Index

acid-catalyzed hydrolysis, of cellulose 82–83
activated carbon (AC)
in catalysis, properties of 19–20
functionalization of 20–21
preparation of 18–19
activated carbon cloth (ACC) 38
Al-doped mesoporous silica 108
alkali lignins 178
alkane oil 210
conversion of 217–218
molecules of 211, 213
Al-MCM-41 catalyst 108
Amberlyst® 15 11
Amberlyst 70 system 152
anionic clay structure 231
aromatization glycerol 223–224
bifunctional MIL-101-SO$_3$H framework 5, 6
bimetallic catalysts 67
bimetallic nanoparticle/carbon–nitrogen nanocomposites 59
biocatalysis, for lignin depolymerization 201
biofuels production
alkane oil 217–218
biodiesel production 220, 272–273, 290
biomass pyrolysis 210–212
ethyl levulinate biofuel 218–219
pyrolysis oil 211–217
biomass conversion, zeolite catalysis 157
biomass gasification 160–161
biomass transformation processes 127
cooperative effects, PDVB-based solid acid and base 141, 143
PDVB-based porous solid bases for 133, 135, 136
PDVB-SO$_3$H-type solid acids 129–134
bio-oil hydroprocessing 296–297
bio-syngas to bio-gasoline, direct synthesis
biomass gasification 160–161
Fischer–Tropsch synthesis reaction 160
FT gasoline synthesis catalysts 163–168
FT gasoline synthesis system 161–163
H$_2$/CO ratio 160–161
2,5-bis(hydroxymethyl)-furan (BHMF) 291
Bobbitt’s salt 201
Brønsted acid sites
glucan adsorption 26
on metal and sulfated metal oxides 106, 107
microporous aluminosilicate zeolite 108
in NbOPO$_4$ 255
Sn catalysts 109
Brønsted/Lewis acid sites 224, 259
butanal transformation, into alkanes 111, 113
carbohydrate dehydration catalysts for 261–262
D-xylose 260
5-hydroxymethylfurfural 258
Lewis and Brønsted acid sites 258–259
NbOPO$_4$ 258–259
xylose isomerization 259–260
carbonaceous solid-acid (CSA) catalysts 25
carbon dioxide reduction, to formic acid 61–64
carbonization process 19
carbon materials, 17 see also activated carbon (AC); mesoporous carbon (MC)
surface chemistry of 20
carbon–nitrogen nanocomposites
bimetallic nanoparticle 59
core–shell nanostructure 60–61
mono-metallic nanoparticle 57–59
trimetallic nanoparticle 59–60
catalytic bio-refining method 190
catalytic fast pyrolysis (CFP) 157
catalytic lignocellulose bio-refinery process 179, 181
catalytic transfer hydrogenation (CTH)
formic acid 286
furfural 68
C–C coupling reactions 272
alkylation 272
biofuel synthesis from lignocellulose 40–41
Pd/NbO_2 bifunctional catalyst 272
cellobiohydrolase 83, 84
cellulose
catalytic cellulose hydrolysis
catalytic lignocellulose bio-refinery carbon–nitrogen nanocomposites 60–61
core–shell-structured catalyst (Ru/Al_2O_3-Pd/S) 154
Co-Schiff base catalyst 196
CO_2-temperature-programmed desorption (TPD) 243
covalent organic frameworks (COFs) 10
CuMgAl mixed-oxide catalysts, in supercritical ethanol composition
catalytic depolymerization 246
CO_2-TPD 243–244
mixed-oxide catalysts 243, 244
X-ray diffraction patterns 242
effect of ethanol solvent 236–237
gas chromatography-mass spectrometry 237
Guibert reaction 239–240
heteronuclear single quantum coherence 238
hydrotalcites 231–233
lignin depolymerization 233–234
preparation method 234
reaction temperature, influence of lignin depolymerization 240–241
monomeric product distribution 241–242
CuSO_4-catalyzed oxidation, of organosolv lignins 197
dehydration glycerol 220–221
delignification 273
density functional theory (DFT) 91, 187, 268
dual acid/redox catalytic process 37
E-Carbon 88, 89
electrochemical depolymerization, of lignin 201
endoglucanase 83, 84
energy-dispersive X-ray spectroscopy (EDS)
capsule catalyst (Ru/Al_2O_3-Pd/S) 154–156
core–shell-structured catalyst (Ru/Al_2O_3) 154–156
enzymatic hydrolysis, of cellulose 83, 84
enzymatic lignins 178
esterification 272–273
ethanol steam reforming, H_2 productivity 158
ethanolysis of furfuryl alcohol to ethyl levulinate 219
of Kraft lignin 190
lignin conversion 38–39
etherification glycerol 221–222
ethylene glycol (EG) 30–32
ethyl levulinate biofuel 218–219
ethyl valerate (EV) 101
fatty acid methyl ester (FAME) 273
Fe-based zeolite catalyst 166–168
Fischer–Tropsch (FT) synthesis 112, 160–163, 210
Co-based zeolite catalyst 164–166
Fe-based zeolite catalyst 166–168
Ru-based zeolite catalyst 163–164
fluid catalytic cracking (FCC) 215
formic acid (FA)
 bio-based platform chemicals
 reductive transformation 286–291
tandem transformation 291–292
bio-oil, model compounds 296–297
biorefinery 283–284
carbon dioxide reduction to 61–64
chemical synthesis 297–300
dehydrogenation of 57
 bimetallic nanoparticle 59
carbon dioxide reduction 61–64
core–shell nanostructure 60–61
metal-support effect 57–59
trimetallic nanoparticle 59–60
depolymerization
 chitin 295–296
 lignin 292–294
for green synthesis 285–286
hydrogenation of unsaturated compounds 64–66
Ir catalyst 298, 299
Ru-catalyzed 298, 299
formic acid-based biorefinery 283, 284
fossil fuels, use of 127
fructose
 conversion into HMF
 COF-SO₂H for 10
 Nafion® NR50 11, 12
 NUS-6(Hf) catalyst 3, 6, 7
 graphene oxide conversion to 71–73
functionalyzed carbon catalyst, for cellulose hydrolysis
 mechanistic aspects 90–93
 oxygenated carbon catalysts 87–90
 sulfonated carbon catalysts 85–87
 synthesis and properties 84–85
furfural, xylose dehydration to 104–105
furfuryl alcohol 68, 90, 218–219
γ-valerolactone (GVL) 65, 70, 286
cellulose conversion 266
levulinic acid 265
reductive transformation of 287
ring-opening of 273–274
gas chromatography–mass spectrometry (GC-MS) 234–235
gel permeation chromatography (GPC) 237
gluconic acid 33
β-glucosidase 83, 84
glycerol conversion
 aromatization of 223–224
dehydration of 220–221
eretherification of 221–222
to 1,2-propanediol 149–151, 153–154
to 1,3-propanediol 149–151, 153–154
propanediol synthesis 151–156
triglyceride transesterification 149–150
glycerol dehydration
double-dehydration reaction 261–262
Nb catalysts 264–265
NbOPO₄ 263
glycerol hydrogenolysis 151, 153
glycols, cellulose conversion to 30–32
 graphene oxide 85
conversion to fructose 71–73
Guerbet reaction 239–240

hardwood lignin, fragment structure of 113, 114
H₂/CO ratio 160–161
HDO see hydrodeoxygenation (HDO)
heteroatom-doped ordered mesoporous silica 108–109
heterogeneous catalysts, for cellulose hydrolysis 83
heterogeneous nanoporous solid catalysts 2
heterogeneous noble metal catalysts, for lignin depolymerization
 aqueous phase one-pot process 179
 bimetallic Pd/C and Zn²⁺ catalytic system 183
 birth wood lignin degradation 178
 hydrodeoxygenation of organosolv lignin 180, 182
heterogeneous transition metal catalysts, for lignin depolymerization
 cobalt nanoparticle catalyst 186–187
 in liquid solvents 183, 184
 metal sulfide catalysts 183–184
 nickel-based catalysts 184–186
heteronuclear single quantum coherence (HSQC) NMR 189, 237–239
heteropoly acids (HPAs) 106
H⁺-exchanged beta polymorph zeolite (HBEA) catalyst 190
hexitols, cellulose conversion to 27–30
HMF see 5-hydroxymethylfurfural (5-HMF)
homogeneous catalyst system, for lignin depolymerization 187–188
H₂ productivity, via ethanol steam reforming 158
β-etherase catalyst 201
β-O-4’-ether bond 293
formic acid in 189
glutathione lyase catalyst 201
hydrodeoxygenation 293
in hydrogen absence 188–190
in hydrogen presence
 heterogeneous noble metal catalyst system 178–183
 heterogeneous transition metal catalyst system 183–187
 homogeneous catalyst system 187–188
hydroxide catalysts 231–233
isopropanol in 190
methanol for 189
oxidative depolymerization 192–194
 advantages 190–191
 ionic liquid catalysts 197–198
 metal-supported oxide catalysts 191, 195
organometallic catalysts 196–197
hydrotalcites 231–233
isopropanol in 190
methanol for 189
oxidative depolymerization 192–194
 advantages 190–191
 ionic liquid catalysts 197–198
 metal-supported oxide catalysts 191, 195
organometallic catalysts 196–197
polyoxometalate catalysts 195–196
Pd/C and formic acid catalysts 198, 200
photocatalysis 201
preparation method 234
pyrolysis 200
reaction temperature, influence of 240–242
supercritical ethanol 233–234
tetralin solvent 189
thermal catalytic cracking 202
lignocellulose 17
 biofuel synthesis (diesel/jet fuel) from 39–40
 C–C coupling reactions 40–41
 hydrodeoxygenation 42–46
 catalytic lignocellulose bio-refinery process 179, 181
mesoporous carbon (MC)
in catalysis, properties of 19–20
 functionalization of 20–21
 preparation of 18–19
mesoporous carbon nanoparticles (MCN) 89
mesoporous ionic copolymers, synthesis of 136, 139
mesoporous phenolic resin 128–129
mesoporous silica-supported metal nanoparticles
 Ni nanoparticles 111–113
 Pd nanoparticles 110–111
 Pt nanoparticles 111
mesoporous zeolites
 biofuels production
 alkane oil 217–218
 biomass pyrolysis 210–211
ethylenediamine biofuel 218–219
pyrolysis oil 211–217
glycerol conversion
 aromatization of 223–224
 dehydration of 220–221
 etherification of 221–222
metal-acid bifunctional catalyst system 152
metal-free catalyst 71–73
metal nanoparticles, ordered mesoporous silica-supported 109–113
metal–organic frameworks (MOFs)
 advantage 4
 Bronsted acidity 4
 de-novo synthesis 4–6
 functional hybrids, fabrication of 8, 9
 pore microenvironment modification 8–10
 postsynthetic modification 6–8
metal-supported oxide catalysts, for oxidative lignin depolymerization 191, 195
metal-support effect 57–59
2-methoxy-4-methyl-phenol (MMP) 297
2-methylfuran (2-MF)
 alkylation/hydroxyalkylation reactions 272
 transformation into alkanes 111, 113
methyl glucosides 32
methyl isobutyl ketone (MIBK) 272
methyl propyl sulfonic acid catalyst (MPrSO\(_3\)H-MCM-41) 104, 105
methyltrioxorhenium (MTO) catalysts 197
microporous aluminosilicate zeolite 108
mineral acid drawbacks 128
 processes 82
 vs. solid-acid catalysts 128
modulated hydrothermal (MHT) approach 6
MOFs see metal–organic frameworks (MOFs)
 mono-metallic nanoparticle/carbon–nitrogen nanocomposites 57–59
Mott–Schottky effect 56, 57, 64
N-acetylgalactosamine (NAG) 295
Nafion® resins 11–13
nanoporous carbon/nitrogen materials 55–57
 formic acid dehydrogenation 57
 bimetallic nanoparticle 59
 carbon dioxide reduction 61–64
 core–shell nanostructure 60–61
 mono-metallic nanoparticle 57–59
 trimetallic nanoparticle 59–60
graphene oxide conversion to fructose 71–73
 high-value-added chemicals synthesis from biomass 67–71
 metal-free catalyst 71–73
nanoporous crystalline organic frameworks 2
covalent organic frameworks 10
metal–organic frameworks 4–10
nanoporous organic sulfonated resins
Amberlyst® 11
Nafion® 11–13
NbOPO$_4$ see niobium phosphate (NbOPO$_4$)
Ni nanoparticles, mesoporous
silica-supported 111–113
niobium-based catalysts
biomass conversion 254–255
delignification 273
GVL 273–274
ketalization 274
steam reforming reaction 274
C–C coupling reactions 272
dehydration
 carbohydrate 258–261
glycerol 261–265
sorbitol 257–258
esterification/transesterification 272–273
HMF to levulinic acid 265–266
hydrodeoxigenation 266–271
hydrolysis 255–256
niobium phosphate (NbOPO$_4$)
carbohydrate dehydation 258–259
glycerol dehydation 263
hydrolysis 255
Lewis and Brønsted acid 255
nitrogen-containing mesoporous
carbons 36–37
Ni-ZSM-5 catalyst 157
noble-metal-based catalysts 152
one-pot reaction process 27
one-step hydrogenation–esterification
(OHE) 111
ordered mesoporous materials
advantages 99
heteroatom-doped 108–109
silica-supported metal
nanoparticles 109–113
silica-supported
 polyoxometalates 106–108
sulfated metal oxides 106–108
sulfated ordered mesoporous
silica 100–105
organometallic catalysts, for oxidative lignin
depolymerization 196–197
organosolv lignins 178
CuSO$_4$-catalyzed oxidation of 197
hydrodeoxigenation of 180, 182
oxidative depolymerization, of
lignin 192–194
advantages 190–191
ionic liquid catalysts 197–198
metal-supported oxide catalysts 191, 195
organometallic catalysts 196–197
polyoxometalate catalysts 195–196
oxygenated carbon catalysts, for cellulose
 hydrolysis
carboxylic acid groups 88
CMK-3 87
E-Carbon 88, 89
hyperbranched polymer 90
K26 alkali-activated carbon 87, 88
mesoporous carbon nanoparticles 89
mix-milling method 88
oxygenated functional groups 87
weak acid carbon catalyst 88–89
zeolite-templated carbon 90
PdAu@Au/C core–shell structure
 preparation 61, 62
Pd-doped microporous silicalite-1 zeolite shell
 (Pd/S) 154
Pd nanoparticles, mesoporous
 silica-supported 110–111
PDVB-based porous solid bases, for biomass
 transformation 133, 135, 136
perovskite-type catalysts 191
phosphotungstic acid (PTA) 8
photocatalysis, for lignin
depolymerization 201
polydivinylbenzene-based porous solid acids
future research recommendations 144
strong acid ionic liquid-functionalized
catalysts 135–141
sulfonic group-functionalized, synthesis of
 see sulfonic group-functionalized
porous PDVB-based solid acids
polymeric solid acids 128
polyoxometalate catalysts, for oxidative lignin
depolymerization 195–196
porosity 1, 2
porous carbon materials, for cellulose
 conversion see cellulose
porous PDVB-based solid catalysts see
 polydivinylbenzene-based porous solid
 acids
porous solid acids 128
post-synthetic modification (PSM)
techniques 2
1,2-propanediol (1,2-PDO) 149–154, 156, 290
1,3-propanediol (1,3-PDO) 149–154, 156
propanediol synthesis
dehydration–hydrogenation 151
dehydrogenation–dehydration–
 hydrogenation 151
glycerol hydrogenolysis 151, 153
zeolite catalysts 152–156
Pt nanoparticles, mesoporous
silica-supported 111
pyrolysis, lignin depolymerization 200
pyrolysis liquids, components of 110
pyrolysis oil
hydrodeoxygenation 216
molecules in 211, 213
trimethylphosphine 214
ZSM-5 zeolite 212, 215

8-quinolinate-based vanadium complex 196

Raney Nickel catalyst 190
reductive transformation, FA 286–291
rice straw hydrogenation
biomass conversion 157
catalytic fast pyrolysis (CFP) 157
direct conversion to sugar alcohol 157–159
H-beta zeolite 157
H₂ productivity, via ethanol steam
reforming 158
Ni-ZSM-5 catalyst 157
solid acid-supported Pt bifunctional
catalyst 158, 159
yield of sugar alcohols 159
zeolite, solid-acid catalyst 157
ZSM-5 catalyst 157
Ru/Al₂O₃–Pd/S capsule catalyst 153–154
Ru-based zeolite catalyst 163–164
Ru-PTA/MIL-100(Cr) catalyst 8, 9
Ru-Re bimetallic catalysts 152

scanning electron microscopy (SEM)
capsule catalyst (Ru/Al₂O₃–Pd/S) 154–156
core–shell-structured catalyst
(Ru/Al₂O₃) 154–156
shape-selective catalysis 114
Sn-doped mesoporous silica 108–109
solid-acid catalysts 23, 38, 152, 157
vs. mineral acids 128
solid-acid-supported metal catalysts 84
solid acid-supported Pt bifunctional
catalyst 158, 159
solid catalysts 83–84
sorbitol 27
dehydration 257–258
steam reforming reaction 274
strong acid ionic liquid-functionalized
PDVB-based catalysts 135–141
sulfated metal oxides vs. heteropoly
acids 106, 107
sulfated ordered mesoporous silica
advantages 105
cellulose, one-pot conversion 101–104
levulinic acid conversion 100
to fuel additives 101
product selectivities 101, 102
yield of 102, 104
xylose dehydration 104–105
sulfonated carbon catalysts, for cellulose
hydrolysis
catalyst structure 85, 86
ionic liquids 86
stability under hydrothermal
conditions 86–87
sulfone lignins 178
sulfonic group-functionalized porous
PDVB-based solid acids
PDVB-SO₃H
absorption capacities and catalytic
activities 132–134
copolymerization approach 129, 132
sorbitol transformation into
isosorbide 137–138, 142–143
sulfonation approach 129–131
PDVB-SO₃H-SO₂CF₃ 132, 134
sulfuric acid-modified graphene oxide 71–72
supercritical carbon dioxide (scCO₂) 68, 69
supercritical ethanol see also lignin
depolymerization
CuMgAl mixed-oxide catalysts
composition 242–246
effect of 236–240
influence of reaction
parameters 240–242
hydrotalcites 231–233
lignin depolymerization 233–234
superhydrophobic PDVB-based solid acids
glucose transformation into HMF
141, 143
synthetic procedures of 132
Syngas (CO, H₂) 160
tandem reaction processes 153–154
tandem transformation, FA 291–292
thermal catalytic cracking 202
thermodynamic values, adsorption of
cello-oligosaccharides 91
transesterification 272–273
transition-metal-based catalysts 152
triglyceride transesterification 149–150
trimetallic nanoparticle/carbon–nitrogen
nanocomposites 59–60
trimethylphosphine (TMPO) 214
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tripalmitin, transesterification with methanol catalytic activities</td>
<td>136, 138</td>
<td></td>
</tr>
<tr>
<td>activities on time</td>
<td>135, 136</td>
<td></td>
</tr>
<tr>
<td>textural parameters and catalytic data</td>
<td>135, 137</td>
<td></td>
</tr>
<tr>
<td>valerate esters, levulinic acid conversion to 100–101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vanadium-oxo complex catalyst 196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vanillin (4-hydroxy-3-methoxybenzaldehyde)</td>
<td>297, 298</td>
<td></td>
</tr>
<tr>
<td>water-soluble ammonium heptamolybdate catalyst 188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction (XRD) 242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xylose isomerization 259–260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeolite catalysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for propanediol synthesis 152–156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in rice straw hydrogenation 157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeolite-loaded Ru-based catalysts 152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeolite-templated carbon (ZTC) 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZSM-5 zeolite 157, 212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkane oil 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aromatization glycerol 223–224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mesoporous structures 220–221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni nanoparticles 215–216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>triglyceride-rich biomass 215</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>