM) sensors 452, 456
Wide Area Measurement System (WAMS) nodes 73
wide-area monitoring systems 21
wireless sensor networks (WSN) 328
applications 248, 251–252
atmosphere health monitoring 249, 252
carbon dioxide monitoring 329
channel bonding 254–255
control room 339
data processing 341–343
deployed sensors 248
hardware infrastructure 339–341
home automation 252
indoor monitoring system 343
Internet of Things (IoT) 247
MAC protocol 247
relay nodes 338–339
smart cab services 249
smart grids 252
structural health monitoring 252–253
traffic monitoring 248
underground transportation 249
volatile organic compounds (VOCs) 330
weather forecasting 252
wireless monitoring nodes 338

X
Xively 277

Z
Z-source network 420